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Abstract. We propose a new self-stabilizing 1-maximal matching algo-
rithm which is silent and works for any anonymous networks without a
cycle of a length of a multiple of 3 under a central unfair daemon. Let n
and e be the numbers of nodes and edges in a graph, respectively. The
time complexity of the proposed algorithm is O(e) moves. Therefore, the
complexity is O(n) moves for trees or rings whose length is not a multiple
of 3. That is a significant improvement from the best existing results of
O(n*) moves for the same problem setting.
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1 Introduction

Self-Stabilization [5] can tolerate several inconsistencies of computer networks
caused by transient faults, erroneous initialization, or dynamic topology change.
It can recover and stabilize to consistent system configuration without restarting
program execution.

Mazximum or mazimal matching is a well-studied fundamental problem for
distributed networks. A matching is a set of pairs of adjacent nodes in a network
such that any node belongs to at most one pair. It can be used in distributed ap-
plications where pairs of nodes, such as a server and a client, are required. This
paper proposes an efficient anonymous self-stabilizing algorithm for 1-mazimal
matching. A 1-maximal matching is a %—approximation to the maximum match-
ing, and expected to find more matching pairs than a mazimal matching which
isa %—approximation to the maximum matching.

Self-stabilizing algorithms for the maximum and maximal matching problems
have been well studied|[7]. Table 1 summarizes the results, where n and e denote
the numbers of nodes and edges, respectively.

Blair and Manne[l] showed that a mazimum matching can be solved with
O(n?) moves for non-anonymous tree networks under a read /write daemon. They
proposed an algorithm to construct a rooted tree, and showed bottom-up algo-
rithms including a maximum matching[2] can be combined with the proposed al-
gorithm so that the combined algorithm simultaneously solves the two problems
without increasing the time complexity. For anonymous networks, Karaata et



Table 1. Self-stabilizing matching algorithms.

Reference | Matching | Topology |Anonymous| Daemon | Complexity
[1] maximum | tree no read/write |O(n?) moves
[10) |maximum| tree yes central |O(n") moves
(3] maximum | bipartite yes central |O(n?) rounds
[9] maximal | arbitrary yes central |O(e) moves
[6] 1-maximal|tree, ring* yes central |O(n*) moves
[12] 1-maximal| arbitrary no distributed|O(n?) rounds

this paper|1l-maximal|arbitrary* yes central |O(e) moves

* without a cycle of length of a multiple of 3.

al.[10] proposed a maximum matching algorithm with O(n*) moves for trees un-
der a central daemon, and Chattopadhyay et al.[3] proposed a maximum match-
ing algorithm with O(n?) rounds for bipartite networks under a central daemon.

Recently, Datta and Larmore[4] proposed a silent weak leader election al-
gorithm for anonymous trees. The algorithm elects one or two co-leaders with
O(n - Diam) moves in a bottom-up fashion under an unfair distributed daemon,
where Diam is a network diameter. Though there is no description, it seems that
it can be combined with the maximum matching algorithm[2] without increasing
the time complexity.

Hsu and Huang[9] proposed a mazimal matching algorithm for anonymous
networks with arbitrary topology under a central daemon. They showed the time
complexity of O(n?) moves, and, it has been revealed that the time complexity
of their algorithm is O(n?) moves by Tel[13] and Kimoto et al.[11] and O(e)
moves by Hedetniemi et al. [8].

Goddard et al.[6] proposed a I-mazimal matching with O(n*) moves for

anonymous trees and rings whose length is not a multiple of 3 under a central
daemon. They also showed that there is no self-stabilizing 1-maximal matching
algorithm for anonymous rings with length of a multiple of 3. Manne et al. [12]
also proposed a l-maximal matching algorithm for non-anonymous networks
with any topology under a distributed unfair daemon. Their algorithm stabilizes
in O(n?) rounds and O(2" - A - n) moves, where A is the maximum degree of
nodes.
Our contribution. In this paper, we propose a new self-stabilizing 1-maximal
matching algorithm. The proposed algorithm is silent and works for any anony-
mous networks without a cycle of a length of a multiple of 3 under a central
unfair daemon. We will show that the time complexity of the proposed algo-
rithm is O(e) moves. Therefore, the complexity is O(n) moves for trees or rings
whose length is not a multiple of 3. That is a significant improvement of the best
existing result of O(n*) for the same problem setting][6].

The remaining of the paper is organized as follows. In Section 2, we de-
fine distributed systems and the 1-maximal matching problem. A 1-maximal
matching algorithm is proposed in Section 3, and proves for its correctness and
performance are given in Section 4. Finally Section 5 concludes this paper.



2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V, E') where a node in V
represents a process and an edge in E represents the interconnection between
the processes. A node is a state machine which changes its states by actions.
Each node has a set of actions, and a collection of actions of nodes is called a
distributed algorithm. Let n and e denote the numbers of nodes and edges in a
distributed system.

In this paper, we consider state-reading model as a communication model
where each node can directly read the internal state of its neighbors. An action
of a node is expressed (label) :: (guard) — (statement). A guard is a Boolean
function of all the states of the node and its neighbors, and a statement updates
its local state. We say a node is privileged if it has an action with a true guard.
Only privileged node can move by selecting one action with a true guard and
executing its statement.

Moves of nodes are scheduled by a daemon. Among several daemons consid-
ered for distributed systems, we consider an unfair central daemon in this paper.
A central daemon chooses one privileged node at one time, and the selected node
atomically moves. A daemon is unfair in a sense that it can choose any node
among privileged nodes.

A problem P is specified by its legitimate configurations where configura-
tion is a collection of states of all the nodes. We say a distributed algorithm A
is self-stabilizing if A satisfies the following properties. 1) convergence: The
system eventually reaches to a legitimate configuration from any initial state,
and 2) closure: The system once reaches to a legitimate configuration, all the
succeeding moves keep the system configuration legitimate. A self-stabilizing al-
gorithm is silent if, from any arbitrary initial configuration, the system reaches
a terminal configuration where no node can move. A self-stabilizing algorithm
is anonymous if it does not use global IDs of nodes. We only assume that nodes
have pointers and a node can determine whether its neighbor points to itself,
some other nodes, or no node.

A matching in an undirected graph G = (V| E) is a subset M of E such that
each node in V is incident to at most one edge in M. We say a matching is
mazximal if no proper superset of M is a matching as well. A maximal match-
ing M is I-maximal if, for any e € M, any matching cannot be produced by
removing e from M and adding two edges to M — {e}. A maximal matching is a
%—approximation to the maximum matching. On the other hand, a 1-maximal
matching is a %fapproximation. In this paper, we propose a silent and anony-
mous self-stabilizing algorithm for the 1-maximal matching problem for graphs
without a cycle of length of a multiple of 3.

3 Algorithm MM1

First, we will show an overview of a proposed self-stabilizing 1-maximal matching
algorithm MM1. Each node 7 uses stages to construct 1-maximal matching. There



are seven stages; Sla, S1b, S2a, S2b, S3, S4, and S5. Stages S1a and S1b mean
that the node is not matching with any node. A stage S2a means the node is
matching with a neighbor node, and, S2b, S3, S4, S5 mean the node is trying
to increase matches. A node ¢ has three variables; level;, m-ptr;, i-ptr,. We
describe how to use the variables in our algorithm.

Sla, S1b, S2a We say a node is free if the node is in S7a or S1b. A node in Sla
does not invite any nodes, while a node in S1b invites its neighbor node. Fig.1
shows how free nodes make a match. When a free node i finds a free neighbor
node j, ¢ invites j by i-ptr; (¢ is in S1b). Then invited node j updates its level
to 2 and points to ¢ by m-ptr; to accept the invitation (j is in S2a). Finally ¢
points to j by m-ptr; to make a match (¢ is in S2a). A node in S2a is at level 2
and does not invite any nodes. If two adjacent nodes i and j point to each other
by m-ptr, we consider they are matching, that is (¢,j) € M.

S2b, S3, S4, S5 Matching nodes try to increase the number of matches if they
have free neighbor nodes. Fig.2 shows how to increase matches, where matches
are increased by breaking a match between 7 and j, and creating new matches
between i and k, and j and [. In Fig.2(a), nodes ¢ and j invite their free neighbors
k and [ if they do not invite ¢ and j, respectively (i and j are in S2b). When
both nodes notice that i and j invite free neighbor nodes, they change their
level to 3 (i and j are in S3). That indicates that they are ready to be approved
as in Fig.2(b). Then k and ! point to the inviting nodes by i-ptr to approve
their invitations (k and [ are in S1b). Node ¢ and j change their level to 4 if the
neighbors approve the invitations (i and j are in S/) as in Fig.2(c), and change
their level to 5 when they notice that both invitations are approved (i and j are
in S5). This indicates that they are ready to break a match as in Fig.2(d). Then
they create new matches with the free nodes, where k and [ first move to S2a
(Fig.2(e)) and then ¢ and j move to S2a (Fig.2(f)), respectively. A node in S1a
or S1b can make a match with the other node while an inviting node is in S5.
However, once the inviting node moves to S4, it cannot change its i-ptr while
the inviting node is in 54.

i-ptr,

level = llevel/_ =1 level = Ilevelj =]

Sla Sla S1b Sla

(a) (b)

i-ptr, m-ptr,

S2a s2a
level, = 1 level =2 level, = 2 level = 2
Stb SZa
m-ptrj m-ptrJ
(©) (d)

Fig. 1. Making a match between free nodes
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Fig. 2. Increasing matches

Reset Each node always checks its validity, and resets to Sia if it finds its
invalidity. We consider two kinds of validities, one node validity and two nodes
validity. The one node validity means that a state represents some stage. For
example, if a level is 1 and m-ptr points to some neighbor, the state is one
node invalid. The two nodes validity means that a relation between states of two
adjacent nodes is consistent. For example, if a node 7 is in S2a, a node pointed
to by m-ptr should point to ¢ by m-ptr at level 2 or by i-ptr at level 1 or 5.
The full definition of the validity function is shown in Fig.3. A node does not
move while some neighbor is one node invalid.

Cancel A node cancels an invitation or progress to increase matches, if it
detects that the invitation cannot be accepted or it cannot increase matches.
When canceling, a node goes back to S1a if it is at level 1, and to S2q if it is at
level 2 or higher.

The algorithm MMI1 uses some statement macros and a guard function. The
variables, validity functions, statement macros and a guard function are shown
in Fig.3, and a code of MM1is shown in Fig.4. In the algorithm, each node ¢ uses
N (i) to represent a set of its neighbors. That is a set of local IDs for each node
and the algorithm does not use any global IDs. We only assume that each node
can determine whether its neighbor point to itself, some other node, or no node
by pointers i-ptr and m-ptr.

4 Correctness

Lemma 1. There are no nodes at level 5 in any terminal configuration of MM]1.

Proof. By contradiction. Assume that a node 7 is in S5 in a terminal configura-
tion. In this case, i-ptr, = k holds for some k, and level, = 1 Ai-ptr, =i or



Variables

level; € {1,2,3,4,5}
m-ptr; € N(¢) U{L}
i-ptr; € N(¢) U{Ll}

Valid Predicates

S1b_valid(i,k): level; = 1 Am-ptr, =1 Ai-ptr, =k
S2a_valid(i,j): level; = 2 Am-ptr, = j Am-ptr, =1
S2b_valid(i,j,k): level; = 2 Am-ptr, = j Am-ptr, =k Aj#k
S3_valid(i,j,k): level; = 3 Am-ptr, = j Am-ptr, =kAj#k
S4-valid(i,j,k): level; = 4 Am-ptr; = j Am-ptr, =kAj#k
S5 valid(i,j,k): level; = 4 Am-ptr, = j Am-ptr, =k Aj#k

One Node Validity

Sla_valid1(i): level; = 1 Am-ptr, =L Ai-ptr, =1
S1b_valid1(i): 3k € N (i) Sib_valid(i,k)
S2a_valid1(i): 3,k € N(i) S2a_valid(i,j)
S2b_valid1(i): 3j,k € N(i) S2b_valid(i,j,k)

S8 valid1(i): 3j,k € N(i) S3_valid(i,j,k)
S4-valid1(i): 35,k € N(i) S4_valid(i,j,k)
S5_valid1(i): 35,k € N(i) S4_valid(i,j,k)
valid1(i): Sla-valid(i) A S1b_valid(i) A S2a_valid(i) A S2b_valid(i) A\ S3-valid (i) N
S4-valid(i) A S5_valid (i)

invalid1(i): — valid1 (i)

Valid Functions (One Node Validity and Two Node Validity)

Sla(i): Sla_valid1(i)

S1b(i): S1b_valid1 (i)

S2a(i): 3j € N(i)(S2a-valid(i,j) A (level; = 2 Am-ptr; = i) V (level; =
L Ai-ptr; =) V (level; = 5 A i-ptr; = 1))

S2b(i): 35,k € N(i)(S2b_valid(i,5,k) N\ (Level; = 2V level; = 3V level; =
4) Am-ptr; = i)

S3(i): 3j,k € N(i)(SS-valid(i,5,k) N\ (level; = 2V level; = 3V level; =
4) Am-ptr; = i)

S4(i): 35,k € N(i)(S4-valid(i,j,k) A (Level; = 2V level; = 3V level; =
4V level; = 5) Am-ptr; =i Ai-ptr; #L Alevely = 1 Ai-ptr;, = 1)

S5(i): 33,k € N(2)(S5-valid(i,j,k) N (levely, = 1 A i-ptr, = i)V (level, =
2 Am-ptr, =1))

valid(i): S1a(i) A S1b(i) A S2a(i) A S2b(i) A S3(i) A S4(i) A S5(i)

invalid(i): — valid(i)

Statement Macros

make match: i-ptr, =1, m-ptr, = j,level; = 2
reset_state: i-ptr, =1, m-ptr, =1,level; =1
abort_exchange: i—ptri =1,level; =2

Guard Function
no_invalid1_neighbor(i): Vo € N (i) validi(z)

Fig. 3. Variables, validity functions, statement macros and guard function




Reset
resetl :: invalidl (i) — reset_state
reset2 :: invalid1 (i) A no_invalid1_neighbor(i) — reset_state

Sla

matchl :: Sla(i) A no_invalidl_neighbor(i) A 3x € N(i)(i-ptr, = i A level, =
1) — i-ptr, =1 m-ptr, = z,level; =2

approvel :: S1a(i) A no_invalid1_neighbor(i) NIz € N(i)(i-ptr, = i Alevel, =
3) — i-ptr; =z

invitel :: S1a(i)Ano_invalid1_neighbor(i)A3x € N(i)level, =1+ i-ptr, ==z

S1b

match2 :: S1b(i)Ano_invalid1_neighbor(i)A3x € N(i)(i-ptr, = iAlevel, = 1)A
Ik € N(i)(S1b_valid(i,k) A\ Llevel, < 4) — i-ptr, =1 m-ptr, = z,level; =2
match3 :: $1b(i) A no_invalid1_neighbor(i) A 3k € N(i)(S1b_valid(i,k) Am-ptr, =
i A levely = 2) — make match

migratel :: S1b(i)Ano_invalid1_neighbor(i)A3k € N (i)(S1b_valid(i,k)Ni-ptr, =
i A levely = 5) — make match

cancell :: S1b(i)Ano_invalidl_neighbor(i)AJk € N (i)(S1b_valid(i,k)N\(levely
2V (levely, = 3 A i-ptr, # i) V (levelp = 4 A i-ptr, # i) V (levely
5 Ai-ptr, #1i))) — i-ptr, =1

S2a
invite2 :: S2a(i) A no_invalidl_neighbor(i) A 3z € N(i)(level, = 1 A i-ptr, #
i) A3j € N(i)(S2a-valid(i,j) Am-ptr; = i) — i-ptr, =z

S2b

cancel2 :: S2b(i) A no_invalidi_neighbor(i) A 35,k € N(3)(S2b-_valid(i,j,k) N
levely > 2) — abort_exchange

proceedl :: S2b(i) A no_invalidl_neighbor(i) A 35,k € N(i)(S2b-valid(i,j,k) A
i-ptr; #1) — level; = 3

S3

cancel3 :: S3(i) A no-invalidl_neighbor(i) A 3j,k € N(3)(S8-valid(i,j,k) N
((level; =2 Ai-ptr; =1)V levely > 2)) — abort_exchange

proceed2 :: S3(i) A no_invalidl_neighbor(i) A 3j,k € N(i)(S3-valid(i,j,k) N
i-ptr, =i A levely = 1) — level; =4

S4

cancel4 :: S4(i)Ano_invalid1_neighbor(i)A3j, k € N (i)(S4-valid(i,j,k)\level; =
2 Ai-ptr; =1) > abort_exchange

proceed3 :: S4(i) A no_tnvalidl_neighbor(i) A 3j,k € N(3)(S4-valid(i,j,k) A
(level; =4V level; =5)) > level; =5

S5

migrate2 :: S5(i) A no_invalidi_neighbor(i) A 3j,k € N(i)(S5_valid(i,j,k) N
levely = 2 Am-ptr, = i A i-ptr, =1 Alevel; = 5) > i-ptr, =1, m-ptr, =
k,level;, =2

Fig. 4. Algorithm MM1




level, = 2Am-ptr,, = ¢ holds since 7 is in S5. If it is 1levely = 1, k can execute
migratel. If it is levely = 2, i can execute migrate2. A contradiction. O

Lemma 2. A node that points to its neighbor node by m-ptr also pointed by the
neighbor’s m-ptr in any terminal configuration of MM]1.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that there are adjacent nodes ¢ and j such that
m-ptr; = j Am-ptr; #i. A node i is in S2a since validity S2b(i), S5 (i) or S/ (i)
do not hold. A node j is at level 1 and i-ptr; =i from S2a(i). Since i is in S2a
and j is level; = 1 A i-ptr; =i, j can execute match3. A contradiction. a

Lemma 3. There are no two nodes i and j such that level; =1, level; =3
or 4, i-ptr; = j and i-ptr; =i in any termination configuration of MM1 for
any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that there are adjacent nodes ¢ and j such that
level; =1, level; = 3 or 4, i-ptr; = j, and i-ptr; =i. If level; =3, j can
execute proceed? since j is in 93.

Consider the case of level; = 4. There is a node k € N(j) such that
levely =2 or 3 or 4, m-ptr; = k,i-ptr, #L. Node k can execute proceedl if
level, = 2 and j can execute proceed3 if level, = 4. Hence levely is limited
to 3. Therefore, there is a node [ € N (k) such that i-ptr, =1 and level; = 1.
Node [ satisfies i-ptr; # k because it is in a terminal configuration. Therefore,
there is a node m € N(I) such that i-ptr, = m and level,, = 4. Repeating the
above observation, we can show there is an infinite sequence of nodes at levels
1,4,3,1,4,3,---. However, there is no such a sequence since there is no cycle of
length of a multiple of 3. A contradiction. a

Theorem 1. A mazimal matching is constructed in any terminal configuration
of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. There is no node at level 5 in any terminal configuration
and all nodes are valid. Assume that a matching is not maximal in some terminal
configuration. There are adjacent nodes ¢ and j at level 1 by the assumption and
Lemma 2.

If a node ¢ or j is in Sla, it can execute invitel. Therefore, both nodes are
in S1b (Observation 1). Let k be a node pointed by i-ptr,. The level of k is not
5 by Lemma 1.

In case of levely =1, k is in S1b by Observation 1. Let x be a node pointed
by i-ptr;. A node k can execute match2 to make a match with i if level, # 4.
Therefore, level, = 4 and this implies i-ptr, # k by Lemma 3, and k can
execute cancell. In case of levely = 2, k can execute invite2 if k is in S2a.
Node i can execute cancell if k is in S2b since m-ptr;, # i by Lemma 2. If
level, = 3 or 4, ¢ can execute cancell since i-ptr, # ¢ by Lemma 3. A
contradiction. O



Theorem 2. A I-mazimal matching is constructed in any terminal configura-
tion of MM1 for any graphs without a cycle of length of a multiple of 3.

Proof. By contradiction. Assume that a matching is not l-maximal in some
terminal configuration. Since it is terminal, a maximal matching is constructed
by Theorem 1. Therefore, there are matching nodes ¢ and j and both have
neighbors at level 1 from Lemma 2.

Both i and j are at level 2 or higher since they are matching. They are not
in S2a since they have level 1 neighbors and can execute invitel if they are
in S2a, or not at level 5 by Lemma 1. Since ¢ and j are in S2b, S8 or S4, both
nodes point to some neighbor by i-ptr, and the neighbors are at level 1. That
is because, ¢ or j can execute cancel?2 in S2b, cancel3 in S& and reset2 in 54
if it points to a node at level 2 or higher.

Nodes ¢ and j are not in S2b since i-ptr; # L and i-ptr; # L, and therefore,
they can execute proceedl if they are in S2b.

Consider the case where 7 or j is in 3. Assume i is in S8 w.l.o.g., and let
k be a level 1 node that i points to by i-ptr. A node k can execute approve
if i-ptry # L, and node i can execute proceed2 if i-ptry = 4. Therefore,
i-ptry = x for some x # i. Since there is no adjacent level 1 nodes by Theorem
1, there is no level 5 node by Lemma 1, and m-ptrs point to each other between
two matching nodes by Lemma 2, x is at level 2, 3, or 4, and m-ptr, # k. A
node z is not at level 2 since k can execute cancell if z is at level 2. In case
where z is at level 3 or 4, i-ptr, # k by Lemma 3, and therefore, k£ can also
execute cancell. Therefore, none of ¢ and j is not in S3.

That is, both 7 and j are in §4, however, both can execute proceed3 in this
case. A contradiction. O

Lemma 4. If a node i at level 1 is valid, that is Sla(i) or S1b(i) holds, i is
valid while it is at level 1 in MM]1.

Proof. Validity functions Sia(i) and S1b(i) check only the variables of a node i.
That is the validity of a node at level 1 is independent of its neighbors’ states.
Any move for S1a or S1b keeps the state of node valid, a valid node at level 1 is
valid while it is at level 1. O

Lemma 5. Once a node executes one of matchl, match2, match3, migratel
and migrate2, the node never executes resetl or reset2 in MMI.

Proof. By contradiction. Assume some nodes execute resets (resetl or reset?2)
after executing matchi, match2, match3, migratel or migrate2. Let ¢ be a node
that executes such a move r of a reset first. Let m be the last move of among
matchl, match2, match3, migratel and migrate2 before the reset. Since no
move except resetl and reset?2 brings invalid states and ¢ already executed m,
when i executes r, i is two nodes invalid. Therefore, i detects some invalidity
between ¢ and some neighbor.

Let k be a node such that i-ptr; = k when ¢ executes r. If k causes the reset
r, ¢ is at level 4 or 5 at that time. When ¢ moves to S} by proceed2, i confirms



10

that k’s validity, levely = 1 and i-ptry = i. Node k never resets while it is
at level 1 by Lemma 4 and the validity between 7 and k is preserved. Node k
may move to S2a by migratel but never resets before r by the assumption, and
therefore, the validity ¢ and k is also preserved.

Therefore, i executes r by detecting invalidity between ¢ and j such that
m-ptr; = j. Since m is the last chance to set m-ptr for i, ¢ sets m-ptr; = j by
m. When ¢ executes m, j is in S1b, S2a, or S5.

In case of S1b, when i executes m, ¢ confirms j’s validity and i-ptr; = i.
Node j is valid while it is at level 1 by Lemma 4. Node ¢ moves to S2b after j
sets m-ptr; = ¢ and moves to S2a by match2 or match3. Therefore, while j is
at level 1, i-ptr; = ¢ always holds and therefore i cannot reset. After j moves
to level 2 by match2 or match3, j does not reset before r from the assumption.
Therefore, the validity between ¢ and j is preserved until r.

In case of 55, that is ¢ migrates to j, when ¢ executes m, i confirms i-ptr; = i.
Since the validity of a node in S5 only depends on its state and a state of a node
pointing to by i-ptr, j is valid if the validity between i and j is preserved. Since
1 does not reset between m and r, the validity is preserved while j is in S5. After
J moves to level 2 by migrate2, j does not reset before r from the assumption.
Therefore, the validity between ¢ and j is preserved until r.

In case of S2a, 7 confirms the validity between ¢ and j and m-ptr; = ¢ when
i executes m. Since j is in S2a, i-ptr; does not point to any node. Therefore,
even if j points to some node by i-ptr after m, the validity between j and the
pointed node is preserved like between ¢ and k. Therefore j is valid if the validity
between ¢ and j is preserved while m-ptr; = ¢ and level; < 4 (When j moves
to S5, it does not take care of ). Since 7 does not reset between m and r, the
validity is preserved. a

We say a move is a progress move if it is by matchl, match2, match3, or
migratel. A level of node changes from 1 to 2 by a progress move.

Lemma 6. Each node resets at most once in MM]I.

Proof. Once a node executes resetl or reset?2, it moves to S7a. The node never
resets while it is at level 1 from Lemma 4. The node executes a progress move
to move to level 2, and never resets after that by Lemma 5. O

Lemma 7. Fach node execute a progress move at most once in MMI1.

Proof. A progress move changes levels of a node from 1 to 2, and a node never
resets if it executes a progress move by Lemma 5. That is the node never goes
back to level 1. Therefore, once a node executes a progress move it never executes
a progress move again. d

Lemma 8. In MMI1, cancell, cancel2, cancel3 and canceld are exvecuted

O(e) times.

Proof. In MM1, a node i executes a cancel (cancell, cancel2, cancel3 or
cancel4) when it is initially possible, some neighbor node executed a cancel, or
some neighbor node executed a progress move.
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Fig. 5. Transitions of stages

Consider that some node j executes a progress move that changes a stage of
j to S2a. Nodes that point to j by i-ptr will execute a cancel as follows. If such
a node k is in S1b, k will execute cancell, and if such a node k is in S2b or S5,
k will execute cancel?2 or cancel3.

If some node executes cancel2 or cancel3, it causes more cancels. If there is
an adjacent node x and trying to increase matches, it will also cancels by cancel3
or cancel4. That cancel may further causes one more cancel. If x already invited
some node y to migrate to x, y will execute cancell.

Now we classify cancels with direct cancels and indirect cancels. The direct
cancel is a cancel caused by some progress move or its initial state. The indirect
cancel is a cancel caused by a cancel of its neighbor.

From the above observation, any cancel causes at most two indirect cancels.
Let deg; be the degree of j. There are at most deg; nodes that execute a cancel
due to the progress move of j. From Lemma 7, j executes a progress move at
most once, and therefore there are at most X deg; = e direct cancels caused
by progress moves. Moreover, there are at most n direct cancels caused by initial
states. Therefore, the total number of moves by cancels are O(e). O

Lemma 9. In MM1, migrate2 is executed O(n) times.

Proof. Let my and mo be two consecutive moves by migrate2 of a node i. The
node ¢ moves to S2a by m; and then invites some neighbor node j at level 1 to
migrate to . Then, node j executes migratel that points to ¢ by m-ptr. That
is, there is a move by migratel that points to i between two consecutive moves
by migrate2 of node i. Therefore, the total number of moves by migrate2 <
the total number of moves by migratel +n. From Lemma 7, it is bounded by
O(n). O

Theorem 3. MM1 is silent and takes O(e) moves to construct 1-mazimal match-
ing for any graphs without a cycle of length of a multiple of 3.

Proof. Fig. 5 shows stage transition in MM1. In MM1, each node moves to a
higher stage from the current stage in the order of S1a, S1b, S2a, S2b, S3, S4 and
S5 except resetl, reset2, cancell, cancel2, cancel3, cancel4 and migrate?.
Therefore, if a node does not execute these actions, the number of moves is at
most 6.
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Let R;, C; and M; be the numbers of moves of a node ¢ by reset (resetl or
reset2), cancel (cancell, cancel2, cancel3 or canceld), and migrate2. Let
MOV; denote the total number of moves of a node i. From the observation, it
is bounded as follows.

MOV, <T7T(R;+C; + M,; +1)
From Lemmas 6, 8 and 9, we have
YievR; = 0(n), XievC; = O(e),and X;cv M; = O(n).
Therefore, the total number of moves in MM1 can be derived as follows.
YievMOV; < T1(XievRi + XievCi + Xicv M; + Xicv1) = O(e)

Since each node always takes a finite number of moves, MM1 always reaches
a terminal configuration where 1-maximal matching is constructed by Theorem
2. This also implies MM1 is silent. a

5 Conclusion

We proposed a 1-maximal matching algorithm MM1 that is silent and works for
any anonymous networks without a cycle of a length of a multiple of 3 under a
central unfair daemon. The time complexity of MM1 is O(e) moves. Therefore,
it is O(n) moves for trees or rings whose length is not a multiple of 3. We had
a significant improvement from Goddard et al.[6] that is also an anonymous 1-
maximal matching algorithm but works for only trees or rings which length is
not a multiple of 3 and the time complexity is O(n*).

References

1. Blair, J.R., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
Proceedings. 23rd International Conference on Distributed Computing Systems.
pp. 20-26. IEEE (2003)

2. Blair, J., Hedetniemi, S., Hedetniemi, S., Jacobs, D.: Self-stabilizing maximum
matchings. Congressus Numerantium pp. 151-160 (2001)

3. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: Proceedings of the twenty-first annual symposium on Prin-
ciples of distributed computing. pp. 290-297. ACM (2002)

4. Datta, A.K., Larmore, L.L.: Leader election and centers and medians in tree net-
works. In: Stabilization, Safety, and Security of Distributed Systems, pp. 113-132.
Springer (2013)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643-644 (Nov 1974), http://doi.acm.org/10.1145/361179.361202

6. Goddard, W., Hedetniemi, S.T., Shi, Z., et al.: An anonymous self-stabilizing algo-
rithm for 1-maximal matching in trees. In: Proc. International Conference on Par-
allel and Distributed Processing Techniques and Applications. pp. 797-803 (2006)



10.

11.

12.

13.

13

Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. Journal of Parallel and Dis-
tributed Computing 70(4), 406-415 (2010)

Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Information Processing Letters 80(5), 221-223 (2001)

Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Infor-
mation Processing Letters 43(2), 77-81 (1992)

Karaata, M.H., Saleh, K.A.: Distributed self-stabilizing algorithm for finding max-
imum matching. Comput Syst Sci Eng 15(3), 175-180 (2000)

Kimoto, M., Tsuchiya, T., Kikuno, T.: The time complexity of Hsu and Huang’s
self-stabilizing maximal matching algorithm. IEEE Trans. Infrmation and Systems
E93-D(10), 28502853 (2010)

Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoretical Computer Science
412(40), 5515-5526 (2011)

Tel, G.: Introduction to distributed algorithms. Cambridge university press (2000)



