
Gathering of Mobile Agents in Asynchronous
Byzantine Environments with Authenticated

Whiteboards ⋆

Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue

Nara Institute of Science and Technology, Ikoma, Japan

Abstract. We propose two algorithms for the gathering problem of k
mobile agents in asynchronous Byzantine environments. For both algo-
rithms, we assume that graph topology is arbitrary, each node is equipped
with an authenticated whiteboard, agents have unique IDs, and at most
f weakly Byzantine agents exist. Under these assumptions, the first al-
gorithm achieves gathering without termination in O(m+fn) moves per
agent (m is the number of edges and n is the number of nodes). The sec-
ond algorithm achieves gathering with termination in O(m+ fn) moves
per agent by additionally assuming that agents on the same node are
synchronized, f < ⌈ 1

3
k⌉ holds, and agents know k. To the best of our

knowledge, this is the first work to address the gathering problem of mo-
bile agents for arbitrary topology networks in asynchronous Byzantine
environments.

1 Introduction

Distributed systems, which are composed of multiple computers (nodes) that can
communicate with each other, have become larger in scale recently. This makes
it complicated to design distributed systems because developers must maintain
a huge number of nodes and treat massive data communication among them. As
a way to mitigate the difficulty, (mobile) agents have attracted a lot of attention
[2]. Agents are software programs that can autonomously move from a node to a
node and execute various tasks in distributed systems. In systems with agents,
nodes do not need to communicate with other nodes because agents themselves
can collect and analyze data by moving around the network, which simplifies
design of distributed systems. In addition, agents can efficiently execute tasks
by cooperating with other agents. Hence many works study algorithms to realize
cooperation among multiple agents.

The gathering problem is a fundamental task to realize cooperation among
multiple agents. The goal of the gathering problem is to make all agents meet
at a single node. By achieving gathering, all agents can communicate with each
other at the single node.

However, since agents themselves move on the distributed system and might
be affected by several nodes that they visit, some of agents might be cracked
⋆ This work was supported by JSPS KAKENHI Grant Number 26330084.

2

Table 1. Gathering of agents with unique IDs in graphs (n is the number of nodes, l is
the length of the smallest ID of agents, τ is the maximum difference among activation
times of agents, m is the number of edges, λ is the length of the longest ID of agents,
fu is the upper bound of the number of Byzantine agents, D is the diameter of the
graph, f is the number of Byzantine agents).

Synchronicity Graph Byzantine Whiteboard Termination Time complexity

[8]1 Synchronous Arbitrary Absence None Possible Õ(n5
√
τ l + n10l)

[12]1 Synchronous Arbitrary Absence None Possible Õ(n15 + l3)

[18]1 Synchronous Arbitrary Absence None Possible Õ(n5l)

[9] Synchronous Arbitrary Presence None Possible Õ(n9λ)
[19] Synchronous Arbitrary Presence Authenticated Possible O(fum)
[7]1 Asynchronous Infinite lines Absence None Possible O((D + λ)3)
[7]1 Asynchronous Rings Absence None Possible O((nλ))
[10]1 Asynchronous Arbitrary Absence None Possible poly(n, l)
Trivial Asynchronous Arbitrary Absence Existence Possible O(m)

Proposed 1 Asynchronous Arbitrary Presence Authenticated Impossible O(m+ fn)
Proposed 2 Asynchronous2 Arbitrary Presence Authenticated Possible O(m+ fn)

and do not follow the algorithm. We call such agents Byzantine agents. An
Byzantine agent is supposed to execute arbitrary operations without following
an algorithm. In this paper, we propose two algorithms that can make all correct
agents meet at a single node regardless of the behavior of Byzantine agents.

1.1 Related works

The gathering problem has been widely studied in literature [13][16]. Table 1
summarizes some of the results. In this table, we show the number of moves
for an agent as the time complexity for asynchronous models. These works aim
to clarify solvability of the gathering problem in various environments, and, if
it is solvable, they aim to clarify optimal costs (e.g., time, number of moves,
and memory space) required to achieve gathering. To clarify solvability and
optimal costs, many studies have been conducted under various environments
with different assumptions on synchronization, anonymity, randomized behavior,
topology, and presence of node memory (whiteboard).

For synchronous networks, many deterministic algorithms to achieve gath-
ering have been proposed [1][8][12][18]. If agents do not have unique IDs, they
cannot gather in symmetric graphs such as rings because they cannot break sym-
metry. Therefore, some works [8][12][18] assume unique IDs to achieve gathering
for any graph. Dessmark et al. [8] proposed an algorithm that realizes gathering
in Õ(n5

√
τ l + n10l) unit times for any graph, where n is the number of nodes,

1 This algorithm is originally proposed for a rendezvous problem (i.e., gathering of two
agents). However, it can be easily extended to the gathering problem by a technique
in [12] and its time complexity is not changed.

2 Agents on a single node are synchronized.

3

l is the length of the smallest ID of agents, and τ is the maximum difference
between activation times of two agents. Kowalski et al. [12] and Ta-Shma et al.
[18] improved the time complexity to Õ(n15+ l3) and Õ(n5l) respectively, which
are independent of τ . On the other hand, some works [4, 5, 11] studied the case
that agents have no unique IDs. In this case, gathering is not solvable for some
graphs and initial positions of agents. So the works proposed algorithms only for
solvable graphs and initial positions. They proposed memory-efficient gathering
algorithms for trees [5, 11] and arbitrary graphs [4].

If a whiteboard exists on each node, the time required for gathering can be
significantly reduced. Whiteboards are areas prepared on each node, and agents
can leave information to them. For example, when agents have unique IDs, they
can write their IDs into whiteboards on their initial nodes. Agents can collect all
the IDs by traversing the network [14], and they can achieve gathering by moving
to the initial node of the agent with the smallest ID. This trivial algorithm
achieves gathering in O(m) unit times, where m is the number of edges. On the
other hand, when agents have no unique IDs, gathering is not trivial even if they
use whiteboards and randomization. Ooshita et al. [15] clarified the relationship
between solvability of randomized gathering and termination detection in ring
networks with whiteboards.

Recently, some works have considered gathering in the presence of Byzan-
tine agents in synchronous networks [1][9][19]. Byzantine agents can make an
arbitrary behavior without following the algorithm due to system errors, crack-
ing, and so on. Dieudonné et al. [9] proposed an algorithm to achieve gathering
in Byzantine environments in Õ(n9λ) unit times, where λ is the length of the
longest ID of agents. Bouchard et al. [1] minimized the number of correct agents
required to achieve gathering, but the time required for gathering is exponential
of the number of nodes and labels of agents. Tsuchida et al. [19] reduced the time
complexity to O(fum) unit times by using authenticated whiteboards, where fu
is the upper bound of the number of Byzantine agents and m is the number of
edges. They used authenticated whiteboards for each node, in which each agent
is given a dedicated area to write information. They assumed that agents can
sign information to write. In their algorithm, correct agents achieve gathering
and declare the termination.

For asynchronous networks, many works consider the gathering problem with
additional assumptions. De Marco et al. [7] proposed an algorithm to achieve a
gathering of two agents in asynchronous networks without considering Byzantine
agents. They considered infinite lines and rings under the assumption that agents
have unique IDs and can meet inside an edge. In infinite lines, their algorithm
can achieve a gathering in O((D+ λ)3) moves, where D is the distance between
two agents in the initial configuration. In rings, they proposed an algorithm to
achieve a gathering in O(nλ) moves. Dieudonné et al. [10] considered a gathering
problem for arbitrary graphs under the same assumptions as [7]. They realized
a gathering in polynomial moves of the number of nodes and the length of the
minimum ID of agents.

4

Das et al. [6] assumed the ability of Byzantine agents different from works
in [1][9][19], and they realized the gathering in asynchronous ring and mesh
networks with Byzantine agents. In their model, correct agents can distinguish
Byzantine agents. In addition, correct agents and Byzantine agents can neither
meet on the same node nor pass each other on edges. Das et al. proposed an
algorithm to achieve gathering in O(n) moves in this model.

Pelc [17] considered the gathering problem with crash faults under a weak
synchronization model. Pelc considered a model in which each agent moves at a
constant speed, but the moving speed is different. That is, although each agent
has the same rate clock, the agent cannot know the number of clocks required
for movement of other agents. In this work, some agents may become crashed,
that is, they may fail and stop at a node or an edge. Under this assumption,
Pelc proposed algorithms to achieve the gathering in polynomial time for two
cases: agents stop with or without keeping their memory contents.

In other failure models, Chalopin et al. [3] considered a gathering problem
with an asynchronous model in which not agents but edges of the networks
become faulty. Chalopin et al. considered the case that some of the edges in
the network are dangerous or faulty such that any agent travelling along one of
these edges would disappear. They proposed an algorithm to achieve gathering
in O(m(m+ k)) moves in this model and they proved that this cost is optimal,
where k is the number of agents.

1.2 Our contributions

In this work, we propose two algorithms to achieve the gathering in asynchronous
networks with Byzantine agents. In the first algorithm, we adopt the same model
as Tsuchida et al. [19] except synchronicity. That is, Byzantine agents exist
in an asynchronous network, and an authenticated whiteboard is equipped on
each node. Since most of recent distributed systems are asynchronous, we can
apply the proposed algorithm to many systems compared to previous algorithms
for synchronous networks. To the best of our knowledge, there are no previous
works for asynchronous networks with Byzantine agents. If Byzantine agents do
not exist, we can use the trivial algorithm with whiteboards in asynchronous
networks. That is, agent can achieve the gathering in O(m) moves by using
whiteboards in asynchronous networks. However, this trivial algorithm does not
work when Byzantine agents exist. The first algorithm is an algorithm that
achieves the gathering without termination by using authenticated whiteboards
even if Byzantine agents exist in asynchronous networks. The proposed algorithm
realizes the gathering in without termination at most 2m+4n+10fn = O(m+
fn) moves.

The second algorithm realizes gathering with termination by putting addi-
tional assumptions. By realizing termination, it is possible to notify the upper
layer application of the terminating, which simplifies design of distributed sys-
tems. In order to realize this, we assume that agents on the same node are
synchronized. This assumption is practical and easy to implement because it is
easy to specify the timing when the node executes the algorithm of the agents.

5

In addition, we assume f < ⌈ 1
3k⌉ holds and agents know k. Under these assump-

tions, this algorithm achieves gathering with termination in O(m + fn) moves
per agent.

2 Preliminaries

2.1 A distributed system

A distributed system is modeled by a connected undirected graph G = (V,E),
where V is a set of nodes and E is a set of edges. The number of nodes is denoted
by n = |V |. When (u, v) ∈ E holds, u and v are adjacent. A set of adjacent nodes
of node v is denoted by Nv = {u|(u, v) ∈ E}. The degree of node v is defined
as d(v) = |Nv|. Each edge is labeled locally by function λv : {(v, u)|u ∈ Nv} →
{1, 2, · · · , d(v)} such that λv(v, u) ̸= λv(v, w) holds for u ̸= w. We say λv(v, u)
is a port number (or port) of edge (v, u) on node v.

Each node does not have a unique ID. Each node has an (authenticated)
whiteboard where agents can leave information. Each agent is assigned a dedi-
cated writable area in the whiteboard, and the agent can write information only
to that area. On the other hand, each agent can read information from all areas
(including areas of other agents) in the whiteboard.

2.2 A mobile agent

Multiple agents exist in a distributed system. The number of agents is denoted
by k, and a set of agents is denoted by A = {a1, a2, · · · , ak}. Each agent has
a unique ID, and the ID of agent ai is denoted by IDi. In the first algorithm
(Section 3), each agent knows neither n nor k. In the second algorithm (Section
4), each agent knows k but does not know n.

Each agent is modeled as a state machine (S, δ). The first element S is a set
of agent states, where each agent state is determined by values of variables in
its memory. The second element δ is the state transition function that decides
the behavior of an agent. The input of δ is the states of all agents on the current
node, the content of the whiteboard in the current node, and the incoming
port number. The output of δ is the next agent state, the next content of the
whiteboard, whether the agent stays or leaves, and the outgoing port number if
the agent leaves.

We assume activations of agents are scheduled by an adversary. The adversary
chooses one or more agents at one time, and each selected agent executes an
atomic operation at the same time. The atomic operation of an agent selected
by the adversary is shown below.

– If agent is selected at node v, ai executes the following operations as an
atomic operation. First, ai takes a snapshot, that is, ai gets states of all
agents at v and contents of the whiteboard at v. After that, ai changes its own
state and the content of the dedicated writable area in the whiteboard at v.
Moreover, if ai decides move to an edge as a result of the local computation,
it leaves v.

6

– If agent aj is selected at edge e, aj arrives at the destination node as an
atomic operation. That is, aj arrive at node.

In the first algorithm (Section 3), we assume that agents operate in an asyn-
chronous manner. To guarantee a progress, we assume that for any agent a, the
adversary chooses a infinitely many times. In the second algorithm (Section 4),
we assume that agents on the same node are synchronized. That is in addition
to the above assumption, we assume that, if the adversary selects an agent a at
a node v, it selects all agents at the node v at the same time.

In the initial configuration, each agent stays at an arbitrary different node.
We assume that each agent makes an operation on its starting node earlier than
other agents. That is, we assume that the adversary selects all agents at the
same time in the beginning of an execution.

2.3 Signature

Each agent ai can make a signed information that guarantees its ID IDi and its
current node v by a signature function Signi,v(). That is, any agent identifies an
ID of the signed agent and whether it is signed at the current node or not from
the signature. We assume ai can use signature function Signi,v() at only v. We
call the output of signature function a marker, and denote a marker signed by
ai at node v by markeri,v. The marker’s signature cannot be counterfeited, that
is, an agent ai can use a signature function Signi,v() at v but cannot compute
Signj,u() for either i ̸= j or v ̸= u when ai stay at v. Any agents can copy the
marker and can paste any whiteboard, but cannot modify it while keeping its
validity.

In this paper, when algorithms treats a marker, it first checks the validity of
signatures and ignores the marker if it includes wrong signatures. We omit this
behavior from descriptions, and assume all signatures of every marker are valid.

When ai creates the signed marker at node v, the marker contains IDi and
information of the node v. That is, when an agent finds a signed marker, it can
identify 1) the ID of the agent that created it and 2) whether it is created at the
current node or not. Therefore, it is guaranteed that signed marker markeri,v
is created by ai at v. When the agent aj stays at node v, aj can recognize that
markeri,v was created at v, and when aj stays at node u(̸= v), aj can recognize
that it was created at another node.

2.4 Byzantine agents

Byzantine agents may exist in a distributed system. Each Byzantine agent be-
haves arbitrarily without following the algorithm. However, each Byzantine agent
cannot change its ID. In addition, even if agent ai is Byzantine, ai cannot com-
pute Signj,u()(i ̸= j or v ̸= u) at node v, and therefore ai cannot create
markerj,u(i ̸= j or v ̸= u). In this paper, we assume that each agent do not
know number of Byzantine agents exist. We assume f Byzantine agents exist.
In the second algorithm, we assume f < ⌈ 1

3k⌉ holds.

7

2.5 The gathering problem

We consider two types of gathering problems, gathering without termination
and gathering with termination. We say an algorithm solves gathering without
termination if all correct agents meet at a single node and continue to stay
at the node after a certain point of time. In the second problem, we require
agents to declare termination. Once an agent declares termination, it can neither
change its state nor move to another node after that. We say an algorithm
solves gathering with termination if all correct agents meet at a single node and
declare termination at the node. We assume that, in the initial configuration,
each agent stays at an arbitrary different node. To evaluate the performance of
the algorithm, we consider the maximum number of moves required for an agent
to achieve the gathering.

2.6 Procedure DFS

In this subsection, we introduce a procedure depth-first search (DFS) used in our
algorithm. The DFS is a well-known technique to explore a graph. In the DFS,
an agent continues to explore an unexplored port as long as it visits a new node.
If the agent visits an already visited node, it backtracks to the previous node
and explores another unexplored port. If no unexplored port exists, the agent
backtracks to the node from which it enters the current node for the first time.
By repeating this behavior, each agent can visit all nodes in 2m moves, where m
is the number of edges. Note that, since each agent can realize the DFS by using
only its dedicated area on whiteboard, Byzantine agents cannot disturb the DFS
of correct agents. In this paper, when algorithms executes DFS, each agent use
only its dedicated area on whiteboard. We omit this area on whiteboard.

3 Gathering Algorithm without declaring termination

In this section, we propose an algorithm that solves gathering without termina-
tion. Here, we assume agents operate in an asynchronous manner. In addition,
f Byzantine agents exist and each agent does not know n, k or f .

3.1 Our algorithm

Overview First, we give an overview of our algorithm. This algorithm achieves
the gathering of all correct agents in asynchronous networks even if Byzantine
agents exist. The basic strategy of the algorithm is as follows.

When agent ai starts the execution on node vstart, ai creates a marker
makreri,vstart indicating that ai starts from node vstart. We call this marker
a starting marker. This marker contains information on the ID of the agent and
the node where ai creates the marker. In this algorithm, all agents share their
starting markers and then meet at the node where the agent with the minimum
ID creates the starting marker.

8

To share the starting marker, ai executes DFS and leaves a copy of the marker
to all nodes. When agent ai sees other agents’ markers, ai stores the markers
to its own local variable. After agent ai finishes the DFS and returns to vstart,
ai has all markers of correct agents and may have some markers of Byzantine
agents. After that, ai selects the marker markermin,vmin

which was made by the
agent amin with the minimum ID. If Byzantine agents do not exist, agent ai can
achieve a gathering by moving to node vmin where the marker markermin,vmin

is created.
However, if Byzantine agents exist, they may interfere with the gathering in

various ways. For example, Byzantine agents might not make their own starting
markers, they might write and delete starting markers so that only some correct
agents can see the markers, or they might create multiple starting markers. By
these operations, agents may calculate different gathering nodes. To overcome
this problem, in this algorithm, each agent shares information on the starting
marker created by the agent with the minimum ID with all agents to get a
common marker. If all correct agents get a common marker of the minimum ID
agent, they can calculate the same gathering node. However, while agents share
the markers, Byzantine agents may make new markers to interfere with sharing.
If agent share all markers of Byzantine agents, they may move infinite times to
share the markers because Byzantine agents can create markers infinite times. To
prevent from such interference, each agent also shares an blacklist. The blacklist
is a list of Byzantine agents’ IDs. If the markers and the blacklists are shared,
correct agents can identify the common marker that is created by the agent with
the minimum ID among the agents not in the blacklist. We explain how agents
identify Byzantine agents. When ai calculates a gathering node and moves to
that node for the first time, ai refers the marker markermin,v created by the
agent amin with minimum ID. If other agents copy marker markermin,u(v ̸= u)
and paste it to the node v, ai can judge that the two markers markermin,v and
markermin,u were created by the same ID agent. Since the starting marker has
been signed, each agent cannot camouflage the starting marker of other agents.
In addition, correct agents create the markers only once when they start the
algorithms. Therefore, when there are two starting markers markermin,v and
markermin,u(v ̸= u) created by single agent amin, ai can distinguish that amin

is a Byzantine agent. When ai understands that amin is a Byzantine agent, ai
adds IDmin to the blacklist and shares IDmin with all agents as a member of
the blacklist. To share IDmin, agent ai shares two starting markers created by
the Byzantine agent amin. That is, ai copies amin’s two markers and paste them
to all the nodes so that all other agents also judge that amin is a Byzantine
agent. After that, all correct agents ignore all markers of amin and identify the
marker created by the agent with the minimum ID among the agents not in the
blacklist. By these operations, all agents can select the node with the marker as
the common gathering node.

9

Algorithm 1 Algorithm code of agent ai. The node v indicates the node which
ai is staying.

1: markeri,v = Signi,v(), ai.marker = markeri,v, ai.All = ∅, ai.state = explore

2: while ai is executing DFS do
3: v.wb[IDi] = {ai.marker}
4: ai.All = ai.All ∪

∪
id
v.wb[id]

5: Store network topology
6: Move to the next node by DFS
7: end while
8: ai.tmin = null, ai.min = ∞, ai.Byz = ∅, ai.TByz = ∅
9: while True do
10: ai.All = ai.All ∪

∪
id
v.wb[id]

11: min tmp = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz}
12: if ai.min > min tmp then
13: ai.state = explore

14: ai.tmin = t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
15: ai.min = min tmp
16: while ai goes around the network do
17: v.wb[IDi] = v.wb[IDi] ∪ {ai.tmin}
18: Move to the next node
19: end while
20: Move to the node where ai.tmin is created
21: else
22: if ∃x : x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) == false then
23: ai.state = explore

24: ai.TByz = {x, ai.tmin}
25: while ai goes around the network do
26: v.wb[IDi] = v.wb[IDi] ∪ ai.TByz

27: Move to the next node
28: end while
29: ai.Byz = ai.Byz ∪ ai.min
30: ai.min = ∞
31: else
32: ai.state = gather

33: Stay at the node v
34: end if
35: end if
36: end while

Since we consider an asynchronous network, agent ai does not know when
other agents write starting marker on the whiteboard. For this reason, after ai
moves to the gathering node, ai continues to monitor the whiteboard and check
the presence of new markers. When ai finds a new agent with the minimum ID
or Byzantine agents, ai repeats the above operation.

Details of the Algorithm The pseudo-code of the algorithm is given in Algo-
rithm 1. We denote by v.wb[IDi] the dedicated writable area of agent ai in the

10

whiteboard on node v. Agent ai manages the local variables ai.All, ai.state,
ai.min, ai.tmin and ai.Byz. Variable ai.All stores all the markers observed
by ai. Variable ai.state stores explore or gather. When ai.state = gather

holds, ai arrives at the current gathering node and waits for other agents. When
ai.state = explore holds, ai is currently computing the gathering node or mov-
ing to the node. Variable ai.tmin stores the marker created by an agent with mini-
mum ID except Byzantine agents’ ID that ai has observed so far. Variable ai.min
stores the ID of the agent that created ai.tmin. Variable ai.Byz is a blacklist, that
is, it stores Byzantine agent IDs that ai has confirmed so far. The initial values of
these variables are ai.All = ∅, ai.state = explore, ai.min = ∞, ai, tmin = null
and ai.Byz = ∅. In addition, function writer(markeri,v) returns i, that is, the
ID of the agent that creates markeri,v. Function node check(markeri,v) returns
true if markeri,v was created on the current node, and otherwise returns false.

Recall that, in an atomic operation, an agent obtains the snapshot, updates
its state and the whiteboard, and then, possibly leaves the node. In the pseudo-
code, each agent executes the operations as an atomic operation until it leaves
(lines 6, 18, 20 and 27) or it decides to stay (line 33). When an agent reads
from the whiteboard, it uses the snapshot taken at the beginning of an atomic
operation.

When ai starts the algorithm, it makes starting markermarkeri,v = Signi,v()
and becomes explore (line 1). After ai creates the starting marker, in order to
inform other agents about the marker, ai executes DFS and copies the marker
and pastes it to all nodes (line 2 to 7). On every node, ai adds other agent’s
marker to ai.All (line 4). In order to obtain the network topology, ai memorizes
the connection relation between all nodes and all edges during the DFS. Con-
sequently, ai can traverse the network with at most 2n moves after it finishes
DFS.

After ai finishes DFS, ai checks the markers collected in ai.All and calculates
a gathering node (lines 9 to 36). First, ai stores markers of the current node in
ai.All to check new markers. After that, ai selects the ID IDmin such that
IDmin = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz} holds (line 11). If
ai.min > IDmin, ai executes an update operation of a gathering node (lines 12
to 20). Otherwise, ai executes a detection operation of Byzantine agents (lines
22 to 30).

In the update operation of a gathering node, ai calculates a new gathering
node. In this step, ai stores marker t satisfying writer(t) == min{writer(t) :
t ∈ ai.All∧writer(t) /∈ ai.Byz} to ai.tmin and stores writer(ai.tmin) to ai.min.
After that, ai copies ai.tmin and ai pastes it to all nodes in order to inform
other agents of that minimum ID agent’s marker (lines 16 to 19). Note that,
since ai knows the graph topology, it can visit all nodes in at most 2n moves. In
addition, since ai visits all nodes, ai can know at which node ai.tmin was created.
Therefore, after ai copies ai.tmin and ai pastes it to all nodes, ai can move to
the node where ai.tmin was created. If there are two or more markers created by
an agent with the minimum ID, ai refers to one of the markers and calculates

11

a gathering node. Then, in the detection operation of the next while-loop, ai
determines an agent with the minimum ID as a Byzantine agent.

In detection operation of Byzantine agents, ai determines whether the min-
imum ID agent is a Byzantine agent. If there is a marker x that satisfies
x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) == false, ai determines
that writer(x) is a Byzantine agent. This is because, since correct agents create
markers only once, only Byzantine agents can create markers on two nodes. In
this case, ai informs other agents of the ID of the Byzantine agent and executes
the update operation in a next while-loop. In order to realize this, ai copies the
starting markers of the Byzantine agent and pastes them to all nodes, and then
ai initializes ai.min = ∞.

Finally, if ai executes local computation and decides the current node as a
gathering node, ai changes the ai.state to gather state. After that, if ai decides
to change the gathering node, ai changes ai.state to explore again (lines 13 and
23).

By repeating the above operation, eventually all the correct agents refer to
the starting markers created by the same minimum ID agent and gather at the
same node.

3.2 Correctness of Algorithm 1

Lemma 1. Correct agents ai never adds correct agent aj’s ID IDj to ai.Byz.

Proof. Correct agent aj creates a starting marker markerj,v = Signj,v() only
once when it starts the algorithm at node v. In addition, Byzantine agents can-
not create or modify the signed marker of aj . Therefore, there is no marker
markerj,u = Signj,u() (v ̸= u).

Recall that ai adds IDb to ai.Byz only when agent ai confirms that agent ab
creates starting markers markerb,v and markerb,u (v ̸= u). Thus, ai never adds
correct agent aj ’s ID IDb to ai.Byz.

Lemma 2. For any correct agent ai, after ai finishes DFS, there exists at least
one marker markerx,v that satisfies markerx,v ∈ ai.All ∧ writer(markerx,v) ̸∈
ai.Byz.

Proof. Correct agent ai stores all of the starting markers observed during ex-
ecution of the algorithm to ai.All. These markers also include ai’s marker
markeri,vstart

. From Lemma 1, correct agent ai never adds correct agents’
IDs to ai.Byz. In addition, since ai itself is also a correct agent, ID IDi

is never stored in ai.Byz. Therefore, after ai finishes DFS, markeri,vstart
∈

ai.All ∧ writer(markeri,vstart
) ̸∈ ai.Byz holds, which implies the lemma.

Lemma 3. After correct agent ai calculates a gathering node for the first time,
ai updates ai.min at most 2f times.

Proof. While correct agent ai executes DFS at the beginning of the algorithm,
ai can observe all markers of correct agents. Therefore, when ai calculates a

12

gathering node for the first time, ai.min becomes the minimum ID among correct
agents or a smaller ID of some Byzantine agent. After that, ai updates ai.min
when ai observes a marker t satisfying ai.min > writer(t) or when ai judges
ai.min is an ID of Byzantine agent. Since ai observes all markers of correct
agents during DFS, ai can observe a marker t satisfying ai.min > writer(t) only
when writer(t) is an ID of Byzantine agent. In addition, after ai judges ai.min
is an ID of Byzantine agent, ai never updates ai.min by using the ID. Thus,
ai updates ai.min at most twice per Byzantine agent, which implies ai updates
ai.min at most 2f times.

Lemma 4. For any correct agents ai and aj, after the last updates of ai.min
and aj .min, ai.min and aj .min are equal.

Proof. We prove this lemma by contradiction. Assume that, after the last up-
dates of ai.min and aj .min, ai.min ̸= aj .min holds for correct agents ai and
aj . Without loss of generality, we assume that ai.min = x < aj .min = y holds.

In order to satisfy ai.min < aj .min, ai and aj should observe different mark-
ers markerx,v and markery,u. When ai regards markerx,v as the marker cre-
ated by the minimum ID agent, the agent copies the marker markerx,v and
pastes it to all the nodes. After that, aj observes the copied marker markerx,v.
Since IDj /∈ aj .Byz holds from Lemma 1, aj .min ≤ x holds after aj observes
marker markerx,v. Therefore, after the last updates of ai.min and aj .min,
y = aj .min ≤ x = ai.min holds. This is contradiction. Thus, the lemma holds.

Lemma 5. All correct agents gather at one node with gather state within a
finite time.

Proof. Correct agent ai finds node v such that the marker was created by
ai.min’s agent, and then sets v as a gathering node. From Lemma 2, there
is a gathering node. Also, from Lemma 4, for any correct agents ai and aj , after
the last updates of ai.min and aj .min, ai.min and aj .min are equal. In addition,
from Lemma 3, after correct agent ai calculates the gathering node for the first
time, ai updates ai.min at most 2f times. Therefore, all correct agents refer to
the same marker markermin,v, and calculate the same node v as a gathering
node. Moreover, since the time required for agents to move between nodes is
also finite, all correct agents can arrive at a gathering node in a finite time. In
addition, if correct agent decides not to change gathering node, correct agent
becomes gather state. This implies all agents gather at v with gather state
within a finite time.

Theorem 1. Algorithm 1 solves gathering with termination. In the algorithm,
each agent moves at most 2m+ 4n+ 10fn times.

Proof. From Lemma 5, all correct agents gather at one node with gather state
within finite time. Let us consider the number of moves required for the gath-
ering. Correct agent ai first visits all nodes by DFS, which requires 2m moves.
After that, when ai calculates the gathering node for the first time, it copies
and pastes the marker created by the minimum ID agent to all nodes and moves

13

to the gathering node. In this movement, ai can copy the starting marker and
paste it to all nodes with at most 2n moves because the agent knows the graph
topology while executing DFS. After ai copies and pastes the marker, ai moves
to a gathering node with at most 2n moves.

Every time ai updates ai.min, ai copies the starting marker and pastes it
to all nodes with at most 2n moves and moves to a new gathering node with
at most 2n moves. From Lemma 3, ai updates ai.min at most 2f times. In
addition, when the minimum ID agent is judged as a Byzantine agent, ai informs
the other agents about the ID of that Byzantine agent by copying and pasting
that starting marker to all nodes with at most 2n moves. Therefore, ai moves
at most 2m+ 2n+ 2n+ 2f(2n+ 2n) + f × 2n = 2m+ 4n+ 10fn times.

4 Gathering algorithm with declaring termination

In this section, we propose an algorithm that solves gathering with termination.
To realize the algorithm we add assumptions that agents on a single node are
synchronized, f < ⌈ 1

3k⌉ holds, and agents know k. In addition, we define fu =

⌊k−1
3 ⌋. Note that, since fu is the maximum integer less than ⌈ 1

3k⌉, fu is an upper
bound of f .

4.1 Our algorithm

Overview First, we give an overview of our algorithm. This algorithm achieves
gathering with termination in asynchronous networks even if Byzantine agents
exist. Agents execute the same operations as Algorithm 1 until k − fu agents
gather at the same node and enter gather state. After at least k − fu agents of
gather state gather at one node v, all correct agents at v terminate. Note that,
since the k− fu agents execute the algorithm in synchronously at v and at most
fu Byzantine agents exist, at least k − 2fu ≥ fu + 1 correct agents terminate
at v from fu = ⌊k−1

3 ⌋. As we show in Lemma 8, correct agents that have not
terminated yet eventually visit v. When correct agents visit v, they can see that
at least fu + 1 agents have terminated, and then they also terminate at v. In
addition, we show in Lemma 7 that there is only one node v where at least
fu + 1 agents have terminated. Thus, all correct agents gather at one node and
terminate.

Details of the Algorithm The pseudo-code of the algorithm is given in Algo-
rithm 2. It is basically the same as Algorithm 1, but differences are additional
lines 10 to 12 and 21 to 23. Recall that, in an atomic operation, an agent obtains
the snapshot, updates its state and the whiteboard, and then, possibly leaves
the node. In the pseudo-code, each agent executes the operations as an atomic
operation until it leaves (lines 6, 26, 28 and 35) or it decides to stay (line 41) or it
declare termination (lines 12 and 23). When an agent reads from the whiteboard,
it uses the snapshot taken at the beginning of an atomic operation.

14

Algorithm 2 main() Algorithm code of agent ai. The node v indicates the node
which ai is staying.

1: markeri,v = Signi,v(), ai.marker = markeri,v, ai.All = ∅, ai.state = explore

2: while ai is executing DFS do
3: v.wb[IDi] = {ai.marker}
4: ai.All = ai.All ∪

∪
id
v.wb[id]

5: Store network topology
6: Move to the next node by DFS
7: end while
8: ai.tmin = null, Ai.min = ∞, ai.Byz = ∅, ai.TByz = ∅
9: while true do
10: if There exist at least k − fu agents of gather state at node v then
11: ai.state = terminate

12: declare termination
13: else
14: ai.All = ai.All ∪

∪
id
v.wb[id]

15: min tmp = min{writer(t) : t ∈ ai.All ∧ writer(t) /∈ ai.Byz}
16: if ai.min > min tmp then
17: ai.state = explore

18: ai.tmin = t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
19: ai.min = min tmp
20: while ai goes around the network do
21: if There are at least k − fu agents of gather state or at least fu +

1 agents of terminate state at node v then
22: ai.state = terminate

23: declare termination
24: end if
25: v.wb[IDi] = v.wb[IDi] ∪ {ai.tmin}
26: Move to the next node
27: end while
28: Move to the node where ai.tmin is created
29: else
30: if ∃x : x ∈ ai.All ∧writer(x) == ai.min ∧ node check(x) == false then
31: ai.state = explore

32: ai.TByz = {x, ai.tmin}
33: while ai goes around the network do
34: v.wb[IDi] = v.wb[IDi] ∪ ai.TByz

35: Move to the next node
36: end while
37: ai.Byz = ai.Byz ∪ ai.min
38: ai.min = ∞
39: else
40: ai.state = gather

41: stay at the node v
42: end if
43: end if
44: end if
45: end while

15

In Algorithm 2, agents execute the same operations as Algorithm 1 until at
least k − fu agents of gather state gather at its current node v. After at least
k − fu agents of gather state gather at node v, correct agents terminate at the
node v (lines 10 to 12). If agent ai sees at least k− fu agents of gather state or
at least fu +1 agents of terminate state at node v, ai terminates at v (lines 21
to 23). Agent ai executes the above operation while ai visits all nodes to paste
marker ai.tmin for updating the gathering node. Note that ai does not execute
the operation while ai visits nodes to paste ai.tBiz for updating the blacklist
of Byzantine agents (lines 30 to 38). This is because ai executes an update
operation of the gathering node after an update operation of the blacklist.

By repeating the above operation, eventually all the correct agents refer to
the starting marker created by the minimum ID agent and gather at the same
node with declaring termination.

4.2 Correctness of Algorithm 2

Lemma 6. If a correct agent of terminate state exists at a node v, at least
fu + 1 correct agents of terminate state exist at v.

Proof. Assume that at least one correct agent of terminate state exists at v.
Note that each agent enters terminate state when it terminates. Let a be the
correct agent that terminates earliest at v. To terminate the algorithm, a must
evaluate the predicate of line 10 or 21 as true. Since at most fu Byzantine agents
exist, a does not see fu + 1 agents of terminate state at v and thus it never
evaluates the latter half of the predicate of line 21 as true. Consequently, when a
terminates, it sees at least k− fu agents of gather state at v. From fu = ⌊k−1

3 ⌋,
k−2fu ≥ fu+1 agents among at least k−fu agents are correct. Since all agents
on the same node are synchronized, at least fu+1 correct agents of gather state
execute lines 10 to 12 (or 21 to 23) at the same time. They also see at least k−fu
agents of gather state, and thus terminate at v. Therefore, the lemma holds.

Lemma 7. At least one correct agent eventually terminates.

Proof. We prove this lemma by contradiction. Assume that no correct agent
terminates. In Algorithm 2, a correct agent terminates if and only if it evaluates
the predicate of line 10 or 21 as true. This implies no correct agent evaluates the
predicate as true.

Recall that only lines 10 to 12 and 21 to 23 in Algorithm 2 are added to
Algorithm 1. Thus, if predicates of lines 10 and 21 of Algorithm 2 are always false,
agents make the same behaviors as Algorithm 1. Consequently, from Theorem
1, all correct agents gather at some node within a finite time. Therefore, at
least k− fu correct agents enter gather state at the node and they evaluate the
predicate of line 10 in Algorithm 2 as true. This is a contradiction.

We define af as the correct agent that terminates earliest among all agents.
Let tf be the time at which af terminates and vf be the node where af termi-
nates.

16

Lemma 8. Each agent moves at most O(m+ fn) times before time tf .

Proof. Before time tf , correct agents always evaluate predicates of lines 10 and
21 as false (Otherwise they terminate). Consequently, all correct agents make
the same behaviors as Algorithm 1. From Theorem 1, each agent moves at most
O(m+ fn).

Lemma 9. No correct agent terminates at node v′ (v′ ̸= vf).

Proof. We prove this lemma by contradiction. Assume that some correct agent
terminates at v′ (v′ ̸= vf). Let as be the correct agent that terminates at v′

earliest.

From Lemma 6, at least fu + 1 correct agents terminate at node vf . When
as terminates at v′, it sees at least k− fu agents of gather state at v′. However,
since at least fu+1 agents have already terminated at vf , at least k− fu agents
cannot gather at v′. This is a contradiction, and thus the lemma holds.

Corollary 1. After time tf , fu + 1 agents of terminate state exist at vf . For
any node v′ (v′ ̸= vf), the number of agents of terminate state at v′ is at most
fu.

Proof. Since fu+1 correct agents terminate at the same time as af from Lemma
6, the first part clearly holds. From Lemma 9, no correct agent terminates at v′

(v′ ̸= vf). Thus the second part holds.

Lemma 10. Each correct agent not in vf at time tf terminates at vf after
moving O(m) times.

Proof. Let a be a correct agent not in vf at time tf . Let idvf be the ID of the
agent that starts the algorithm from node vf .

We consider three cases depending on the status of agent a at time tf : 1)
a considers vf as a gathering node, 2) a considers a node other than vf as
a gathering node and 3) a has not finished the first DFS. In the first case,
a.min = idvf holds. Agent a visits node vf within a finite time because, from
Corollary 1, vf is the unique node where fu + 1 agents terminate.

In the second case, we assume that a considers v′ (v′ ̸= v) as a gathering
node. In addition, we define id′vf as the ID of the agent that starts the algorithm

from node v′. Here, there are two subcases of idvf > idv′ or idvf < idv′ . When
idvf > idv′ holds, we consider two cases.

– Case that, af does not considers idv′ as an ID of a Byzantine agent (i.e.,
idv′ /∈ af .Byz) at time tf . In this case, a marker of idv′ or smaller ID must
not exist at vf at time tf because, if such a marker exists at vf , af moves
to the corresponding node as a new gathering node. Since a must paste a
marker of idv′ or a smaller ID to all nodes before entering gather state, a
visits vf after tf .

17

– Case that, af considers idv′ as an ID of a Byzantine agent (i.e., idv′ ∈
af .Byz) at time tf . In this case, af has pasted two markers of idv′ to all
nodes before it terminates. Consequently, v′ contains two markers of idv′ .
At time tf , agent a executes an update operation of the gathering node v′

or a detection operation of Byzantine agents. In the former case, after a
completes pasting a marker of idv′ to all nodes, it moves to v′. Then, at v′, a
understands idv′ is an ID of a Byzantine agent. Consequently, a pastes two
markers of idv′ to all nodes and then executes an update operation of a new
gathering node. During the update operation, a visits vf . In the latter case,
a has already known idv′ is an ID of a Byzantine agent, and explores the
network to paste two markers of idv′ . Hence, after a arrives at v′, it executes
an update operation of a new gathering node. During the update operation,
a visits vf .

When idvf < idv′ holds, the marker of idvf must exist in v′ at time tf because
af pastes a marker of idvf to all nodes before terminating at vf . At time tf , agent
a executes an update operation of the gathering node v′ or a detection operation
of Byzantine agents. In the former case, after a completes pasting a marker of
idv′ to all nodes, a moves to v′. Then, at v′, a finds a marker of idvf or a smaller
ID and executes an update operation of the gathering node. During the update
operation, a visits af . In the latter case, a knows idv′ is an ID of a Byzantine
agent, and explores the network to paste two markers of idv′ . Hence, after a
arrives at v′, a executes an update operation of a new gathering node. During
the update operation, a visits vf .

In the third case, a eventually finishes DFS and goes back to the starting
node of a. Then, a executes an update operation of the gathering node. During
the update operation, a visits vf .

For all cases, when a visits vf after time tf , correct agent af already ter-
minate. From Lemma 6, a sees at least f + 1 agents of terminate state and
terminate there. In addition, from the above cases, a terminates at vf before it
explores the network twice. Hence, the lemma holds.

Theorem 2. Algorithm 2 achieves a gathering with termination within a finite
time. In the algorithm, each agent moves at most O(m+ fn).

Proof. From Lemma 8, each agent moves O(m+fn) times before time tf . After
time tf , from Lemma 10, each correct agent not in vf at time tf terminates at vf
after moving O(m) times. Therefore, all correct agents gather at vf and declare
termination, and each agent moves O(m+ fn) times.

5 Conclusions

In this work, we have proposed two gathering algorithms for mobile agents in
asynchronous Byzantine environments with authenticated whiteboards. Each al-
gorithm achieves the gathering in O(m+ fn) moves per an agent. In the Algo-
rithm 1 achieves the gathering without termination. In the Algorithm 2 realizes

18

termination by putting additional assumptions. The additional assumptions are
that agents on a single node are synchronized, each agent knows f and k where
f is number of Byzantine agents and k is number of total agents.

References

1. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks.
Distributed Computing 29(6), 435–457 (2016)

2. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley (2012)

3. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs
with faulty links. In: International Symposium on Distributed Computing. pp. 108–
122. Springer (2007)

4. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Computing 25(2), 165–178 (2012)

5. Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous
in trees. Distributed Computing 27(2), 95–109 (2014)

6. Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a mali-
cious agent. In: International Symposium on Algorithms and Experiments for Sen-
sor Systems, Wireless Networks and Distributed Robotics. pp. 211–224. Springer
(2015)

7. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355(3),
315–326 (2006)

8. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

9. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Transactions
on Algorithms (TALG) 11(1), 1:1–28 (2014)

10. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. SIAM Journal on Computing 44(3), 844–867 (2015)

11. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Transactions on Algorithms (TALG) 9(2), 17:1–24 (March 2013)

12. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoritical
Computer Science 399(1-2), 141–156 (2008)

13. Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring. Synthesis Lectures on Distributed Computing Theory 1(1), 1–122 (2010)

14. Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.: A single agent explo-
ration in unknown undirected graphs with whiteboards. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 98(10),
2117–2128 (2015)

15. Ooshita, F., Kawai, S., Kakugawa, H., Masuzawa, T.: Randomized gathering of
mobile agents in anonymous unidirectional ring networks. IEEE Transactions on
Parallel and Distributed Systems 25(5), 1289–1296 (2014)

16. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks
59(3), 331–347 (2012)

17. Pelc, A.: Deterministic gathering with crash faults. Networks (2018)
18. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly

universal exploration sequences. ACM Transactions on Algorithms (TALG) 10(3),
12:1–15 (2014)

19

19. Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine gathering in networks with authen-
ticated whiteboards. In: International Workshop on Algorithms and Computation.
pp. 106–118. Springer (2017)

