シェアする

ソーシャル・コンピューティング研究室の磯 颯さん(博士前期課程1年)らが第227回自然言語処理研究会 優秀研究賞を受賞しました。(2016/07/30)

第227回自然言語処理研究会は、2016年7月29日(金)30日(土)に、岡山県立大学にて開催されました。自然言語処理研究会優秀研究賞は、本研究会において投稿された予稿の中から新規性、有用性、斬新性、将来性等の点で特に優れたものが、研究会の幹事と運営委員からなる選考委員会が選考を経て表彰される賞です。 miura
  • 受賞者 Awardee
    磯 颯 (M1)、若宮翔子、荒牧英治

  • 研究テーマ Research theme
    "複数時点の単語出現頻度を扱う時系列データモデリング"
    ソーシャルメディアの普及に伴い、様々な情報がインターネット上で共有されている。この結果、様々な社会現象および自然現象をインターネット上の情報から把握できるようになっている。特に、感染症に関するサーベイランス(現状把握技術)は、かつてない即時性から大きく注目されている。本研究では、ソーシャルメディア上で話題として取り上げられることが最も多い感染症の一つであるインフルエンザを題材に、従来のような現状把握だけでなく、流行予測を行うことを目指す。まず、実際に感染症が流行する前に、感染症の予防に関する情報が共有されていることに注目し、インフルエンザの流行を早期に示すような語を自動的に検出する。次に、実際の流行と任意の単語の相互相関係数を計算し、適切な時間ギャップの分だけタイムシフトした単語頻度を用いてモデルを構築し、患者数の予測を行う。この相互相関係数によるタイムシフトは、現状予測モデルの自然な拡張であるととともに、インフルエンザのみならず、あらゆる感染症の予測に適応可能な手法である。2012年8月から2016年1月までの、インフルエンザに関連する770万発言を用いた実験の結果、現状の患者数を相関係数平均0.93で推定し、1週間先の患者数を相関係数平均0.91、3週間先の患者数を相関係数平均0.76で予測することができた。この結果は、現状推定については、本邦における最高精度である。予測については、初めての試みであり、今後の適応範囲の拡大、および、実用化が望まれる。


  • 受賞についてのコメント Awardee's voice

    この度は、このような身に余る賞を頂き大変光栄に思います。これもひとえにご指導頂いた先生方のお力添えあってのことと、心から感謝しております。 本賞を励みに今後とも研究に邁進して行きたいと思います。

>> ソーシャル・コンピューティング研究室/Social Computing Lab.