
Proceedings

International Workshop on

Empirical Software Engineering in Practice 2011

(IWESEP 2011)

Nara, Japan, November 1st, 2011

Sponsored by
StagE Project, MEXT Japan

Osaka University
Nara Institute of Science and Technology (NAIST)

In cooperation with
SIG Software Science, Information and Systems Society, IEICE

SIG Software Engineering, IPSJ

Table of Contents
Preface ... iv
Organization ... v

Moneyball
Analysis of Software Maintenance Efficiency Focused on Process Standardization3
 Masateru Tsunoda, Akito Monden, Ken-ichi Matsumoto and Tomoki Oshino

A Case Study of Committers' Activities on the
Bug Fixing Process in the Eclipse Project ..9
 Anakorn Jongyindee, Masao Ohira, Akinori Ihara and Ken-ichi Matsumoto

Refactoring the Refactoring
Inferring Restructuring Operations on Logical Structure of Java Source Code17
 Hideaki Hata, Osamu Mizuno and Tohru Kikuno

A Tool Support to Merge Similar Methods with a Cohesion Metric COB23
 Masakazu Ioka, Norihiro Yoshida, Tomoo Masai,
 Yoshiki Higo and Katsuro Inoue

What did you do to our Data?!
An Improvement of Accuracy in Product Quality Prediction
Using Imbalanced Project Data in Japan ..27
 Junya Debari, Tohru Kikuno, Nahomi Kikuchi and Masayuki Hirayama

A System for Information Integration between Development Support Systems............33
 Soichiro Tani, Akinori Ihara, Masao Ohira,
 Hidetake Uwano and Ken-ichi Matsumoto

ii

Open your Mind
Understanding OSS Openness through Relationship between
Patch Acceptance and Evolution Pattern ..37
 Passakorn Phannachitta, Pijak Jirapiwong, Akinori Ihara,
 Masao Ohira and Ken-ichi Matsumoto

A Tool for Collaborative Guitar Chords Creation based on
The Concept of The Distributed Version Control ..43
 Chakkrit Tantithamthavorn, Papon Yongpisanpop, Masao Ohira,
 Arnon Rungsawang and Ken-ichi Matsumoto

Poster
Empirical study on Web Crawling Process Monitoring Tool...47
 Tanaphol Suebchua and Arnon Rungsawang

iii

Preface

 It is our great pleasure to welcome everyone to the 2011 International Workshop on

Empirical Software Engineering in Practice (IWESEP 2011). Our workshop aims to

foster the development of the area by providing a forum where researchers and

practitioners can report on and discuss new research results and applications in the area

of empirical software engineering. The workshop encourages the exchange of ideas

within the international community so as to be able to understand, from an empirical

viewpoint, the strengths and weaknesses of technology in use and new technologies,

with the expectation of furthering the field of software engineering in general.

 IWESEP has received 10 submissions, including 6 regular papers and 4 tool

demonstration proposals. After careful evaluation by the program committee, 5 regular

papers and 3 tool demonstrations have been accepted to be presented at the workshop.

The other papers were invited for a poster presentation, to still gather feedback from the

workshop participants. The papers cover a variety of topics, including software quality,

refactoring and analysis of open source development processes.

 Finally, on behalf of the program committee and the organizing committee, we thank

the attendants for making IWESEP 2011 such an interactive venue. We would also like

to take this opportunity to thank the program committee members, who spent

considerable time reviewing publications.

 We hope you will have a great time and an unforgettable experience at IWESEP 2011.

 Yasutaka Kamei, Kyushu University, Japan

IWESEP 2011 General Chair

Bram Adams, Queen's University, Canada

IWESEP 2011 Program Chair

iv

Organization

General Chair
Yasutaka Kamei (Kyushu University, Japan)

Program Chair
Bram Adams (Queen's University, Canada)

Publication Chair
Ryosuke Nakashiro (Kyushu University, Japan)

Publicity Co-Chair
Kentaro Yoshimura (Hitachi, Ltd., Japan)
Emad Shihab (Queen’s University, Canada)

Registration Chair
Koji Toda (Nara Institute of Science and Technology, Japan)

Local Arrangements Chair
Kyohei Fushida (Nara Institute of Science and Technology, Japan)

vi

Web Chair
Thanh H.D. Nguyen (Queen's University, Canada)

Advise Chair
Akinori Ihara (Nara Institute of Science and Technology, Japan)

v

Program Committee
Sousuke Amasaki (Okayama Prefectural University, Japan)
Christian Bird (Microsoft Research, USA)
Ahmed E. Hassan (Queen’s University, Canada)
Hideaki Hata (Osaka University, Japan)
Yasuhiro Hayase (University of Tsukuba, Japan)
Shinpei Hayashi (Tokyo Institute of Technology, Japan)
Israel Herraiz (Complutense University of Madrid, Spain)
Abram Hindle (University of Alberta, Canada)
Takashi Ishio (Osaka University, Japan)
Yuichiro Kanzaki (Kumamoto National College of Technology, Japan)
Shinji Kawaguchi (Japan Manned Space Systems Corporation, Japan)
Hua Jie Lee (University of Melbourne, Australia)
Yin Liu (Rensselaer Polytechnic Institute, USA)
Yuki Manabe (Osaka University, Japan)
Meiyappan Nagappan (Queen's University, Canada)
Peter Rigby (University of Victoria, Canada)
Rodrigo Vivanco (University of Manitoba, Canada)
Thomas Zimmermann (Microsoft Research, USA)

vi

Moneyball

1

2

Analysis of Software Maintenance Efficiency

Focused on Process Standardization
Masateru Tsunoda

Nara Institute of Science and
Technology

Kansai Science City, 630-0192
Japan

masate-t@is.naist.jp

Akito Monden
Nara Institute of Science and

Technology
Kansai Science City, 630-0192

Japan

akito-m@is.naist.jp

Ken-ichi Matsumoto
Nara Institute of Science and

Technology
Kansai Science City, 630-0192

Japan

matumoto@is.naist.jp

Tomoki Oshino
Economic Research Institute,

Economic Research Association
Higashi-Ginza Mitsui Bldg. 5-13-16,

Ginza, Chuo-ku, Tokyo, 104-0061 Japan

er352@zai-keicho.or.jp

ABSTRACT

In this research, to establish a benchmark for software mainte-

nance efficiency, we analyzed factors affecting the work efficiency

and showed reference value stratified the factors. We analyzed

dataset of software maintenance collected from 83 organizations.

Attributes recorded in the dataset are standardization status of

organization, system architecture, the number of engineers, the

number of base modules, the number of modified modules, and so

on. In the analysis, we regarded modified modules per engineer as

a work efficiency index, and clarified relationships to other attrib-

utes. As a result, we identified that standardization status of or-

ganization is important for work efficiency.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:

Software Management – Software maintenance, Management of

Computing and Information Systems]: general – Economics.

General Terms
Management, Measurement, Economics.

Keywords
Module modification, productivity, cross-company dataset,

benchmarking.

1. INTRODUCTION
Recently, a number of software users (companies or organiza-

tions) contract with software developers (companies) for mainte-

nance of enterprise software, and therefore the agreement of soft-

ware maintenance becomes more important. Software mainte-

nance does not mean only removing faults found after software

release. Software needs extensions or modifications of its func-

tions due to changes in a business environment, and software

maintenance also indicates them. ISO/IEC 14764 classifies soft-

ware maintenance into followings:

1. Corrective maintenance: modifications of faults found after

software release.

2. Preventive maintenance: corrective modifications before

potential faults become actual faults, after software release.

3. Adaptive maintenance: modifications to keep software

availability against environmental changing after software

release.

4. Perfective maintenance: modifications for conservation or

improvement of software performance or maintainability af-

ter software release.

In this research, we try to establish a benchmark (reference values

to compare an organization’s work efficiency with others [5]) of

work efficiency for software maintenance contract. To establish

the benchmark, factors affecting work efficiency (e.g. system ar-

chitecture) are clarified first, and then the dataset is stratified by

the factors, using dataset collected from various organizations

(cross-company dataset). When using the benchmark, compare

work efficiency with a reference value whose factor (e.g. system

architecture) is correspond to the target. We focus on the stand-

ardization of software maintenance process in the analysis. When

standardization status (process is standardized or not) has strong

relationships to work efficiency, reference values stratified stand-

ardization status can be used to confirm difference of work effi-

ciency between standardized organizations and not standardized

ones. That is useful to decide whether software maintenance pro-

cess should be standardized or not. Major contribution of our

research is to clarify relationships between standardization status

and maintenance efficiency using cross-company dataset.

The dataset used in the analysis was collected from 83 organiza-

tions in 2007 by Economic Research Association [2]. We ana-

lyzed relationships between work efficiency and other attributes

such as system architecture, in addition to standardization status.

The dataset does not have enough cases to use analysis results as

rigorous benchmark. So, values shown in the research should be

3

used casually. Nevertheless, we think our result is effective be-

cause there are very few researches or reports which analyzed

software maintenance efficiency using cross-company dataset.

In the analysis, we regarded modified modules per engineer as a

work efficiency index. That is, the number of engineers was con-

sidered as inputs, and the number of modified modules in a year

was considered as outputs (High modified modules per engineer

indicates high work efficiency). It is more precise that a work

efficiency index is defied using software maintenance effort and

modified lines of code (or function point). However, modified

lines of code (and function point) in the dataset used includes

many missing values, and software maintenance effort is not rec-

orded. In addition, it is easier for software uses (companies or

organizations) to measure the number of modified modules than

modified lines of code or function point (Actually, the dataset is

almost collected from software uses). Similarly, it is easier to

measure the number of engineers than software maintenance effort.

So using the number of modified modules and the number of en-

gineers makes it easy for software users to refer the benchmark.

In what follows, Section 2 explains dataset used in the analysis.

Section 3 shows analysis results. Section 4 introduces related

works, and Section 5 concludes the paper with a summary.

2. DATASET
The dataset used in the analysis includes 83 cases of software

maintenance agreement which were collected from 83 organiza-

tions in 2007 by Economic Research Association [2]. 78 cases are

business software, and rest cases are factory automation software

and other software. 46 cases are fixed price contract (Software

maintenance is performed during certain period by fixed price [6]).

The cases were collected mainly from software uses (companies

or organizations). Each case is representative software mainte-

nance agreement in each organization (Each organization provid-

ed one case), and number of modified module was collected in a

year. The number of analyzed cases was different for attributes,

because each attribute includes missing values. Attributes ana-

lyzed in this research are described in Table 1, and the followings

are detailed explanations for some attributes.

� Process standardization status does not represent the status

of a case included in the dataset, but the status of the entire

organization which offered the case (Values of other attrib-

utes were collected in each software maintenance agree-

ment).

� When process is standardized, standard process of software

maintenance (sequence of activities such as analyzing, re-

viewing, documenting, and approval) is explicitly defined.

� Some cases have multiple system architectures (for example,

a case of system architecture includes both mainframe and

web based system).

� Modified modules per engineer and base is explained in

section 3.2.

� Attributes from human factor to tool factor (We call them

productivity factors) are defined based on [6], and they were

evaluated on a three-point scale (Low value indicates severe

condition, i.e., productivity may be decreased).

3. ANALYSIS RESULTS
3.1 Analysis Procedure
In the analysis, we analyzed influences of system architecture,

productivity factor, the number of base modules, and the number

of engineers to work efficiency (modified modules per engineer),

in addition to influence of process standardization. When an at-

tributes has considerable influence, the dataset was stratified by

the attribute, to eliminate the influence of the attribute. For exam-

ple, if system architecture had influence to work efficiency, the

dataset was stratified by it, and a relationship between process

standardization and work efficiency was analyzed. The dataset has

missing values, so the number of analyzed cases is different in

each analysis.

 Table 1. Description of dataset

Attribute Description

Process standardization
Status of standardization of software maintenance process (process is standardized, standardization is work in

progress, or maintenance process is not standardized)

System architecture System architecture on which the software runs (client–server system, Web based system, mainframe system)

Number of base modules Total number of modules included in the software

Number of modified

modules
The number of modified modules in the maintenance activity in a year

Number of engineers The number of contractor’s resident engineers

Modified modules per

engineer
The number of modified modules / number of engineers

Modified modules per

engineer and base
The number of modified modules / the number of engineers / the number of base modules

Human factor Degree of difficulties about size of project (or organization) and level of skill

Problem factor Degree of difficulties about type, importance, relationships, restriction, and ramification of problems

Process factor Degree of difficulties about programming language and software development methodology

Product factor Degree of difficulties about reliability, size, control structures, and complexity of the software

Resource factor Degree of difficulties about hardware, duration, and budget

Tool factor Degree of difficulties about library, complier, test tool, maintenance tool, and reverse engineering tool

4

When analyzing a relationship of ratio (or ordinal) scale attributes,

we used Spearman's rank correlation coefficient to avoid influence

of outliers. In what follows, “correlation” and ρ indicate the

Spearman correlation. We did not apply a multivariate regression

model because there are many missing values in the dataset. In-

stead of applying it, we stratified the dataset as mentioned above.

We used a box plot to analyze relationships between nominal

scale attribute and ratio scale attribute. In a box plot, the bold line

in each box indicates the median value. Small circles indicate

outliers, that is, values that are more than 1.5 times larger than the

25%-75% range from the top of the box edge. Stars indicate ex-

treme outliers, whose values are more than 3.0 times larger than

this range. Some outliers do not include figures to improve reada-

bility of them. Mann–Whitney U test was applied to confirm me-

dian is statistically different or not between two attributes. We set

significance level as 5%.

3.2 Relationships between Size Attributes
We analyzed relationships between modified modules per engi-

neer, the number of base modules, and the number of engineers,

to confirm whether modified modules per engineer can be used as

work efficiency index or not. It may be helpful in comprehending

the analysis to regard the number of base modules as function

point, the number of engineers as development effort, and modi-

fied modules per engineer as productivity.

Table 2 shows correlations of the relationships, and the major

relationships are illustrated in Figure 1. Observations are as fol-

lows:

� There is a positive correlation between the number of modi-

fied modules and the number of engineers (ρ = 0.56). So,

when the number of engineers is large, the number of modi-

fied modules is also large.

� The correlation between the number of engineers and the

number of base modules is not large (ρ = 0.23). Therefore,

size of entire software does not greatly affect the number of

engineers.

� The correlation between the number of engineers and modi-

fied modules per engineer is very small (ρ = 0.03). This does

not mean fewer engineer increases modified modules per

engineer.

The number of base modules has significant correlation to modi-

fied modules per engineer (ρ = 0.60) and the number of modified

modules (ρ = 0.70). It may be likely that when the number of base

modules is large, the number of modified modules is also large,

and as a result, modified modules per engineer becomes large. So

we defined modified modules per engineer and base (the number

of modified modules / the number of engineers / the number of

base modules), to eliminate influence of the number of base mod-

ule, and used it to strengthen analysis results.

3.3 Relationship to System Architecture
Figure 2 and Figure 3 show boxplots of modified modules per

engineer and modified modules per engineer and base for three

different system architectures. In modified modules per engineer

(Figure 2), mainframe system is the highest, and Web based sys-

tem is the lowest. The median value of Web based system is 2.2

times smaller than client-server system, and 6.9 times smaller than

mainframe system, as shown in Table 3. However, they are not

statistically different. There are not enough cases in the dataset

(see Table 3), and it may affect statistical test results.

Also, in modified modules per engineer and base, mainframe sys-

tem is the highest while the distribution is wide, as shown in Fig-

ure 3. The distribution (position and size of the box in the figure)

of Web based system is almost same as client-server system. The

median value of Web based system is same as client-server system,

Number of

engineers

Number of

modified

modules

Total number of

modules

Modified modules

per engineer

(Work efficiency)

0.560.23 0.03

0.70

0.60

Figure 1. Major correlations between the number of base

modules, number of engineers, and other attributes

 Table 2. Relationships between size attributes

Attribute
Number of

base modules

Number of modified

modules

Number of

engineers

Modified modules per

engineer

Number of base

modules

ρ 1.00 0.70 0.23 0.60

p-value 0.00 0.30 0.02

Number of cases 35 25 22 15

Number of modified

modules

ρ 0.70 1.00 0.56 0.83

p-value 0.00 0.03 0.00

Number of cases 25 25 15 15

Number of engineers

ρ 0.23 0.56 1.00 0.03

p-value 0.30 0.03 0.92

Number of cases 22 15 35 15

Modified modules per

engineer

ρ 0.60 0.83 0.03 1.00

p-value 0.02 0.00 0.92
Number of cases 15 15 15 15

5

and 1.6 times smaller than mainframe system (Table 3). Note that

there is no statistically difference among them.

In the results, modified modules per engineer (and base) is larger

when system architecture is mainframe system. Although we

should carefully understand it because there is no statistically

difference, it suggests system architecture should be considered

when comparing work efficiency (modified modules per engineer).

We examined programming language used in each system. In the

result, the most used programming language is Visual Basic in

client-server systems, it is SQL in Web based systems, and it is

COBOL in mainframe systems (Note that multiple programming

languages are used in each system). Difference of work efficiency

between system architectures may be affected by characteristics of

programming languages.

We counted the number of base modules, the number of modified

modules, and the number of engineers by system architecture

(Table 4). Observations are as follows:

� Median values of the number of engineers are same among

system architectures.

� In median values of the number of modified modules, main-

frame system is 2.2 times larger than Web based system, and

3.2 times larger than client-server system.

� In median values of the number of base modules, mainframe

system is 1.8 times larger than others.

In mainframe systems, it may be probable that the number of base

 Table 3. Median values of modified modules per engineer (and base) stratified by system architecture

System

architecture

Number of

cases
Median

p-value

(difference from

Web based)

p-value

(difference from

client-server)

Modified modules per

engineer

Client-server 9 40.0 88% -

Web Based 11 18.0 - 88%

Mainframe 8 125.0 21% 37%

Total 28 55.0 - -

Modified modules per

engineer and base

Client-server 9 0.007 82% -

Web Based 11 0.007 - 82%

Mainframe 8 0.011 27% 37%

Total 28 0.008 - -

Table 4. The number of base modules, the number of modified modules, and the number of engineers

stratified by system architecture

System architecture
Number of

base modules

Number of

modified modules

Number of

engineers

Client-server Median 3000 125 10

 Number of cases 25 16 26

Web Based Median 3000 180 10

 Number of cases 23 17 21

Mainframe Median 4628 400 10

 Number of cases 21 14 20

Total Median 3000 250 10

 Number of cases 69 47 67

Client-
server

Web
based

Mainframe

System architecture

M
o
d
if
ie
d
 m

o
d
u
le
s

p
e
r
e
n
g
in
e
e
r

Figure 2. Modified modules per engineer stratified

by system architecture

System architecture

Client-
server

Web
based

Mainframe

System architecture

M
o
d
if
ie
d
 m
o
d
u
le
s

p
e
r
e
n
g
in
e
e
r
a
n
d
 b
a
s
e

Figure 3. Modified modules per engineer and base stratified

by system architecture

6

modules increased the number of modified modules (see section

3.2). However, relative difference of the number of base modules

between mainframe system and others is smaller than the number

of modified modules. This reinforces the analysis result that work

efficiency is different for system architecture.

3.4 Relationship to Process Standardization
Figure 4 illustrates a relationship between process standardization

and modified modules per engineer, and Table 5 shows median

values of them and statistical test results for their differences. In

Figure 4, when process is standardized, modified modules per

engineer is the highest, although the distribution is wide. The

median value of “standardized” is 8.5 times larger than “work in

progress,” as shown in Table 5. But they are not statistically dif-

ferent.

Same tendency was observed in modified modules per engineer

and base. Figure 5 shows a relationship between process standard-

ization and modified modules per engineer and base, and Table 5

presents median values of them and statistical test results. In Fig-

ure 5, the values of “standardized” are larger than “work in pro-

gress.” In Table 5, the median value of “standardized” is 5.2 times

larger than “work in progress,” and there is statistically difference

between them. The results indicate process standardization is

related to work efficiency.

We checked the number of base modules, the number of modified

modules, and the number of modules, stratifying the dataset ac-

cording to process standardization. In Table 6, between “standard-

ized” and “work in progress,” there is 0.6 times difference in the

 Table 5. Median values of modified modules per engineer (and base) stratified by process standardization

Process

standardization

Number of

cases
Median

p-value

(difference from

standardized)

p-value

(difference from

not standardized)

Modified modules per

engineer

Standardized 6 118.3 - 29%

Work in progress 8 14.0 11% 89%

Not standardized 1 7.1 29% -

Total 15 40.0 - -

Modified modules per

engineer and base

Standardized 6 0.026 - 57%

Work in progress 8 0.005 2% 100%

Not standardized 1 0.007 57% -

Total 15 0.008 - -

Table 6. The number of base modules, the number of modified modules, and the number of engineers

stratified by process standardization

Process standardization
Number of

base modules

Number of

modified modules

Number of

engineers

Standardized Median 3000 400 6

 Number of cases 13 10 11

Work in progress Median 4000 100 10

 Number of cases 15 12 17

Not standardized Median 1000 5 6

 Number of cases 7 3 7

Total Median 3000 180 10

 Number of cases 35 25 35

M
o
d
if
ie
d
 m

o
d
u
le
s

p
e
r
e
n
g
in
e
e
r

Process standardization

Work in
progress

Standardized Not
standardized

Figure 4. Modified modules per engineer stratified

by process standardization

M
o
d
if
ie
d
 m

o
d
u
le
s

p
e
r
e
n
g
in
e
e
r
a
n
d
 b
a
s
e

Process standardization

Work in
progress

Standardized Not
standardized

Figure 5. Modified modules per engineer and base stratified

by process standardization

7

number of engineers, and 0.75 times difference in the number of

base modules. Nevertheless, there is 4.0 times difference in the

number of modified modules. So in this case, we do not have to

care the positive correlation between the number of base modules

and the number of modified modules (see section 3.2). This also

supports the result that process standardization is related to work

efficiency.

When stratifying the dataset by system architecture, both modified

modules per engineer and modified modules per engineer and

base are higher in process standardized organizations (except for

modified modules per engineer in mainframe systems). Similarly,

when stratifying the dataset by process standardization, they are

higher in mainframe systems. Although we should be care that

there are a few cases in each group after stratifying, both system

architecture and process standardization are considered to affect

work efficiency.

3.5 Relationship to Productivity Factors
Table 7 shows correlations between productivity factors and mod-

ified modules per engineer (and base). When a value of productiv-

ity factor is smaller, condition is more severe. That is, positive

correlation indicates work efficiency decreases when the condition

of the factor is severe.

Although the correlation between problem factor and modified

modules per engineer is relatively higher (ρ = 0.38; not signifi-

cant), the correlation to modified modules per engineer and base

is low (ρ = -0.10). So, we cannot conclude problem factor affects

work efficiency. Other factors have low correlation, and they are

not statistically significant. In addition, their correlations are in-

consistent between modified modules per engineer and modified

modules per engineer and base. Namely, we did not observe ex-

plicit influences of productivity factors on work efficiency.

4. RELATED WORKS
Except for process standardization, some researches analyzed

work efficiency factors on software maintenance. Jørgensen [4]

analyzed software company dataset, and showed that work effi-

ciency is not affected by the number of base modules and pro-

gramming language. Ahn et al. [1] used variables which are simi-

lar to the productivity factors in a software maintenance effort

estimation model. However, past researches did not clarified ef-

fect of process standardization. This is because they used dataset

collected from a few companies, and it made the analysis of pro-

cess standardization effect difficult.

There are very few reports or researches which analyzed cross-

company software maintenance dataset. Japan Users Association

of Information Systems (JUAS) and Ministry of Economy, Trade

and Industry used the cross-company dataset, and showed work

efficiency (maintenance cases per engineer) stratified by business

sector [3]. However they did not clarified the relationship between

process standardization and work efficiency. Yokota [7] showed

standardizing maintenance process is effective for work improve-

ment, based on questionnaire data. But quantitative data analysis

was not performed.

5. CONCLUSIONS
In this research, to establish a benchmark for software mainte-

nance efficiency, we analyzed software maintenance data collect-

ed from 83 organizations. Modified modules per engineer is re-

garded as work efficiency index. We compared work efficiency by

stratifying the dataset, and clarified process standardization status

is related to work efficiency (modified modules per engineer). Our

future work is collecting more data and analyzing it to enhance

reliability of the results.

6. ACKNOWLEDGMENTS
This work is being conducted as a part of the StagE project, The

Development of Next-Generation IT Infrastructure, and Grant-in-

aid for Young Scientists (B), 22700034, 2010, supported by the

Ministry of Education, Culture, Sports, Science and Technology.

7. REFERENCES
[1] Ahn, Y., Suh, J., Kim, S., and Kim, H. 2003. The software

maintenance project effort estimation model based on func-

tion points. Journal of Software Maintenance: Research and

Practice, 15, 2, 71-85.

[2] Economic Research Association. http://www.zai-

keicho.or.jp/about/english.php

[3] Japan Users Association of Information Systems 2008. Soft-

ware Metric Survey 2008. Japan Users Association of Infor-

mation Systems.

[4] Jørgensen, M. 1995. Experience With the Accuracy of Soft-

ware Maintenance Task Effort Prediction Models. IEEE

Transactions on Software Engineering, 21, 8, 674-681.

[5] Lokan, C., Wright, T., Hill, P, and Stringer, M. 2001. Organ-

izational Benchmarking Using the ISBSG Data Repository.

IEEE Software, 18, 5, 26-32.

[6] Software Evolution Research Consortium 1995. Software

Evolution Research Consortium Report, Software Evolution

Research Consortium.

[7] Yokota, T. 2003. An Assessment for Software Maintenance

Environment and its Improvement Examples. Journal of the

Society of Project Management, 5, 2, 40-44.

 Table 7. Relationships to productivity factors

Human

factor

Problem

factor

Process

factor

Product

factor

Resource

factor

Tool

factor

Modified modules

per engineer

ρ -0.09 0.38 0.20 0.32 -0.02 0.07

p-value 76% 20% 51% 29% 96% 81%

Number of cases 13 13 13 13 13 13

Modified modules

per engineer and

base

ρ -0.26 -0.10 -0.23 -0.01 0.06 0.00

p-value 39% 74% 46% 97% 85% 100%

Number of cases 13 13 13 13 13 13

8

A Case Study of Committers’ Activities on the Bug Fixing
Process in the Eclipse Project

Anakorn Jongyindee† Masao Ohira‡ Akinori Ihara‡ Ken-ichi Matsumoto‡

†Kasetsart University Nara Institute of Science and Technology
50 Ngam Wong Wan Rd, Chatuchak 8916-5, Takayama, Ikoma

Bangkok, Thailand Nara, Japan
b5105896@ku.ac.th {masao, akinori-i, matumoto} @ is.naist.jp

ABSTRACT
There are many roles to play in the bug fixing process in
an open source software development. A developer called
“Committer” who has permission to submit the patch into
the software repository plays a major role in this process
and holds a key to the success of the project. In this work,
we have observed committers’ activities from the Eclipse-
Platform bug tracking system and version archives. Despite
the importance of committer’s activities, we suspected that
sometimes committers can make mistake, which have a neg-
ative consequence to the bug fixing process. Therefore, our
research focused on studying the consequences of commit-
ters’ activities to this process. We collected committers’
history data and evaluated each of them by comparing the
more cautious to less cautious committers. From our results,
we would like to create a clear understanding on committers’
activities and their consequences on the bug fixing process in
order to find a better way to improve the bug fixing process
in OSS projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures, Performance measures; D.2.9 [Software Engineer-
ing]: Management —Productivity, Programming teams, Soft-
ware quality assurance (SQA)

General Terms
Human Factors

Keywords
open source software (OSS), committer, bug fixing process

1. INTRODUCTION
Open Source Software (OSS) has been attracting a great

deal of attention from a variety of areas as an alternative
way to use and develop software. Currently, OSS products

has a large impact on not only the end-users, but the manu-
facturers of mobile devices as well, since they need to exploit
OSS to produce their end products. For instance, Linux, the
OSS that sets the strong roots for other operating systems,
and Google’s Android’s operating system that, based on this
OSS, has become the best-selling smart phone platform. As
OSS become more common and popular among us, however,
its projects are faced with a big challenge to their quality as-
surance activities. Due to their growing user base, especially
large OSS projects such as the Mozilla and Eclipse projects
receive considerable amount of bug reports from the users
on a daily basis [13] (e.g., several hundred bug reports are
posted to the Bugzilla database of the Mozilla project every
day). Therefore, OSS projects require an effective way of
dealing with the large number of bug reports.

In an OSS project, a bug is fixed through the bug fixing
process [19] which is a process of fixing the bug from the
time a bug was reported in the project until the patches for
fixing the bug have been submitted into a software repos-
itory such as Bugzilla. Each bug report in this process is
passed through one or more developers who play different
roles before the process is closed.

In this study, we focused on developers who have the priv-
ilege to submit patches into the software repository, called
Committers. This group of developers play major roles in
the bug fixing process [7]. Their main task is to review (and
sometimes edit) patches posted by other developers and sub-
mit them into the software repository. Some of them also
perform other tasks including bug resolution and bug reports
management. Using Concurrent Versions System (CVS) and
Bug Tracking System (BTS), they resolve bugs, join discus-
sions about bugs, verify fixed bugs by developers, close bug
reports, and so forth. As just described, committers’ activ-
ities are vital for sustaining and improving the quality of
OSS products.

However, committers are not always perfect. They some-
times make mistakes. For instance, they can uncautiously
verify a bug report already resolved by a developer and close
the bug report, creating another bug report for the same
bug again (i.e., reopen bug). In this paper we are interested
in creating a better understanding of committers’ activities
and their consequences on the bug fixing process in order to
find a better way to improve the bug fixing process in OSS
projects.

Selecting the Eclipse-Platform’s Version archives (CVS)
and Bug Tracking System (BTS) as the information source
of our case study, we ask the following research question.

9

RQ: What are the consequences of the committer’s
activities to the bug fixing process? In this question,
we studied the committer’s activities and their effects to the
bug fixing process. Then we compared the consequence of
more cautious committer’s activities to the lesser one.
Through answering the research question, we provide con-
tributions in this paper as follows.

• To create a better understanding on a committersÕ
activities and their consequences on the bug fixing pro-
cess in order to find a better way to improve the bug
fixing process in OSS projects.

In what follows, we introduce our related works in Sec-
tion 2 and extraction method in Section 3. Section 4 shows
the results and process on how we answered our research
question. Additional interesting results that we are able to
identify during this work are discussed further in Section 5.
Section 6 describes our limitations and future work, and we
summarize our study in Section 7.

2. RELATED WORK AND MOTIVATION
Most existing studies are focused on how to reduce the

time to fix bugs since it has been gradually increasing, es-
pecially in large OSS projects. There are currently three
promising approaches to improving the bug fixing process.
In what follows, we describe the existing approaches and our
motivation of this study.

2.1 How to make a good bug report?
A good bug report contributes by reducing the time to fix

bugs because it can help developers to quickly find, replicate,
understand the bugs at hand. However, developers’ infor-
mation needs in the bug reports are often unsatisfied, since
users do not know what type of information are required to
fix a problem and so rarely articulate the problem on the
software use as developers can fix it. For instance, users do
not correctly report procedures to reproduce an error (e.g.,
sometimes they just say “This option does not work in my
computer!”). Therefore, developers have to ask users to give
more information again and again to identify and fix the er-
ror. If things go wrong, developers cannot confirm the error
and then leave it unresolved reluctantly.

In order to improve cooperation on a bug report between
developers and users, many studies [3, 4, 6, 10] have inter-
viewed OSS developers and users to understand the informa-
tion needed to fix the bug. For example, through interviews
with over 150 developers and 300 reporters of the Apache,
Eclipse and Mozilla projects, Bettenburg et al. [Betten-
burgFSE2008] have found that steps to reproduce and stack
traces are most useful in bug reports.

2.2 Duplicate bug detection
Users often report the same problem that was reported

by another user in the past or that has already been fixed
by developers. Developers also sometimes try to resolve the
same problem which had been resolved in other times. This
can happen because there are a large number of bug reports
in the bug tracking system. Both the users and developers
cannot be aware of all the reported bugs though the search-
ing function that was provided to find bugs reported in the
past. In this manner, the same bugs are duplicated in BTS
which result in wasting developers’ time and efforts.

To avoid duplicate bugs in BTS, several studies [18, 15,
20] have tried to detect duplicate bug reports automatically.
For example, Wang et al. [20] present an approach to de-
tect duplicate bugs based on a natural language processing
techniques.

2.3 Re-opening and reassigned bugs
Even if a bug fixing task is assigned to a developer, it may

not be completed by the developer which is then reassigned
(tossed [13]) to other developers. This often happens be-
cause a trigger assigned a bug fixing task to an inappropriate
developer who does not have sufficient knowledge and skill
to complete the task. In the Eclipse and Mozilla projects,
37% to 44% of bugs are reassigned to another developer [13].
Preventing the bug tossing (assigning a bug fixing task to
appropriate developers) is very effective in reducing the time
to fix bugs.

Several approaches [1, 14, 13, 9, 8] exist in this topic. For
instance, Anvik et al. [1] proposed an approach to assign a
bug to an appropriate developer based on past bug reports
with natural language processing. Jeong et al. [13] also tried
to establish a method for the bug assignment based on a so-
cial graph which reflects on social relationships among devel-
opers in the bug assignment. Other approaches involved in
achieving better understanding on why reassignment occurs
many times [9] and in creating a method to predict which
bugs will be reopened or get fixed without being reopened
[8].

2.4 Cautious and uncautious committers
In general, a dedicated developer is nominated or elected

to become a committer in an OSS project [12]. The OSS
project carefully selects a developer as a committer candi-
date since committers play the important roles as described
earlier. It takes one or two years to be a committer. A
developer who wish to be a committer has to keep showing
devoted activities to the project for a considerable period
of time. Due to this promotion process, many of developers
leave the project within a year and the OSS projects are
always faced with the difficulty in having to find more com-
mitters who can greatly contribute to the bug fixing process.

In order to find a way to increase committers in OSS
projects, Fujita et al. [7] have examined activities of devel-
opers and committers in the PostgreSQL project and tried
to identify promising developers who were making a signif-
icant contribution equivalent to committers and potentially
should be nominated to be committers in the future. Al-
though the study found interesting aspects of committer
candidates, it still adhered the current practice of existing
committers and their promotion process in OSS project. In
fact, one of their conclusions was that long-term participa-
tion in a project was the most important aspect to become
a committer.

Different from [7], in this paper we have studied the com-
mitters’ activities and their consequences. Our basic as-
sumption on committers is that committers are not always
perfect and sometimes make mistakes because they are also
human-beings. Some of them might uncautiously verified a
fixed bug by developers, creating reopened bug reports in
the future. They also might uncautiously reviewed and ac-
cepted a patch posted by developers to fix a bug and then
committed it into the repository such as CVS that would
bring reopen and another bug reports. In this study we are

10

interested in having a clear understanding of committers’
activities and the consequence to the bug fixing process.

3. EXTRACTION METHOD
In this section, we describe how we extracted information

of committers’ activities from the Eclipse-Platform project
for our case study. Firstly, we describe how records of com-
mitter’s activities are preserved in OSS the development.
Then we introduce our method of extracting the information
to observe committer’s support activities and main activities
respectively.

3.1 Committers’ Activities
When developers are involved in the bug fixing process,

their action are recorded in many formats. In common
with many other OSS projects, Eclipse-Platform had cho-
sen Bugzilla as their BTS where records each committer’s
support activities such as patch reviews and status changes
(e.g., sometimes developers check the resolution of a bug and
mark the bug’s status to “VERIFIED” or “CLOSED”[19])
are stored. Developers in the project can see the information
of the database in the HTML form through a web browser.

The project also used CVS to keep track of their com-
mit history which is recorded in the plain text format called
“commit log”. By combining the information from both CVS
and BTS, we are able to observe when/why/how each de-
veloper had contributed in the bug fixing process.

Using both the commit log and the Bugzilla database as
our data sets, we collected 85,387 bug report data on BTS
and over 30,833 commit log data on CVS. As a result, we
were able to captur activities of 2,584 different developers
from October 2001 until January 2010.

In order to archive our results, first, we need to identify
who the committers are, excluding them from thousand of
regular developers in the projects. To our knowledge, there
is no specific activity that can decide whether one developer
is a committer or not. [7] suggests only a rough description
of how they extract their committer list. Based from their
work, they had defined a developer as a committer, who
has a privilege to submit a patch to the software repository.
By using this definition, we managed to extract our list of
committer’s names. When a committer makes a patch com-
mitment, their action is captured and their name is recorded
in commit log’s author field. By using regular expressions
to scan every CVS line, we are able to identified 74 privilege
developer names to create our list of committers’ names.

From the committer list, we need to collect each com-
mitter’s behavior data. We describe the procedures in the
following separate subsections. In the first subsection we
described how we collect each committer’s support jobs in
BTS, that is, how we studied the footprint of their support
activities left on Bugzilla1. The second section describes
how we observe committer’s main jobs in CVS, that is, how
we collects their patch commitment footprint left on CVS
data.

3.2 Observing Support Activities From BTS
1Only some committers use the same account name in CVS
and BTS. In order to map between their two accounts, we
used automated method to find an exact-name-match for
the committer who use same account name in both records.
For those who did not, we have no choice but to map each
committer’s name manually.

In the bug tracking system, each reported bug is identified
by a number called bug-id, attached with other data such as
bug priority, bug status history, developer’s comment, and so
on. Each bug has its own current status varying from NEW,
ASSIGNED, VERIFIED or CLOSED. Some bug status have
its own resolution to indicate what happened to the bug such
as FIXED, INVALID, and DUPLICATED[19].

Bug status history are used in many researches as a very
useful source of information. Researchers can test a hypoth-
esis[7], create prediction models[16], or performs statistical
analysis[11]. In this paper, when we describe the bug sta-
tus that have changed from one to the others in the bug
history, for better clarifications, we present the bug’s his-
tory in the form of bug status patterns. We use “⇒” for
separation between bug status. Time dimension flow from
left to right of the patterns. “...” Symbols represent any
or many bug status changed and we use “()” to show the
resolution of the bug status if it is exist. These bug status
pattern can start from as simple as OPENED ⇒ NEW ⇒
ASSIGNED ⇒ RESOLVED (FIXED) to the more complex
pattern such as OPENED ⇒ NEW ⇒ ASSIGNED⇒ RE-
SOLVED (INVALID) ⇒ REOPENED ⇒ ASSIGNED ⇒
RESOLVED (WORKSFORME). For the first pattern, we
can observe that the bug has been assigned only once before
its resolved. This type of the pattern usually leads to short
or normal bug life cycle while the more complex one often
leads to longer bug life cycle.

We are able to observe and collect each committer’s sup-
port activities based on this bug status patterns. We could
identified 52,013 of 85,387 bug reports that were involved
by our committers with 4,941 of 30,833 difference bug sta-
tus patterns.

3.3 Observing Main Activities From CVS
For the Eclipse-Platform’s commit log (from CVS), we

wish we could have observed the committer’s main behav-
iors solely from the commit log as we did in the Bugzilla bug
history. Unfortunately, from this commit log we can only
have a narrow vision of committer’s activities; It captures
only revision numbers, date of commit and some informa-
tion about source code changes. The description about each
change is solely depend on committer’s opinion. This de-
scription field has no centralized format and often recorded
in an ill-organized pattern (some of them are empty some-
times).

Due to these inconsistencies, the CVS description is not
adequate to judge each committer’s behavior. In order to
overcome this problem, we decided to adapt T. Zimmer-
man’s[17] approach to our study. Their approach has sug-
gested that, despite its inconsistencies, sometimes commit-
ter has mentioned bug-id in the CVS description. By using
bug-id as a trails, we identified it as a links from the CVS
repository to the bug database. From these links we can
look further into the BTS database where we have wider be-
havior information to study. The technique on finding these
links has been used in many works in this field (e.g., [2],[17]
and [5] has described these links and illustrated it clearly.).
By adapting the Zimmerman’s approach to our study, we
managed to identify 1,193 links from our commit log. Thus,
we could collect each committer’s main activities.

11

Reopen.after.committed Others

1
5

1
0

5
0

5
0
0

B
u

g
 l
ife

 c
y
c
le

 (
D

a
y
s
)

Figure 1: Box plot comparing the life cycle of
Reopen-after-committed bug and normal bug

4. RESULTS
RQ: What are the consequences of the committer’s

activities to the bug fixing process?
By focusing on the consequences of committer’s activities,

we separated the results for this question into two parts:
the consequences of a committer’s main activities and the
consequences of a committer’s support activities.

4.1 Consequences of Main Activities

APPROACH.
As mentioned above, we suspect that when a committer

un-cautiously committed the patch that fixed the bug, this
bug might be reopened later to be resolved again. After
compare the bug life cycle of these Reopen-after-committed
bugs with the other bugs that did not reopened from 1,193
links found from CVS and BTS, we identified 140 bugs that
had been reopened after committers committed the patches.

FINDING.
The result are shown in Fig 1, we can see that when a bug

is reopened after patches were committed, the bug tends to
have longer life cycles.

4.2 Consequences of Support Activities

APPROACH.
As explained earlier, we collected committer’s support ac-

tivities by observing the bug status history and rewrote these
status history in the form of patterns. In order to study the
consequence of these patterns to the bug fixing process, we
had randomly chosen these patterns to inspect manually. By

RESOLVED
FIXED

This resolution
seems to work

I can reproduce
the problems

VERIFIED REOPENED

Bug status history

(a) Reopen-after-verified/closed pattern

OPEN

I cannot find
existing bug,

NEW

This bug is
DUPLICATED to

bug-id 12345

NEW DUPLICATED

Bug status history

(b) Duplicate-after-new pattern

Figure 2: Bad-status-patterns observed in our study

focusing only on patterns related to committer’s jobs, we can
identify two status patterns that potentially have negative
effects on the bug fixing process.

The first pattern shown in Fig 2 (a) we call Reopen-after-
verified/closed pattern represents that bugs have been RE-
OPENED after they had been marked as VERIFIED or
CLOSED (e.g., ... ⇒ VERIFIED (FIXED)⇒ REOPENED
or ... ⇒ CLOSED (FIXED) ⇒ REOPENED). We suspect
that this pattern occurs when committers do not cautiously
check a patch before they changed status to VERIFIED. So
this bug has to be reopened later (in worse case, the bug has
been left over and no one reopen it).

The second pattern shown in Fig 2 (b) called Invalid/Duplicated-
after-new indicates that bugs have been detected as IN-
VALID or DUPLICATE after they had been marked as
NEW (e.g., NEW⇒ASSIGNED⇒ RESOLVED (INVALID)
or DUPLICATE). In this case, we suspects that a developer
who marked NEW made a mistake. This bug is not new
but was actually duplicated or was invalid (sometimes in-
valid mean it is not even a bug.). In this paper, we will
use Bad-status-pattern to represent the two bug status pat-
terns above. We suspect that the bug life cycle followed
Bad-status-pattern might be longer compared to the bugs
without such the bad pattern. Thus, these bugs waste more
developers’ time and efforts.

FINDING.
After extracting above patterns from every bugs in Bugzilla,

we were able to identify 405 bugs that followed Reopen-after-
verified/closed patterns with 289 bugs that has been marked
as VERIFIED by committers. The other bugs were verified
or closed by other developers that had verified permission
but does not have commit permission. Thus, they are not
committers. And for 696 bugs that followed Duplicate/Invalid-
after-new patterns, there were 470 patterns that had been
marked as new by our committers.

By using only bug reports that were involved with the
committers (total of 52,013 bug reports), we used a box plot
to compare the bug life cycle between the bugs that followed

12

A B C

1
5

5
0

5
0
0

A: Invalid/Duplicated−after−new B: Reopen−after−verified/closed C: Others

B
u

g
 l
ife

 c
y
c
le

 (
D

a
y
s
)

Figure 3: Box plot comparing the bug’s life cycle
that followed Invalid/Duplicated-after-new patterns
and Reopen-after-verified/closed patterns with nor-
mal bugs

Reopen-after-verified/closed patterns, Invalid/Duplicated-after-
new patterns , to other bugs that our committer has been
involved. There were 51,254 bug reports that did not follow
Bad-status-pattern. The results showed significant different
number of days between these bugs. Unsurprisingly, the
bugs where a committer made a mistake has longer bug life
cycle.

5. DISCUSSION
In this section, we discuss the results from our research

question and additional results we can find during our re-
search.

5.1 Committer’s Uncautious Activities: Neg-
ative Effects On The Bug Fixing Process

From our research question’s results, we suspect some
activities that potentially has a negative consequence and
we compared it with normal activities. We can identify
that the patch that has been Reopen-after-committed or the
bugs that followed Bad-status-patterns have longer life cy-
cles compare to the other bugs. From this result, we wish
to make a humbly suggestion to an OSS’s committer to be
aware of their importance to the bug fixing process. When
they are not cautiously doing their jobs, they might extend
the bug life cycles.

5.2 Additional Results: Not all Reopend Bug
Are Bad

When we observed the bug status patterns in BTS, against
popular beliefs, we have found that not all reopens have
negative effects to the project. In the Eclipse-Platform, we
can identified that there are 6 types of reopens. Each type

has different impact to the bug life cycle. Some patterns
showed that reopens can have positive effect such as ... ⇒
RESOLVED(WONTFIX) ⇒ REOPENED ⇒ ASSIGNED
⇒ RESOLVED(FIXED). We manually observed this pat-
terns, found that some developers simply change the bug
resolution to WONTFIX because they did not have enough
knowledge to fix it, which later has been REOPENED and
fixed by other developer. Another example is the reopened-
after-later pattern (... ⇒ RESOLVED(LATER) ⇒ RE-
OPENED), this reopen is actually intended, LATER reso-
lutions usually mean ”this bug must wait for the new patch
to be fixed”, ”this is not the target milestones”, or ”need some
minor tweaks later”. We want to make suggestion to other
researchers who use bug status pattern in their work to be
aware of these types of reopen and their different impacts.

6. LIMITATION AND FUTURE WORK
In our extraction process, we have collected each com-

mitter’s patch commitment activities by the observed CVS
description that had a link to the bug database. Unfortu-
nately, this collected links number are considered to be small
in portions compared to all of the activities in the CVS. From
30,833 commits in the commit log, we can identify only 1,193
links with a unique bug-id. To reduce the bias resulted from
a sample size, our goal was to capture the largest represen-
tation of population as we can. As we explained earlier, we
(hopefully) archived this goal by adapting [17] approach in
order to overcome this limitations.

Please be noted that the results from this research is
focus only on the Eclipse-Platform’s development commu-
nity. This community structure are well-organized and have
full-time workers (like commercial development community).
Different OSS communities can have different structure which
will reflects in different results from the same approach.

In order to observe variation of the results reflected from
the different communities, our future works will apply the
approaches used in this research to another OSS projects
and we would like to look deeper into existing committers
themselves to find the committer candidates who will be-
come “good” committers. We also would like to observe an-
other developer’s role in the OSS’s bug fixing process, and
hopefully received a useful results that can benefit all OSS
communities.

7. CONCLUSION
In this paper, we have focused on developers who played

a major role in bug fixing process called Committers. We
suspected that, when the bugs are taken care by more cau-
tious developers (and verified by cautious committer), their
life cycles might be shorter. We identified committer’s ac-
tivities that have different consequences to the bug fixing
process. Our findings can be summarized as follows:

• We ware able to determined the patches that have
been reopened after it was committed and showed that,
when the committer committed the patch and that
patch had to be reopened later, it tends to have longer
life cycle.

• We categorized severals bug status patterns, showed
that when the bugs have its status followed Bad-status-
pattern, they have longer bug life cycle than the bugs
with other patterns.

13

8. ACKNOWLEDGMENT
The first author is grateful to the internship program co-

operated and supported between Kasetsart University, Thai-
land, and Nara Institute of Science and Technology, JAPAN.
It bestows a grant as well as an opportunity for undergrad-
uate student to achieve a wealth experience in abroad grad-
uated school research.

This work is also conducted as part of StagE Project
(the Development of Next Generation IT Infrastructure),
Grant-in-Aid for Scientific Research (B), 23300009, 2011,
and Grant-in-aid for Young Scientists (B), 22700033, 2011
by the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

9. REFERENCES
[1] J. Anvik, L. Hiew, and G. Murphy. Who should fix

this bug? In Proceedings of the 28th international
conference on Software engineering (ICSE’06), pages
361–370, 2006.

[2] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The missing links: Bugs and bug-fix
commits. In SIGSOFT’10/FSE-18: Proceedings of the
16th ACM SIGSOFT Symposium on Foundations of
Software Engineering. ACM, 2010.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of software engineering (SIGSOFT’08/FSE-16), pages
308–318, 2008.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Extracting structural information from bug
reports. In Proceedings of the 2008 international
working conference on Mining software repositories,
pages 27–30, 2008.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
Balanced? Bias in Bug-Fix Datasets. In Proceedings of
the the Seventh joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, 2009.

[6] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann.
Information needs in bug reports: improving
cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer
supported cooperative work (CSCW’10), pages
301–310, 2010.

[7] S. Fujita, M. Ohira, A. Ihara, and K. ichi Matsumoto.
An analysis of committers toward improving the patch
review process in oss development. In Supplementary
Proceedings of the 21st IEEE International Symposium
on Software Reliability Engineering (ISSRE2010),
pages 369–374, November 2010.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: an empirical study of microsoft windows. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE’10) -
Volume 1, pages 495–504, 2010.

[9] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. “not my bug!” and other reasons for

software bug report reassignments. In Proceedings of
the ACM 2011 conference on Computer supported
cooperative work (CSCW’11), pages 395–404, 2011.

[10] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering (ASE’07), pages 34–43, 2007.

[11] A. Ihara, M. Ohira, and K. ichi Matsumoto. An
analysis method for improvinga bug modification
processin open source development. In In 10th
international workshop on principles of software
evolution (IWPSE’09), pages 135 – 143. ACM, August
2009. Amsterdam,The Netherland.

[12] C. Jensen and W. Scacchi. Role migration and
advancement processes in ossd projects: A
comparative case study. In Proceedings of the 29th
international conference on Software Engineering
(ICSE’07), pages 364–374, 2007.

[13] G. Jeong, S. Kim, and T. Zimmermann. Improving
bug triage with bug tossing graphs. In Proceedings of
the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering (ESEC/FSE’09), pages 111–120, 2009.

[14] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of
developers. In Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software
Repositories (MSR’09), pages 131–140, 2009.

[15] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In Proceedings of the 29th
international conference on Software Engineering
(ICSE’07), pages 499–510, 2007.

[16] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim,
M. Ohira, B. Adams, A. E. Hassan, and K. ichi
Matsumoto. Predicting re-opened bugs: A case study
on the eclipse project. In the 17th Working Conference
on Reverse Engineering (WCRE 2010), pages 249–258.
IEEE, IEEE Computer Society, October 2010.

[17] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proceedings of the Second
International Workshop on Mining Software
Repositories, pages 24–28, May 2005.

[18] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering (ICSE’10) - Volume 1, pages 45–54, 2010.

[19] The Bugzilla Team. The Bugzilla Guide: 5.4. Life
Cycle of a Bug.
http://www.bugzilla.org/docs/3.4/en/html/Bugzilla-
Guide.html.

[20] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In
Proceedings of the 30th international conference on
Software engineering (ICSE’08), pages 461–470, 2008.

14

Refactoring the Refactoring

15

16

Inferring Restructuring Operations on Logical Structure of
Java Source Code

Hideaki Hata
Osaka University

Osaka, Japan
h-hata@ist.osaka-u.ac.jp

Osamu Mizuno
Kyoto Institute of Technology

Kyoto, Japan
o-mizuno@kit.ac.jp

Tohru Kikuno
Osaka University

Osaka, Japan
kikuno@ist.osaka-u.ac.jp

ABSTRACT
Restructuring source code structure, such as moving and renaming
classes or methods, are inevitable activities in software develop-
ment, and are recommended for the improvements of maintainabil-
ity. However, it has been not easy to understand properly what log-
ical structural changes occur. This is because we can obtain only
file-level and line-level information from source code management
systems about changes. This paper presents a technique of such in-
ferring restructuring operations on logical structure of Java source
code. For inferring structural change operations, the core part is
mapping elements between two revisions. Previous related studies
tackle this problem based on the analysis of subgraph similarity,
which takes lots of time. We find match candidates based on the
similarity of element contents and identify matches with Bayesian
inference based on empirical data. We report the result of empiri-
cal evaluation of our technique with open source software projects
from Android and Eclipse. We see that our technique identify most
element matches correctly and provide appropriate operations, and
it took only a few seconds to analyze entire history of each project.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.9 [Software Engineering]: Man-
agement—Software configuration management

General Terms
Management

Keywords
change analysis, refactoring, software evolution

1. INTRODUCTION
Software evolves dynamically. While developing and maintaining
source code, restructuring source code structure including moving
and renaming program elements is a common practice. From an
empirical study, Murphy-Hill et al. reported that though pure refac-
torings (root-canal refactorings) rarely occurred, floss refactorings,

which are refactorings with other types of programming activities,
occurred frequently [18].

Though refactorings are recommended and restructuring source code
occurs frequently, there is a problem on understanding those changes.
Mailloux reported an experience of industrial software develop-
ment from the initial implementation to several business phases
[17]. In this report, it is described how configurations, bugs, changes,
and so on were managed as the project grew. At the initial im-
plementation, there was no change management. From the first
release, informal one-to-one coaching and formal documentation
began. As the project grew, an initial training was provided to de-
veloper team. However, it is reported that changes were so fast,
then the initial training became obsolete. As seen in this experi-
ence report, it has been not easy to understand changes.

This paper presents a technique of inferring change operations, es-
pecially restructuring change operations on logical structure of Java
source code. We target moving and renaming of program elements,
such as packages, classes, fields, constructors, and methods. There
are several studies providing change operations between two re-
visions. One approach is a record-and-replay technique [3, 12].
Though these approach are able to provide accurate change oper-
ations, it is not always possible to record change operations be-
cause developers do not always use refactoring tools [18]. The
other studies based on matching techniques. Change operations are
inferred based on identified program element matches. The objec-
tive of most previous studies were identifying what changes occur
between two releases. Most approaches based on the subgraph iso-
morphism problem, which requires large time to analyze. Conse-
quently, analyzing entire histories (every changes) is not practical
because of large time consumption.

We propose a light-weight technique to overcome this limitation.
Our technique do not directly infer restructuring based on finding
subgraph isomorphism, but there are mainly two phases to infer
restructuring. First, we identify matches between individual ele-
ment using simple heuristics and then restructuring is inferred using
Bayesian inference based on empirical data. Our technique is em-
pirically evaluated with open source software projects in Android
and Eclipse. From this evaluation, we see that our technique infers
most change operations properly and takes only a few seconds to
analyze entire history of each project.

The rest of this paper is organized as follows. Section 2 describes
restructuring operations we target and clarifies that program ele-
ment matching problem is the core of structure change operation
inference. Section 3 discusses program element matching problem

17

Previous revision

package pck ;

p u b l i c c l a s s Clsa {
void mthx () {
}

}

p u b l i c c l a s s Clsb {
void mthy () {
}

}

Changed revision

package pck ;

p u b l i c c l a s s Clsa {
void mthp (i n t a) {
}

}

p u b l i c c l a s s Clsc {
void mthq () {
}

}

Figure 1: A change example between two revisions.

with related work. In Section 4, we explain our inference algorithm
and evaluate our technique in Section 5. Finally, we conclude in
Section 6.

2. RESTRUCTURING OPERATIONS
Motivation. Changes of software structure is inevitable and impor-
tant, but it is difficult to understand such changes. In some paper,
it is reported that the lack of change management is big risk of
software quality and team management [17, 21]. Tools that help
developers to understand restructuring changes should be required.

Definition. The problem addressed in this paper is proposing a
technique that suggests restructuring operations applied to change
software structure between two revisions of software. In source
code, there are some structures, such as physical structures (direc-
tories and files), logical structures (packages, classes, methods, and
so on), dependencies (define-use and overriding) [14]. This paper
targets changes on logical structures. We treat packages, classes,
fields, constructors, and methods as program elements in logical
structures of Java source code. Targeted restructuring operations
include rename, move, hide, and unhide following the terms in [22].
Rename means the identifier changes in this paper. So method
renames is the changes of method signatures, that is changes on
method name, parameters.

Overview. Figure 1 is an example of source code change. If a
method mthp is identified as a modified version of a method mthx,
that is, a match is found between the two methods, it is easy to in-
terpret that the method is renamed from mthx to mthp and its
parameter is changed. The method is not moved since the method
exists in a same class Clsa. If a match is found between a method
mthy and a method mthq , it is easy to suggest that the method is
renamed. However, this case is different from the previous case.
The method mthy exists in a class Clsb and the method mthq ex-
ists in a class Clsc. If the class Clsb and the class Clsc are differ-
ent one, we can recognize that the method is moved from the class
Clsb to Clsc. If the class Clsc is a renamed version of Clsb, the
method is not moved but just renamed. Changes on element names
or parameters for constructors and methods are identified based on
corresponding matches. To identify whether elements are moved
or not, it is needed to investigate their parent element matches. In
summary, we have to identify every program element matches.

3. PROGRAM ELEMENT MATCHING
The problem of identifying program element matches can be seen
as a link prediction problem [6, 13], which is a problem of predict-

Figure 2: Link prediction problem.

Table 1: Information for program element matching
Studies Topological info. Node attributes
S. Kim et al. [16] calls name, text, metrics
Godfrey and Zou [7] calls name, metrics
Wu et al. [23] calls name
Fluri et al. [5] structure name
Dig et al. [2] calls, structure tokens
Weißgerber and Diehl [22] structure name, text
Prete et al. [20] calls, structure text
Xing and Stroulia [24] structure name
Dagenais and Robillard [1] calls, structure name

ing the existence of a link between two nodes in a network as shown
in Figure 2. For program elements, networks can be seen in logical
structures, call dependency graphs, and so on. Existence of the link
can be regarded as a match between two program elements. The
link prediction problem can fall into two categories in accordance
with the information used for prediction [13]:

Topological-information-based methods: nearby nodes are sim-
ilar or not.

Node-information-based methods: attributes of nodes are simi-
lar or not.

There are many studies inferring change operations. Table 1 sum-
marizes previous studies based on the two information

Origin identification. S. Kim et al. applied several method match-
ing techniques for origin analysis identifying renaming and mov-
ing to open source software projects, and evaluated the effective-
ness of the techniques [16]. They reported that though clone de-
tection yields an accuracy value 67.4, function body diff achieved
90.2. Splitting and merging of software entities are targeted by
origin analysis. Godfrey and Zou proposed a technique of infer-
ring such events based on matching procedures using multiple cri-
teria including names, signatures, metric values, and call depen-
dencies [7]. Splitting and merging correspondence analysis is also
known as one-to-many and many-to-one matching. Wu et al. com-
bined text similarity analysis on names and call dependency anal-
ysis for those method matching [23]. Fluri et al. proposed change
distilling, a tree differencing algorithm [5]. Change distilling target
not only method-level changes but also more fine-grained element
changes. Name string similarities and tree similarities are calcu-
lated for matching.

Refactoring identification. Dig et al. proposed a technique for de-
tecting refactorings based on identifying renaming packages, classes,
methods, and moving methods [2]. Those changes are identified by
using structural data, call-graph and tokens from entities. Weißger-
ber and Diehl presented a technique to detect changes that are likely
to be refactorings [22]. Their matching technique is based on struc-
ture similarity and code clone analysis. M. Kim and Notkin pro-
posed an approach, LSdiff to discover and represent systematic code

18

changes [14]. They intended to infer what changes are occurred
based on analyzed structure differences. The matches are analyzed
based on a set of predicates that describe program elements, their
containment relationships, and their structural dependencies. REF-
FINDER proposed by Prete et al. extends predicate sets of LSdiff
for identifying refactorings [20]. It supports sixty-three refactor-
ing types. Though original LSdiff does not identify matches, REF-
FINDER does.

Framework usage changes. Xing and Stroulia proposed an ap-
proach for API-evolution support, called Diff-CatchUP [25]. On
the step of change identification, UML-diff, which is based on
name similarity and code dependency similarity of program el-
ements [24], is used. After identifying changes, plausible API
replacements are proposed. Dagenais and Robillard presented a
technique to recommend adaptive changes for clients of framework
code based on structure change analysis [1]. Their matching tech-
nique is based on structure similarity and out going call dependency
similarity.

Discussion. As shown in Table 1, every study uses both meth-
ods for program element matching. As topological-information–
based methods and node-information-based methods have differ-
ent advantages and limitations, the combination of both methods
is expected to achieve better results. Most studies mainly adopt
topological-information-based methods and use node-information-
based methods for program element matching.

Topological-information-based methods require unchanged or eas-
ily understandable neighborhood. Therefore, it is difficult to iden-
tify matching elements if there is no enough nearby elements or
there are major changes. Wu et al. reported the limitations and
insist that topological-information-based methods cannot be over-
come them [23]. Fluri et al. reported following two limitations [5]:

• Mismatching can propagate. Not only mismatching for each
targeting entity, correlate entities can be mismatched.

• The worst-case complexity increase. To decrease mismatch-
ing, complex algorithm is needed and this increase the worst-
case complexity.

Because of these problems, previous techniques are not light-weight
for analyzing entire histories. In addition, some studies report the
difficulties of identifying moving operations [5, 24].

4. INFERENCE ALGORITHM
Our algorithm infers restructuring operations between two revi-
sions of Java source code. Our algorithm consists of three parts:
(1) finding candidates of program element matches, (2) identifying
program element matches, (3) interpreting restructuring operations.

For program element matching in the part (1) and (2) , we use only
node information because there are problems in using topological
information as seen before.

4.1 Finding match candidates
We have proposed a system Historage1 that can track program el-
ements beyond renaming and moving [10, 11]. With this system,
1A tool to build Historage is available from https://github.
com/hdrky/git2historage.

match candidates between program elements can be found based
on the similarity of their text. We have found that it is possible to
find most of match candidates in methods, constructors, and fields
if contents are similar enough [11]. It is also possible to find match
candidates between classes with the same technique.

The percentages of the same content in the size of smaller content
(original or new) are calculated as text similarity values. In the
previous study [11], we immediately identify matches based only
on the similarity value. If the value is larger than or equal to 30%,
elements can be regarded as matches, and if the value is less than
30%, elements are regarded as independent elements.

Though this procedure works relatively well, we miss some matches
if the similarity values are low, which is caused by major modifi-
cation. The next part of our algorithm is introduced for decreasing
such missing.

4.2 Identifying matches
Though the high similarity value is a good evidence for finding el-
ement matches, we can use other node information as additional
evidence. These additional evidence should be valuable especially
when the similarity value is low. In this part, we identify matches
based on Bayesian inference. If we can obtain additional node in-
formation X , we can calculate the posterior probability of matches
as follows:

P (match|X) =
P (match)P (X|match)

P (X)

We identify matches if the posterior probability P (match|X) is
greater than or equal to 50%, where P (X) = P (match)P (X|mat
ch)+P (match)P (X|notmatch). To build not a project-specific
model but a general model, we will determine parameters based on
empirical investigation of several open source projects.

Prior probability. From the empirical study [11], if the sim-
ilarity value is greater than or equal to 30%, more than 95% of
matches are correct. There are not many matches if the similarity
value is less than 30%. Based on this observation, we determine
the prior probability as follows:

High text similarity: P (match) = 95%，P (not match) = 5%

Low text similarity: P (match) = 20%，P (not match) = 80%

Evidence. For additional evidence, we collect following two node
information: (i) names of program elements, (ii) existence of cor-
responding child elements. The similarity of names between two
elements are widely used for matching [1,5,7,16,22–24] as seen in
Table 1. The existence of corresponding child elements is an addi-
tional evidence from our observation. If there is a match between
classes, which means the matched class is equal, there should be
elements that exists in the previous and the new class. Though
additional information (i) can be used for every program element
types, (ii) can be used for only class and package.

(i) names of program elements. To compute the similarity of pro-
gram element names (s1 and s2), we calculate their longest com-

19

https://github.com/hdrky/git2historage
https://github.com/hdrky/git2historage

!"

#!"

$!"

%!"

&!"

'!"

(!"

)#
!*
"

)$
!*
"

)%
!*
"

)&
!*
"

)'
!*
"

)(
!*
"

)+
!*
"

),
!*
"

)-
!*
"

)#
!!
*
"

#!
!*
"

.
/0
1
2
0
3
45
!

6780"9:8:;7/:<5!

87<4="

3><"87<4="

(a) Browser project

!"

#!"

$!"

%!"

&!"

'!!"

('
!)
"

(#
!)
"

(*
!)
"

($
!)
"

(+
!)
"

(%
!)
"

(,
!)
"

(&
!)
"

(-
!)
"

('
!!
)
"

'!
!)
"

.
/0
1
2
0
3
45
"

6780"9:8:;7/:<5!

87<4="

3><"87<4="

(b) Xpand project

Figure 3: Name similarity and matches.

mon subsequence (LCS). We adopt the following expression pro-
posed in [7] for the name similarity:

length(LCS(s1, s2) ∗ 2)

length(s1) + length(s2)

Based on the name similarity, we want to determine the parameter
of P (name sim.|match) and P (name sim.|not match). We inves-
tigate four open source software projects (Browser, Phone, EMF
Compare, Xpand) to see the relation of the name similarity and the
existence of program element matches. Figure 3 shows the distri-
bution of program element matches based on the name similarity
in two projects, Browser and Xpand. Though most matches have
higher name similarities (more than or equal to 70%), there are a
few matches that have middle name similarities (40% to70%). Not
match candidates have low name similarities (less than 40%) and
middle name similarities. We found similar distribution on every
project. Based on these observation, we determine the parameter
as follows:

P (name sim.high|match) = 0.85

P (name sim.middle|match) = 0.1

P (name sim.low|match) = 0.05

P (name sim.high|not match) = 0.05

P (name sim.middle|not match) = 0.15

P (name sim.low|not match) = 0.8

(ii) existence of corresponding child elements. We investigate
the existence of corresponding child elements for program element
match candidates. From empirical investigation, we observed that
there are a few matches without corresponding child elements, and
there are few cases for not matches with child elements. We deter-
mine the parameters as follows:

P (exists child|match) = 0.9

P (not exists child|match) = 0.1

P (exists child|not match) = 0.05

P (not exists child|not match) = 0.95

Built model. The name similarity and the existence of corre-
sponding child elements can be seen as independent features. There-
fore we a built naive Bayes classifier as follows:

P (name sim., child|match) = P (name sim.|match)P (child|match)

Using determined parameters, we build a classifier model. Instead
of the detail posterior probability values, we show that when our
model identify match candidates as matches. For methods, con-
structors, and fields, which do not have child elements, matches
are identified if any one of the following conditions is satisfied:

• Text similarity value is greater than or equal to 30%.

• Name similarity value is greater than or equal to 70%.

For classes and packages, matches are identified if any one of the
following conditions is satisfied:

• Text similarity value is greater than or equal to 30% and
name similarity value is greater than or equal to 70%.

• Text similarity value is greater than or equal to 30% and there
are corresponding child elements.

• Name similarity value is greater than or equal to 40% and
there are corresponding child elements.

Program element match identification begins for methods, construc-
tors and fields. After identifying these matches, it is easy to know
there are corresponding child elements for classes. Then we iden-
tify matches for classes. Finally, we identify matches of packages.
As seen in our classify model, we use only node attribute informa-
tion, which should fit our intuition.

4.3 Interpreting restructuring operations
After identifying every program element matches, we interpret re-
structuring operations. Renaming is easily known between matches.
As seen in Section 2, moving can be identified after clarifying
whether parent elements are same (matched) or different (not matched).
Though some paper describes the limitations of identifying mov-
ing operations [5, 24], there is no such limitation in our technique.
Now our technique support the following restructuring operations:
move, rename, parameter change, access modifier change (hide or
unhide).

Figure 4 presents an example of inferred restructuring operations.
In a package com.android.phone, there are changes of two
methods as follows:

20

Package com . a n d r o i d . phone
PhoneApp . j a v a

C l a s s PhoneApp
Method d i s p l a y C a l l S c r e e n () −> p r i v a t e d i s p l a y C a l l S c r e e n () : 1 . h i d e

P h o n e U t i l s . j a v a −> C a l l N o t i f i e r . j a v a
C l a s s P h o n e U t i l s −> C a l l N o t i f i e r

Method showIncomingCal lUi () −> p r i v a t e showIncomingCal l () : 2 . move & rename & h i d e

Figure 4: An example of inferred restructuring operations.

Table 2: Target project data.
Project Initial Last # Changes

Android Browser 2008-10-21 2011-05-03 1,517
Contacts 2008-10-21 2011-04-04 2,082
Phone 2008-10-21 2011-05-31 2,253

Eclipse ECF 2004-12-03 2011-05-17 5,251
EMF Compare 2007-04-03 2011-05-24 860
Xpand 2007-11-10 2011-05-31 637

1. A method displayCallScreen() is hidden by being
attached a private access modifier.

2. A method showIncomingCallUi() that existed in a class
PhoneUtils is moved to a class CallNotifier, and is
renamed showIncomingCall, and hidden by being at-
tached a private access modifier.

These information should be useful for further research on fine-
grained level, such as software evolution analysis, historical in-
formation based fault-prone/failure-prone module prediction, code
clone management, and so on. Text-based output like Figure 4 may
not be human readable. Appropriate visualization is one of required
future work.

5. EVALUATION
In this section, we evaluate the accuracy of our technique and the
performance of analysis time. We investigate the accuracy of iden-
tifying program element matches because inference of restructur-
ing operations depends on this identification. As shown in Table
2, we select six open source software projects from Android and
Eclipse to empirically evaluate our technique. Each project is de-
veloped more than two years and is committed (changed) about 500
to 5, 000 times. These projects are written in Java and Git reposi-
tories are available.

5.1 Program element matching
We manually investigate every match candidates. To evaluate with
Recall measure, we need to prepare reference set that should be
collected from every potential matches, which is very hard task.
Hence we measure CRecall, which is the number of identified cor-
rect matches divided by the number of correct matches in match
candidates. From our large inspection, there are few cases that
there are correct matches that are not identified as match candi-
dates. Precision is the number of identified correct matches divided
by the number of all identified matches. Since we manually iden-
tify correct matches, we may introduce some bias.

Table 3 summarizes the result of each project. The result is divided
in two tables based on the text similarity values, that is, (a) for text

Table 3: Matching evaluation.
(a) text similarity ≥ 30%
Method et al.† Else‡

Project Num.* CRec. Prec. Num.* CRec. Prec.
Browser 66/66 1.00 1.00 2/2 1.00 1.00
Contacts 162/162 1.00 1.00 10/10 1.00 1.00
Phone 102/102 1.00 1.00 6/6 1.00 1.00
ECF 894/897 1.00 1.00 125/125 1.00 1.00
EMF Compare 84/85 1.00 0.99 7/7 1.00 1.00
Xpand 178/189 1.00 0.94 2/2 1.00 1.00

(b) text similarity < 30%
Method et al.† Else‡

Project Num.* CRec. Prec. Num.* CRec. Prec.
Browser 8/79 0.88 1.00 0/13 – –
Contacts 9/33 0.89 1.00 2/3 0 0
Phone 13/31 1.00 1.00 0/0 – –
ECF 98/287 0.95 1.00 9/22 0.89 1.00
EMF Compare 20/38 0.70 1.00 0/2 – –
Xpand 7/20 0.29 1.00 0/0 – –
†: methods, constructors, and fields.
‡: classes and packages.
*: number of matches / number of match candidates.

similarity value is greater than or equal to 30% and (b) for text sim-
ilarity value is less than 30%, because match identification with low
text similarity is more difficult than with high text similarity. From
Table 3 (a), which is a summary of matching with high text similar-
ities, we can see that all matches are identified (every CRecall value
is 1.00) and there are a few false positives (precision values range
from 0.94 to 1.00). Table 3 (b) is a summary of matching with low
text similarities. This case is relatively difficult because there are
not many correct matches in entire match candidates as seen in the
second and the fifth row of Table 3. As seen in Table 3 (b), there
are no false positives (high precision except for matches of classes
and packages in Contacts project). CRecall values ranges from 0 to
1.00. Matches with low text similarities can be identified based on
the new evidence introduced in Section 4.2. We can see that naive
Bayes inference framework works relatively well.

Most of program element matches are identified well. To decrease
false positives and false negatives for more improvement, there are
some possible plans as follows:

• Readjust parameters of naive Bayes models.

• Find new evidences for naive Bayes models.

• Build different models for different program element types.

5.2 Performance
We show a rough comparison of performance based on reported
papers. At this time, we do not compare our technique with pre-

21

Table 4: A rough comparison of performance
Studies Time for one change analysis
Wu et al. [23] a few minutes
Dig et al. [2] several minutes
Prete et al. [20] several seconds to a hour
Xing and Stroulia [24] several seconds to a hour
Dagenais and Robillard [1] several hours
This paper less than a second

vious techniques with same hardware platforms and same target
projects. Table 4 summarize the reported time for analyzing one
change between two revisions. Note that though previous studies
analyze medium-size or large-seize projects, our target projects are
relatively small-size. Previous techniques require from a few min-
utes to several hours to analyze one change, which may be difficult
to analyze entire histories (hundreds to thousands of changes). Our
technique took less than a second for one change and only two sec-
onds for entire changes of each project in Table 2. Major reason of
this difference is that our technique consists of simple methods us-
ing only the information of elements (nodes), though other studies
mainly use topological-information methods, which require high
cost.

6. CONCLUSION
This paper presents a technique for inferring restructuring change
operations on Java source code. Though previous techniques used
topological information for program element matching, which have
some limitations, our technique uses only node information. From
empirical evaluation with six open source software projects from
Android and Eclipse, it is revealed that our technique identifies
program element matches with high accuracy. In addition, our tech-
nique require only a few seconds for analyzing entire histories.

With our technique, it is possible to analyze fine-grained and detail
project histories. There are some possible application of this tech-
nique, such as fault-prone/failure-prone module prediction based
on histories [8, 9, 19] and code clone history analysis [4, 15]. Im-
provements of program element matching and comparison with
other techniques on same environment and same target projects are
future work of our research.

7. ACKNOWLEDGMENTS
This research is supported by Grant-in-Aid for JSPS Fellows (No.23-
4335).

8. REFERENCES
[1] B. Dagenais and M. P. Robillard. Recommending adaptive

changes for framework evolution. ICSE ’08, pages
481–490,2008.

[2] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
ECOOP ’06, pages 404–428, 2006.

[3] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen.
Refactoring-aware configuration management for
object-oriented programs. ICSE ’07, pages 427–436, 2007.

[4] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in
evolving software. ICSE ’07, pages 158–167, 2007.

[5] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng., 33:725–743,
November 2007.

[6] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD
Explor. Newsl., 7:3–12, December 2005.

[7] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Softw. Eng., 31:166–181, February 2005.

[8] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. ICSM ’05, pages 263–272, 2005.

[9] H. Hata, O. Mizuno, and T. Kikuno. Fault-prone module
detection using large-scale text features based on spam
filtering. Empirical Softw. Eng., 15:147–165, April 2010.

[10] H. Hata, O. Mizuno, and T. Kikuno. Reconstructing
fine-grained versioning repositories with git for method-level
bug prediction. IWESEP ‘10, pages 27–32, 2010.

[11] H. Hata, O. Mizuno, and T. Kikuno. Historage: fine-grained
version control system for java. IWPSE-EVOL ’11, pages
96–100, 2011.

[12] J. Henkel and A. Diwan. CatchUp!: capturing and replaying
refactorings to support api evolution. ICSE ’05, pages
274–283, 2005.

[13] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and
K. Tsuda. Link propagation: A fast semi-supervised learning
algorithm for link prediction. SDM ‘09, pages 1099–1110,
2009.

[14] M. Kim and D. Notkin. Discovering and representing
systematic code changes. ICSE ’09, pages 309–319, 2009.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. ESEC/FSE-13,
pages 187–196, 2005.

[16] S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions
change their names: Automatic detection of origin
relationships. WCRE ’05, pages 143–152, 2005.

[17] M. Mailloux. Application frameworks: how they become
your enemy. SPLASH ’10, pages 115–122, 2010.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. ICSE ’09, pages 287–297, 2009.

[19] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. ICSE ’05, pages
284–292, 2005.

[20] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex refactorings.
ICSM ’10, pages 1–10, 2010.

[21] J. Streit and M. Pizka. Why software quality improvement
fails: (and how to succeed nevertheless). ICSE ’11, pages
726–735, 2011.

[22] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. ASE ’06, pages 231–240, 2006.

[23] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. AURA:
a hybrid approach to identify framework evolution. ICSE
’10, pages 325–334, 2010.

[24] Z. Xing and E. Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. ASE ’05, pages 54–65,
2005.

[25] Z. Xing and E. Stroulia. Api-evolution support with
diff-catchup. IEEE Trans. Softw. Eng., 33:818–836,
December 2007.

22

A Tool Support to Merge Similar Methods
with a Cohesion Metric COB

Masakazu Ioka1, Norihiro Yoshida2, Tomoo Masai1, Yoshiki Higo1, Katsuro Inoue1

1Graduate School of Information Science and Technology, Osaka University, Japan
{m-ioka, t-masai, higo, inoue}@ist.osaka-u.ac.jp

2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
yoshida@is.naist.jp

ABSTRACT
“Form Template Method” is a refactoring pattern to merge
similar Java methods with syntax differences. In this refac-
toring, developers divide target similar methods into a tem-
plate method and primitive methods corresponding to the
common part and the differences, respectively. In this pro-
posal, we present a tool to show candidates of appropriate
divisions between the common part and the differences based
on a cohesion metric COB when developers select a pair of
similar methods.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Experimentation

Keywords
Code Clone, Refactoring, Template Method Pattern

1. INTRODUCTION
Code clone is a code fragment that has identical or similar
fragments to it in the source code[3]. It is regarded as one
of factors that makes software maintenance more difficult.
When developers modify a code fragment, they have to find
code clones corresponding to modified code fragment.

Clone refactoring (i.e., merging code clones) is a disciplined
technique to reduce code clones[1]. Syntactically identical
code clones can be merged by straightforward technique
(e.g., Pull-Up Method refactoring, Extract Method refac-
toring). On the other hand, when code clones have syn-
tactic differences, it is necessary to extract those differences
as new functions (e.g., Java method, C++ function) before
merging.

”Form Template Method”[1] is a common refactoring to merge
a similar pair of Java methods with syntactic differences.
In the refactoring, developers divide similar methods into a
template method and primitive methods corresponding to
the common part and the differences, respectively.

However, it is difficult for developers to identify the common
part and the difference from similar methods, and extract
primitive methods so that each of them has a functionality
that can be given suitable method name. Therefore, tool
support is needed for desirable evolution of a pair of sim-
ilar Java methods with syntactic differences. Juillerat et
al. proposed an approach of automatic “Form Template
Method”[2]. This approach detects different subtrees by
comparing sequences of AST nodes which are generated by
using post-order traversal, and shows only a candidate of
“Form Template Method” for each pair of similar methods
regardless of satisfying developers.

In this proposal, we present a tool to show candidates of ap-
propriate divisions between the common part and the differ-
ences based on a cohesion metric Cohesion of Blocks (COB)
[5] when developers select a pair of similar methods.

2. PROPOSED TOOL
First, we explain COB. COB is a cohesion metric between
block statements in source code. It is proposed by Miyake
et al. for identification of a set of block statements suit-
able for Extract Method refactoring. Proposed tool uses
COB to see whether or not expanded fragments should be
extracted as primitive methods, and then suggests pairs of
code fragments with high COB as excellent candidates of
pairs of primitive methods. The definition of metric COB is
as follow:

COB =
1

b

1

v

v∑
j=1

µ(Vj) (0 ≤ COB ≤ 1)

where:

• b is the number of code blocks,

• v is the number of used variables in the method,

• Vj is j-th variable used in the method,

• µ(Vj) is the number of code blocks using variable Vj .

23

Figure 1: A screenshot of proposed tool

Next, we explain proposed tool. Proposed tool shows can-
didates of appropriate divisions between the common part
and the differences when developers select a pair of similar
methods.

Figure 1 shows a screenshot of proposed tool. Highlighted
code fragments represent candidates of primitive methods.
A pair of regions painted the same color means a pair of cor-
responding differences (i.e., candidates for primitive meth-
ods having the same name). Non-highlighted regions mean
code fragments have an identical fragment to it in the cor-
responding method (i.e., candidate for a template method).

The steps to derive candidates of primitive are as follows.

1. Detect code fragments corresponding differences be-
tween Abstract Syntax Trees (ASTs) of given similar
methods

2. Expand detected code fragments into code fragments
including above, below or parent statements until all
of expanded fragments are identified as extractable by
the refactoring features of Eclipse JDT

3. Rank expanded fragments based on COB metric.

3. DEMONSTRATION
We applied proposed tool to the method pair in Figure 1.

This method pair is genErrorHandler method in CppCode-
Generator class and genErrorHandler method in JavaCode-
Generator class in ANTLR 2.7.4 1. Those methods are very
similar to each other.

Figure 1 shows one of candidates for“Form Template Method”
refactoring suggested by proposed tool. This candidate is
highly ranked by COB metric with 0.86 because each dif-
ference shares values between blocks (COB of a method in-
cluding only a block always indicates 1.0). Each highlighted
code fragment has a single functionality that can be given
suitable method name. Therefore, this can be considered as

1http://antlr.org/

an excellent candidate for “Form Template Method” refac-
toring. Using proposed tool with COB based ranking, devel-
opers are possible to find appropriate candidates of “Form
Template Method” refactoring easily.

4. SUMMARY AND FUTURE WORK
We proposed a tool to show candidates of template primi-
tive methods for “Form Template Method” refactoring, and
demonstrate it. As future work, we are planning to use cohe-
sion metrics based on program slicing [4] instead of metric
COB, because we expect ranking is better using program
slicing. Also, we will implement the code transformation for
“Form Template Method” refactoring using the Language
Toolkit of Eclipse Project 2.

Acknowledgments
This work is partially supported by JSPS, Grant-in-Aid for
Scientific Research (A) (21240002) and Grant-in-Aid for Re-
search Activity start-up(22800040).

5. REFERENCES
[1] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison Wesley, 1999.

[2] N. Juillerat and B. Hirsbrunner. Toward an
Implementation of the “Form Template Method̈ı£¡h
Refactoring. In Proc. of SCAM 2007, pages 81–90,
Paris, France, 2007.

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[4] T. M. Meyers and D. Binkley. An empirical study of
slice-based cohesion and coupling metrics. ACM Trans.
Softw. Eng. Methodol., 17:2:1–2:27, December 2007.

[5] T. Miyake, Y. Higo, and K. Inoue. A software metric
for identifying extract method candidates. IEICE
Trans. Inf.& Syst.(Japanese Edition),
J92-D(7):1071–1073, 2009.

2http://www.eclipse.org/articles/Article-LTK/ltk.html

24

What did you do to our Data?!

25

26

An Improvement of Accuracy in Product Quality Prediction
Using Imbalanced Project Data in Japan

Junya Debari
Graduate School of

Information Science and
Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka,

Japan
j-debari@ist.osaka-

u.ac.jp

Tohru Kikuno
Graduate School of

Information Science and
Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka,

Japan
kikuno@ist.osaka-u.ac.jp

Nahomi Kikuchi
Oki Electric Industry Co., Ltd.

1-16-8, Chuou Warabi,
Saitama, Japan

kikuchi386@oki.com

Masayuki Hirayama
Department of Electronics and

Computer Science
College of Science and

Technology, Nihon University
hirayama.masayuki@nihon-

u.ac.jp

ABSTRACT
We constructed a prediction model with the data set pro-
vided by Software Engineering Center, Information-technology
Promotion Agency, Japan(IPA/SEC) by applying the naive
Bayesian classifier. The result showed that accuracy of pre-
dicting successful projects was 0.86. However, accuracy of
predicting unsuccessful projects was 0.53, which was very
low.

To find the reason for low accuracy, we analyzed the char-
acteristics of the IPA/SEC dataset and revealed the follow-
ing two factors that appeared to affect accuracy. (1) In-
completeness: 44.6% of the values in the data were missing.
(2) Imbalance: The number of successful projects was three
times that of unsuccessful projects.

We attempted to reduce the degree of incompleteness by
mechanically minimizing the data that contained many miss-
ing values. The result of the preliminary experiment showed
that the degree of incompleteness was reduced by our method.
Moreover, thus the imbalance was simultaneously reduced.

On the basis of these preliminary experiments, from a
given dataset, we deleted the data in which the number of
missing values was larger than γ, where γ was a certain in-
teger value that indicates the upper limit of the number of
missing values. The result of the experimental evaluation
showed that when γ was 6, accuracy of predicting unsuc-
cessful projects was 0.88, which indicated a major improve-
ment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

Keywords
Project Success, Prediction, Bayesian Classifier

1. INTRODUCTION
In empirical software engineering, many researchers have

tried to predict the quality and cost of a product using
project data sets. In previous research [1–3], project data
sets were obtained from well-designed projects. Therefore,
the project data sets were complete, i.e. all metric data were
filled out. Even when the data was not complete, there were
only a few missing values [4, 5].

However, we worked with a public project data set ob-
tained from an ordinary software development company, which
contained many incomplete data. For example, the Inter-
national Software Benchmarking Standards Group (ISBSG)
collects software development project data with 65.4 % of
the data missing [6]. In Japan, Software Engineering Center,
Information-Technology Promotion Agency Japan (IPA/SEC)
collects data with 83.8% of the data missing [7].

In this paper, we report an attempt to improve accuracy
of prediction for product quality by using a subset of project
data collected by IPA/SEC [7]. The total number of project
data in the dataset is 237.

First, we constructed a prediction model with the IPA/SEC
data set by applying the naive Bayesian classifier. The result
showed that accuracy of predicting successful projects was
0.86, which was very high. However, accuracy of predicting
unsuccessful projects was 0.53, which was very low.

To find the reason for low accuracy, we analyzed the char-
acteristics of the IPA/SEC data set and revealed the follow-
ing two factors that appeared to affect accuracy:

(1) Incompleteness: 44.6% of the values in the data were
missing.

27

(M0 = 633)

D0

(N0 = 1397)

1 2 ・・・ M0

1
2

・
・

N0

(M1 = 69)

D1

(N1= 237)

1 2 ・・・ M1

1
2

:

N1

D2

1 2 ・・・ M1

1
2

:

N2

D2

1 2 ・・・ M1

1
2

:

N2
D2

1 2 ・・・ M1

1
2

:

N2

Experiment 1

Experiment 2

Improvement of γ

Figure 1: Modification of the dataset

(2) Imbalance: The number of successful projects was three
times that of unsuccessful projects.

We first attempted to reduce the degree of incompleteness
by mechanically minimizing the data that contained many
missing values. The results of the preliminary experiment
on the IPA/SEC data set showed that the rate of missing
values was reduced by our method. Moreover, the ratio
between the number of successful and unsuccessful projects
also gradually reduced, which simultaneously reduced the
imbalance.

On the basis of the preliminary experiments, from a given
dataset, we deleted the data in which the number of miss-
ing values was larger than γ, where γ was a certain integer
value, and calculated prediction accuracy by constructing
a prediction model using the resultant dataset. The result
of the experimental evaluation showed that when γ was 6
and the total number of data was 56, accuracy of predict-
ing successful projects was 0.92. In addition, accuracy of
predicting unsuccessful projects was 0.88, which indicated a
major improvement.

Figure 1 shows how the data set is successively modified
in this study. D0 is the original data collected by IPA/SEC.
The characteristics of D0 are explained in Section 3. D1
is the dataset for the prediction (Experiment 1), which is
explained in Section 4. On the basis of Experiment 1, we
improved the data set and obtained the resultant dataset
D2. We explain the details of the improvement in Section
5. Finally, we performed the prediction with D2, which is
explained in Section 6.

2. RELATED WORKS
In this section, we refer to related works that have consid-

ered the two characteristics of incompleteness and imbalance
of the data sets.

Tsunoda et al. studied the influence of imbalanced data
on the prediction accuracy [8]. They evaluated some pre-
diction methods by decreasing the number of unsuccessful
projects and then showed that prediction accuracy reduces
when imbalanced data is used.

Similarly, many studied have been conducted for “incom-
pleteness” [4, 5, 9–12].

Three methods have been proposed to deal with missing
values: (a) use the incomplete data without any change, (b)
delete the data with missing values, and (c) substitute the
missing value with any value.

Research efforts [4] and [5] used incomplete project data
similar to method (a). Abe et al. applied the Bayesian classi-
fier technique to software development project data to pre-
dict whether a project will be completed successfully [4].
Amasaki et al. applied association rule mining to software
project data to identify risk factors [5].

Research efforts [10] and [11] used method (b). Twala
et al. evaluated some imputation methods and concluded
that a multiple imputation method attains the highest level
of prediction 　 accuracy [10]. Cartwright et al. evaluated
the k-Nearest Neighbor imputation and the median imputa-
tion methods and found that the k-Nearest Neighbor method
provided the best results [11].

Research efforts [9] and [12] compared methods (b) and
(c). Strike et al. evaluated some imputation and deletion
methods [9]. They concluded that a listwise deletion method
is the most reasonable approach. Kromrey et al. found
that when the project data contains many missing values,
prediction accuracy reduces significantly with method (c)
[12].

Because there are many missing values in the IPA/SEC
dataset, we did not use imputation methods and used in-
complete data after deleting data with many missing values.

3. CHARACTERISTICS OF THE DATASET
3.1 Project Data D0

Using IPA/SEC data, released as “IPA/SEC White Pa-
per 2008 on Software Development Projects in Japan” [7],
we attempt to predict whether a project will be completed
successfully at the end of the design phase.

In Figure 1, the data is described as D0. M0 is the number
of metrics and N0 is the number of projects of D0. The
data consists of 1,397 custom enterprise software projects
from 20 Japanese companies1. The number of metrics, which
describe the projects, is 633. Thus, N0 is 1397, and M0 is
633.

Among the 633 metrics, in this paper, we use the metric
“evaluation of results (quality),“ which indicates whether the
project will be completed successful or not.

Note that the data are characterized by a large number of
metrics that are commonly used in these companies. How-
ever, the data also include many missing values, which is
discussed in Section 3.3.
1The data were collected from 2,056 projects. However, we
deleted the data that IPA/SEC or the company evaluated
as unreliable. A detailed explanation is found in Appendix
A

28

Metrics

Projects

1 2 3 4 5 6 7
1 x x
2
3 x x x x
4
5 x x
6 x x x x
7
8 x
9 x x x x
10 x x

Figure 2: Explanation of missing data

3.2 Successful/Unsuccessful Projects
In this study, we distinguish successful projects from un-

successful projects by using the metric “evaluation of results
(quality).“ The value of this metrics indicates the level of
the quality delivered. This metric can be assigned a value
from “a” to “e.”

Here, “a” indicates that the number of defects after the
system cutover is less than the planned value by 20% or
more, and “b” indicates that the number of defects after the
system cutover is less than the planned value.

A value of “c” indicates that the number of defects after
the system cutover exceeds the planned value by 50% or less.
A value of “d” indicates that the number of defects after the
system cutover exceeds the planned value by 100% or less,
and a value of “e” specifies that the number of defects after
the system cutover exceeds the planned value by more than
100%.

In this study, if a project has the metric values“a”and“b,”
it is considered to be successfully completed, and if a project
has the values “c,” “d,” and “e,” it is considered to be an
unsuccessful projects. In the data set D0, 186 projects were
successful and 51 projects were unsuccessful. The values
were missing in 1,160 projects.

3.3 Missing Values
Figure 2 shows the data consisting of seven metrics and

10 projects. In data set D0, the number of metrics is 633
and the number of projects is 1,397. The mark “x” in Figure
2 denotes the missing values. The fourth metric has two
missing values and the third project has four missing values.

The rate of missing is calculated as 100 × X/(M × N)%
where the number of metrics is M , the number of projects
is N , and the number of missing is X. In Figure 2, X is 19,
M is 7, and N is 10. Thus, the rate of missing of Figure 2 is
100 × 19/(7 × 10) ! 27.1%. In case of dataset D0, the rate
of missing is 83.8%.

4. EXPERIMENT 1

4.1 Outline of Experiment 1
In this paper, we predicted whether a project will be com-

pleted successfully. For this purpose, we selected only those
projects that had data for the metric “Evaluation of re-
sult (quality).” As mentioned in Section 3.2, the number
of project data that have values was 237 and of the 237

Table 1: An Example of Confusion Matrix
Correct Result

Successful Unsuccessful
Prediction Successful s t

Result Unsuccessful u v

projects, 186 projects were successful and 51 projects were
unsuccessful.

Furthermore, the prediction is performed at the end of
the design phase in the software lifecycle. Thus, the metrics
that were unavailable at that time were deleted from D0.
As a result, the number of metrics was reduced from 633 to
69. As shown in Figure 1, the obtained resultant data set
D1 has values N1 = 237 and M1 = 69.

In this study, projects are predicted by applying the naive
Bayesian classifier method, commonly known as the Bayesian
classifier, which is one of the most common approaches for
classifying categorical data into several classes based on a
probabilistic model. This is an optimal method for super-
vised learning if the values of the attributes of an example
are independent, given the class of the example. Although
this assumption is almost always violated in practice, re-
search effort [13] has shown that naive Bayesian supervised
learning is also effective.

A project is predicted to be successful when the success
probability calculated by the 10 fold cross validation is greater
the criteria (in this paper, we set the criteria as 0.5). When
success probability is less than 0.5, the project is predicted
to be unsuccessful.

In this paper, we used the F-measure to evaluate the pre-
diction accuracy of successful and unsuccessful projects. Ta-
ble 1 is an example of a confusion matrix. In this exam-
ple, the F-measure for predicting successful and unsuccessful
projects are calculated as 2s/(2s+t+u), and 2v/(2v + t + u),
respectively.

To ensure statistical validation, we repeated the 10-fold
cross validation 100 times and used the average.

The averages of the F-measure for predicting successful
and unsuccessful projects were 0.87 and 0.52, respectively.
The F-measure for predicting unsuccessful projects was lower
than that for predicting successful projects.

4.2 Analysis of Experiment 1
To find the reason for low accuracy in predicting unsuc-

cessful projects, we analyzed the characteristics of dataset
D1. The result of the analysis showed that the following two
factors appeared to affect the prediction accuracy:
• Incompleteness: The rate of missing in data set D1was

approximately 44.6%, which was high.

• Imbalance: Successful projects constituted 78.5% of project
data, whereas unsuccessful projects comprised 21.5% of
the project data.

Regarding incompleteness, Kromrey et al. found that in
case of many missing values in the project data, prediction
accuracy reduces significantly [12].

Regarding imbalance, Tsunoda et al. found that the im-
balanced data affects prediction accuracy [8]. Therefore, we
conjecture that reducing the imbalance may improve accu-
racy.

Hence, we tried to improve accuracy of predicting unsuc-
cessful projects by reducing incompleteness and imbalance.

29

















 






























Figure 3: Distribution of the number of missing val-
ues

5. IMPROVEMENT OF DATASET

5.1 Distribution of Missing Values
To reduce incompleteness, we first analyzed distribution

of the number of missing values for dataset D1. As men-
tioned earlier, the project data included 186 successful and
51 unsuccessful projects. In addition, the rate of missing of
D1 was 44.6%.

The result of the analysis of distribution of missing values
is shown in Figure 3, which is a box plot of the number of
missing values. From the figure, it can be observed that in
successful projects, the maximum number of missing value
is 53, the minimum is two, the median is 41, and the average
is 33.5. In unsuccessful projects, the maximum number of
missing values is 47, the minimum is two, the median is 18,
and the average is 20.9.

The result shows that the number of missing values in suc-
cessful projects is larger than that in unsuccessful projects.

For example, for 43 missing values, the number of success-
ful and unsuccessful projects is 26 and four, respectively.
Therefore, if projects are deleted in descending order of
the number of missing values, incompleteness and imbalance
may be reduced simultaneously.

5.2 Removing Missing Values
To remove projects in descending order of the number of

missing values, we introduced γ, an integer that indicates
the upper limit of the number of missing values. By the
definition, γ must be the same as the number of missing
values in the dataset D1.

The algorithm for eliminating the projects that have a
large number of missing values is as follows: For γi: where
i = 1, 2, · · · , m and γ1 > γ2 > · · · > γm,

Remove the data in which the number of missing
values is larger than γi from the given data.

Here, we explain how the method is applied using the ex-
ample in Figure 2. In this example, γ assumes the values 4,
3, and 1. From the 10 projects, the projects in which the
number of missing values is four are removed. Thus, the
third, fifth, and ninth projects are removed.

When we apply the method to dataset D1, γ assumes the
values 53, 51, · · · , 3, and 2. First, the projects in which

             
























































Figure 4: Improvement of incompleteness

             






























































Figure 5: Improvement of imbalance

the number of missing values is 53 are deleted. Thus, one
project is removed. Next, the projects in which the number
of missing value is 51 are removed. Thus, two projects are
deleted. The remaining projects are removed in a similar
manner.

5.3 Improvement of Incompleteness
In this section, we evaluate incompleteness of the resultant

dataset. According to the research [12], when the rate of
missing is greater than 30%, prediction accuracy reduces
significantly. Thus, in this experiment, we set a goal of the
rate of missing as 30%.

Figure 4 shows the relationship between γ and the rate
of missing. The horizontal axis indicates γ and the vertical
axis indicates the rate of missing.

From Figure 4, it is observed that as γ reduces, the rate
of missing reduces. Furthermore, Figure 4 shows that when
γ is 42, the rate of missing is 27.6%, and when γ is 43, the
rate of missing is 33.9%. Thus, we can infer that, from the
viewpoint of incompleteness, it is desirable that γ is less
than 42.

5.4 Improvement of Imbalance
As mentioned before in Section 5.1, it is expected that

the imbalance can be reduced by removing the projects with
missing values. In this section, we evaluate imbalance of the

30

resultant dataset.
Figure 5 shows the relationship between γ and the rate of

unsuccessful projects. The horizontal axis indicates γ and
the vertical axis indicates the rate of unsuccessful projects.

When the rate of unsuccessful projects is 0.5 (in Figure
5), the data is balanced. From Figure 5, it is observed that
when γ is 6, the rate of unsuccessful projects is the closest
to 0.5, i.e. 0.43. In this case, the total number of projects is
56, with 32 successful and 24 unsuccessful projects.

6. EXPERIMENT 2

6.1 Overview of Experiment 2
On the basis of the proposed method in Section 5.2, to

predict product quality by using an improved dataset, we
use the procedure that consists of improvement of a certain
γ value and evaluation of accuracy of the γ.

For the first improvement, we applied the method used in
Section 5.2, and for the second evaluation, we used the 10-
fold cross validation to calculate the F-Measure. To ensure
statistical validation, we repeated the 10-fold cross valida-
tion 100 times, and used the average value.

The procedure is defined as follows:
Phase 1 (Improvement for γ)

Remove the data in which the number of missing
value is larger than γi from the given data.

Phase 2 (Evaluation of accuracy)

Calculate prediction accuracy by constructing the
prediction model by applying the naive Bayesian
classifier to the resultant dataset.

6.2 Analysis of Experiment 2
Figure 6 shows the result of the experiment. The horizon-

tal axis indicates γ and the vertical axis indicates F-Measure.
The “+” mark indicates the F-Measure for predicting suc-
cessful projects, and the “x” mark indicates the F-Measure
for predicting unsuccessful projects.

From Figure 6, it is observed that when γ is 6, the F-
Measure for predicting unsuccessful projects is 0.88, which is
the highest in this experiment. Furthermore, the F-Measure
for predicting successful projects is 0.92, which is higher than
that calculated from the given data. When γ is 6, the rate
of unsuccessful projects is 0.43, the number of projects is 56,
and the rate of missing is 5.1%.

Regarding the F-Measure for predicting successful projects,
the highest value is 0.95, which is obtained when γ is 3. In
contrast, the F-Measure for predicting unsuccessful projects
is 0.83. When γ is 3, the rate of unsuccessful projects is
0.27, the number of projects is 30, and the rate of missing
is 3.9%.

As mentioned in Section 4.2, our goal was to improve accu-
racy of predicting unsuccessful projects. Thus, we consider
the case when γ is 6 as the result of improvement.

7. CONCLUSION
In this paper, we attempted to improve the prediction

accuracy (F-Measure) using the IPA/SEC dataset [7]. Ini-
tially, accuracy of predicting successful projects was 0.86 and
accuracy of predicting unsuccessful projects was 0.53, when
the number of projects was 237.

We then analyzed the characteristics of the IPA/SEC dataset.
The results of the analysis showed that incompleteness and

             


















































Figure 6: Relationship between γ and F-Measure

imbalance may affect accuracy. In addition, we found that
when incompleteness is reduced, imbalance is also reduced.

Therefore, we deleted the data in which the number of
missing values was larger than γ, where γ was a certain in-
teger value, and then calculated prediction accuracy by con-
structing the prediction model using the resultant dataset.
The result of the experimental evaluation showed that when
γ was 6 and the total number of data was 56, the resultant
data was the most balanced and accuracy of predicting suc-
cessful projects was 0.92. Furthermore, accuracy of predict-
ing unsuccessful projects was 0.88, which indicated a major
improvement.

8. ACKNOWLEDGMENTS
This work was partially supported by Grant-in-Aid for

Scientific Research(C) (21500035) Japan and Grant-in-Aid
for JSPS Fellows(21 3963) Japan.

9. REFERENCES
[1] M. Shepperd and C. Schofield. Estimating software

project effort using analogies. IEEE Transactions on
Software Engineering, vol. 23, pp. 736–743, 1997.

[2] Z. Chen, B. Boehm, T. Menzies, and Daniel Port.
Finding the right data for software cost modeling.
IEEE Software, Vol.23, pp. 38–46, 2005.

[3] M. Kläs, H. Nakao, F. Elberzhager, and J. Münch.
Predicting defect content and quality assurance
effectiveness by combining expert judgment and defect
data - a case study. In Proceedings of the 2008 19th
International Symposium on Software Reliability
Engineering, pp. 17–26, Washington, DC, USA, 2008.
IEEE Computer Society.

[4] S. Abe, O. Mizuno, T. Kikuno, N. Kikuchi, and M.
Hirayama. Estimation of project success using
Bayesian classifier. In Proceedings of 28th
International Conference on Software Engineering
(ICSE2006), pp. 600–603, 5 2006. Shanghai, China.

[5] S. Amasaki, Y. Hamano, O. Mizuno, and T. Kikuno.
Characterization of runaway software projects using
association rule mining. In Proceedings of 7th
International Conference on Product Focused Software

31

Process Improvement (PROFES2006), vol. LNCS
4034, pp. 402–407, 6 2006. Amsterdam, The
Netherlands.

[6] International Software Benchmarking Standards
Group. ISBSG estimating, benchmarking and research
suite release 11. http://www.isbsg.org/, 2009.

[7] Information-technology Promotion Agency Software
Engineering Center. IPA/SEC White Paper 2008 on
Software Development Projects in Japan. Nikkei
Business Publications, Tokyo, Japan,
http://www.ipa.go.jp/english/sec/reports/
20100507a_2/20100507a_2_WP2008E.pdf 2008.

[8] M. Tsunoda, A. Monden, J. Shibata, and K.
Matsumoto. Empirical evaluation of cost overrun
prediction with imbalance data. In Proceedings of
International Conference on Computer and
Information Science (ICIS 2010), August 2010.
Yamagata, Japan.

[9] K. Strike, K. E. Emam, and N. Madhavji. Software
cost estimation with incomplete data. IEEE
Transactions on Software Engineering, vol. 27, pp.
890–908, 2001.

[10] B. Twala, M. Cartwright, and M. Shepperd.
Comparison of various methods for handling
incomplete data in software engineering databases.
Empirical Software Engineering, International
Symposium on, pp. 105–114, 2005.

[11] M. H. Cartwright, M. J. Shepperd, and Q. Song.
Dealing with missing software project data. Software
Metrics, IEEE International Symposium on, pp. 154,
2003.

[12] J. Kromrey and C. Hines. Nonrandomly missing data
in multiple regression : An empirical comparison of
common missing-data treatments. Educational and
Psychological Measurement, Vol. 54, No. 3, pp.
573–593, 1994.

[13] P. Domingos and M. Pazzani. On the optimality of the
simple bayesian classifier under zero-one loss. Machine
Learning, vol. 29, pp. 103–130, November 1997.

APPENDIX
A. DATA RELIABILITY

To delete unreliable projects, we referred to the metrics
“Data reliability (IPA/SEC)“ and “Data reliability (com-
pany)“ in the white paper [7]. These metrics evaluate the
reliability of the project data and have four values: “a: The
project data is confirmed as reasonable and completely con-
sistent,” ”b: The project data looks reasonable, but it has
several factors that affect consistency of the data,”“c: Con-
sistency of the project data cannot be evaluated because
critical data items are missing,” and “d: The project data
has one or more factors indicating that the data is unreli-
able.” In this study, we deleted the projects in which the
value of these metrics was “c” or “d.”

B. THE BAYESIAN CLASSIFIER METHOD

B.1 Bayes’ theorem
Bayes’ theorem relates the conditional probabilities of events

A and B, provided that the probability of B does not equal
zero. In Bayes’ theorem, P (A|B), the conditional probabil-
ity of A given B is represented as follows:

P (A|B) =
P (A)P (B|A)

P (B)

In this expression, P (A), P (B), and P (B|A) are defined
as below:
• P (A) is the prior probability of A.

• P (B) is the prior probability of B.

• P (B|A) is the conditional probability of B given A.

B.2 Bayesian Classifier
Let M1, M2, · · · , Mn be the variables denoting the ob-

served attribute values to predict a discrete class C. Fur-
thermore, let c represent a particular class. Given the values
m1, m2, · · · , mn, we can use Bayes’ theorem to calculate the
probability P (C = c|M1 = m1∧· · ·Mn = mn) and then pre-
dict the most probable class. This probability is expressed
as follows:

Πn
i=1P (Mi = mi|C = c)

P (M1 = m1 ∧ · · ·Mn = mn)
× P (C = c)

32

A System for Information Integration between
Development Support Systems

Soichiro Tani1 Akinori Ihara1 Masao Ohira1 Hidetake Uwano1,2 Ken-ichi Matsumoto1
1Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, JAPAN

+81-743-72-5318
2Nara National College of Technology
22 Yata,Yamatokoriyama,Nara,JAPAN

+81-743-55-6000

{ soichiro-t, akinori-i, masao, matumoto } @ is.naist.jp, uwano @ info.nara-k.ac.jp

ABSTRACT
Many software projects use dezvelopment support systems such
as bug tracking system (BTS) or version control system (VCS) to
manage development information. Such the support systems
preserve information according to a type of information (e.g., bug
information in BTS and change information of source code in
VCS). Since the systems do not provide developers with a feature
to integrate several types of information required to complete
development tasks, the developers need to collect the information
by themselves that would result in inefficient development. In this
paper, we demonstrate a system called SUSHI that helps
developer integrate the information between multiple
development support systems. Our system collects information
which belongs to the same development context and provides
developers with hyper links to related information in the support
systems. Since our system also runs as a proxy server, developers
can continue to use existing systems and stored information
without any conversion.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software
configuration management, software quality assurance,
programming teams.

General Terms
Management

Keywords
information sharing, development context, bug tracking system,
version control system

1. INTRODUCTION
With increasing outsourcing of software development or open
source software projects, developers need to collaborate with
geographically distributed co-workers and share information
between them. In such the environment, they communicate each
other to share information with asynchronous communication
tools/systems such as mailing list (ML), bug tracking system
(BTS) or version control system (VCS) that we call development
support systems (DSS) in this paper.

In a large-scale software development organization, several DSSs
are often integrated into a single system in order to optimize the
efficiency of collaboration and information sharing among
developers. The optimized integration of DSSs helps developers
find and understand the past and current progress of development
is dispersed in each DSS.

Meanwhile, a small-scale organization and open source software
project does not have the integrated DSSs because they do not
afford to build it by themselves or buy it. They often use a rental
hosting service such as sourceforge.net that can be used at no fee.
In case of using a rental hosting service, it is difficult to
change/modify each DSS and composition of DSS to make the
performance of information sharing better. Each developer needs
to search several kinds of information in DSSs to understand the
development context. For instance, when a developer receives a
new patch via ML, s/he has to find a bug report which asks
developers to make a patch to fix a certain bug, understand
discussions about the bug on ML and BTS, and identify a file or
module in VCS to apply the patch, and commit it into VCS. As
just described, using DSSs as a combination of independent DSS
sometimes consumes developers’ time and effort [1, 2].

In order to resolve the issue on the use of DSSs in a small
organization, in this paper we propose a system called SUSHI that
supports information integration between multiple DSSs without
changing in-use independent DSS in the organization. Our system
serves as a proxy server which detects user’s access to DSSs,
collects the same information that the user refers to, and make an
association with several kinds of the referred information in
multiple DSSs. Using the association of development information,
the next developer can easily find information relevant to his tasks.

2. SUSHI: INTEGRATING INFORMATION
BETWEEN MULTIPLE DSSs

2.1 Overview
Figure 1 shows the information flow in using SUSHI. SUSHI
works as a proxy server, collects information from BTS, and
provides users with related information while the users look for
information in each DSS through a web browser. Due to this
configuration, SUSHI can deal with several kinds of information

Figure 1. Information flow in SUSHI.

HostA

BTS

HostB

VCS

HostC

ML

Browser

SU
SHI

Local

network

33

in multiple DSSs. At the same time, the users of SUSHI are not
required to intentionally operate SUSHI to have information
relevant to the development context.

2.2 Architecture of SUSHI
Figure 2 shows the architecture of SUSHI. SUSHI has four
components: (1) Access Detector, (2) Data Collector, (3)
Estimator, and (4) Formatter.

Access Detector automatically detects user’s access to DSSs and
notifies Data Collector of what information are browsed by the
user. At this moment, Access Detector eliminates information
irrelevant to DSSs such as web searching results.

Data Collector collects information in DDSs that the user referred
to and sends them to the internal database. More importantly, it
also extracts information which is used in Estimator to estimate
which information are related each other. In the current
implementation, Data Collector of SUSHI gathers bug ID,
reporter’s name, reported time and descriptions of a reported bug
from BTS, revision number, committer’s name, commit message
and name of committed file from VCS, and poster’s name, posted
time, message ID and etc. from ML.

Estimator estimates the development context which consists of
several events around the same time. Estimator makes an
association with several kinds of information using such the
events recorded in DSSs. The next subsection describes Estimator
in detail.

Formatter provides a web page (html) which has the original
information that the user is about to browse and relevant
information from other DSSs. The user can browse several kinds
of relevant information at a time to understand the development
context.

2.3 Procedure of Estimation
In Estimator, making an association with relevant information,
that is, estimating the development context is conducted as
follows.

1. Developers specify characteristic words which are often
used in their project.

2. Estimator counts the number of the specified
key/characteristic words used in both the information that a
user is browsing and the information that SUSHI’s database
has already stored.

3. Estimator calculates the used rate of a specified word by
dividing the number of the specified word used in each
information by the total number of all the specified words
used in each information.

4. Estimator calculates the estimated score by squaring the
difference of the used rate between the information that a
user is browsing and the information in SUSHI’s database.

5. Estimator considers combinations of the information with
lower estimated score as relative information each other.

3. PRELIMINARY EVALUATION
So far, we have applied SUSHI to two small-scale open source
projects to confirm if the system works properly as we intended.
Due to the space limit, we introduce a summary of the preliminary
evaluation.

We asked open source developers to make links between
information recorded in several DSSs to define which information
is relevant each other. We also applied SUSHI to DSSs used in
their projects and extracted links which were created by SUSHI.
Comparing links manually defined by the developers with the
links created by SUSHI, we found that the links (BTS→BTS,
VCS→BTS, and VCS→VCS) created by SUSHI covered over
50% of the links defined by the developers. However, we also
found that the links (BTS→CVS) less matched the developers’
links (17%). This result showed that finding and recovering the
missing links [3] are still difficult in our system.

4. FUTURE WORK
In the current, SUSHI only shows a simple output with estimated
relevant information to uses. We need to consider more user-
friendly user interface and visualization as uses can easily
understand and remember the development context. We also
improve the estimation algorism for relevant information. The
current algorism is too simple to estimate relevant information
correctly. Although the preliminary evaluation showed good
results basically, we believe we can enhance the algorism (e.g.,
using TF-IDF) to make developers’ information retrieval much
more efficient.

5. ACKNOWLEDGMENTS
This work was conducted as part of StagE Project (the
Development of Next Generation IT Infrastructure), Grant-in-Aid
for Scientific Research (B), 23300009, 2011, and Grant-in-aid for
Young Scientists (B), 22700033, 2011 by the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

6. REFERENCES

Developer
(2) Data Collector

(3) Estimator

(4) Formatter

referred html (bug A)

DB

bug A info.

Info. from
other system

s

Estimation
results

Formatted html

bug A Info.

(1) Access Detector

DSS （e.g. BTS）

[1] Ohira, M,. Yokomori R., Sakai M., Matsumoto K., Inoue K.,
and Torii K. 2004. Empirical Project Monitor: A Tool for
Mining Multiple Project Data. In Proceedings of
International Workshop on Mining Software Repositories
(MSR’04). pp.42-46.

[2] Johnson, P.M. 2007. Requirement and Design Trade-offs in
Hackystat: An In-Process Software Engineering
Measurement and Analysis System. In Proceedings of the
First International Symposium on Empirical Software
Engineering and Measurement (ESEM’07). pp.81-90.

[3] Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and
Bernstein, A. 2010. The missing links: bugs and bug-fix
commits. In Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software
engineering (FSE’10). pp.97-106. Figure 2. System architecture.

34

Open your Mind

35

36

Understanding OSS Openness through Relationship
between Patch Acceptance and Evolution Pattern

Passakorn Phannachitta† Pijak Jirapiwong‡ Akinori Ihara†

Masao Ohira† Ken-ichi Matsumoto†

†Nara Institute of Science and Technology ‡ Kasetsart University
8916-5, Takayama, Ikoma 50 Ngam Wong Wan Rd, Chatuchak

Nara, Japan Bangkok, Thailand
{phannachitta-p, akinori-i, masao, matumoto} b5005135@ku.ac.th

@is.naist.jp

ABSTRACT
Openness is referred how much does the OSS core com-

mitter team share and compile with their non-committers.
Because the openness can be varied from time to time, a
study for explaining the vary of openness would be a good
approach to support the OSS. It will not only encourage the
non-committers to exert more contribution when the open-
ness is high, but it will also make the them still have an
optimistic outlook on the project when the openness is low.
Unfortunately, there is only a few studies aiming to under-
stand this principle. This work, we seek out for the key
factors that identify the transitory changed of the openness.
Unlike most previous studies, we focus on the clear rele-
vant evidences that are more concrete. Our temporal-based
analysis on patch acceptance in two major OSS projects:
Apache HTTP Server and Eclipse Platform conclude that
special event occurrences have a decisive influence over the
openness either in transitory or lasting. Moreover, our inves-
tigation on the relationship between the temporal changes
of openness and a plausible OSS evolution pattern broadens
the mutual accord in both openness and the evolution of
OSS.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.9 [Software Engineering]: Management

General Terms
Management, Measurement, Experimentation

Keywords
Open Source Software, OSS Evolution Pattern, Temporal
Factor, Openness, Patch Submission, Patch Acceptance

1. INTRODUCTION
An active collaboration between every role in Open Source

Software (OSS) project is one of the most important key for
the sustainable development [6]. Many OSS supportive ac-
tivities will be ardently achieved whenever each role is well-
balanced in the number of participant and everyone exerts
the best effort. For an example on patch submitting activity,
which committers and non-committers are the two main dif-
ferent roles. Non-committers whose authority makes them
unable to apply patches for the project directly will be the

patch submitter, and the committers will be the judge who
accept the patch. An OSS project needs a high number
of active non-committers to increase and widen the perspec-
tive of requirements and patches the covers the larger area of
defects. The OSS committer team should also have enough
members that is capable for verifying all the incoming re-
quirements and patches thoroughly. Ideally the committer
should always be open and shared to the non-committer so
as to encourage them to increase their contribution.

Nowadays, a study that aims for comprehension between
committers and non-committers is quite overlooked. Most
studies give more attention to the individual supportive ei-
ther for committers or the non-committers. Studying the
OSS committer’s openness can be one that support both
committers and non-committers at the same time. Although
it has been concluded that temporal changes of the openness
are existence [14], more deepening study for the varieties of
the temporal factors is noteworthy. Analyzing without con-
cerning the temporal factors, the broader insightful study
of the OSS committer’s openness such as the open season
prediction or answering why the openness level is always
changed will be inconceivable.

This research aims to explain the transitory changed of
the committer’s openness. First, we have analyzed the patch
acceptance in temporal on the two well-known OSS projects,
Apache HTTP Server and Eclipse Platform. Temporal fac-
tor is important since it’s unfair to conclude how open of an
OSS committer team from the summarized statistic. From
our preliminary results, we have found that the special event
occurrences were the key factor influenced to the transitory
openness level. Further, we have noticed that there are some
remarkable treads exposed to the vary of the openness. Elu-
cidating those trends we have found the relationship between
the temporal changed of openness with a plausible OSS evo-
lution pattern proposed by Nakakoji et.al [7]. The relation-
ship we found is not only a sounded explanation for under-
standing the changes of the openness, but also a proof of the
validity of our chosen evolution pattern.

The remainder of the paper is organized as follows: Sec-
tion II explains the backgrounds and briefs the existing re-
lated works. Section III introduces our research questions.
Section IV explains our methodology. Section V describes
the case study setup and discusses on our finding. Section
VI contains an observation from the study. And finally, sec-
tion VII provides the conclusion and outlines some future
works.

37

2. BACKGROUND KNOWLEDGE
2.1 Related Works

To date, it has been quite lack of studies aimed to im-
prove the comprehension between committers and non-committer.
Most researches provide useful guidances for each individual
role. Bettenburg et al. suggested non-committers what will
make a good bug report [1]. Weißgerber et al. also suggested
them the proper size of the submitting patch [13]. On the
committer side, Wang et al. and Runeson et al. help the
committer ascertain if the reported bug is duplicated [9,12],
and Rigby et al analyze the personality of the top commit-
ter [8].

Nonetheless, a few studies proposed to make the com-
prehension between both roles, which will support both the
same time. Shibuya et al. have studied the process of par-
ticipating in OSS [10]. Their finding encourages the non-
committer to gain more reputations; however, their work is
still lacking in enthusiasm for making committer be more
open to the non-committer.

2.2 Patch Submission and Patch Acceptance
In OSS, patches contain different information between

two versions of the same file. Exchanging patches instead
is very convenience since the receiver can definitely know
the changed information without any further attempt. In
practical, when a non-committer needs some changes with a
target file (i.e. A file that locates in the project repository)
, that non-committer will check out the target file and edit
it. After that, the edited target file will be converted into a
patch and sent to the committers. Patches are usually sent
through a common channel provided by the OSS commu-
nity. The currently most popular channel is bug-tracking
system such as Bugzilla. Along the way to the committers,
the bug-tracking will let the submitted patch be discussed.
It helps the committer to evaluate how good and valuable of
the submitted patch. At last, if that patch reach a consensus
and the committers concur, the committers will apply the
submitted patch with the target file and commit it. Whether
the whole patch or just its portion is committed, it means
the committers accept the patch.

There is an interesting phenomenon that the commit-
ters can gradually accept a patch. Because a large patch
would contain more components which probably have high
dependencies. It seems impossible that all the components
would be accepted and committed at once. Unless we in-
clude the gradual patch-acceptance case, we will be unable
to report the reflected result from the patch acceptance anal-
ysis. Unfortunately, the recently existing researches ignored
this phenomenon [2, 13] that may lead the authors to an
inaccurate conclusion.

2.3 Openness and Open Season
Openness is a term referred how much do the commit-

ters share and comply with their non-committers. To date,
it is still inconclusive that a high openness committer is al-
ways a good committer [8]. However it’s a rational thought
that as long as the non-committers know the committers
are open, they will give their earnest effort to the project,
because the non-committers would feel they are important
know that they are not being isolated. Moreover, avoiding
the decreasing of openness will induce the committers to
give more attentions to the non-committers.

Openness can be analyzed in many aspects, such as count-
ing the committers’ reply messages or approximately accu-

mulating their spending time with the bug report. However,
an absolutely clear evidence such as the number of patch ac-
ceptance would rather conclude the openness. In this work
we can know the actual committed number of a patch (
from the partially committed case). We define an openness
in our works by counting the time that committer’s com-
mitted any part of patches in a defined period. It would
give us more accurate insight than counting the number of
accepted patches directly. There is an interesting question
about analyzing the openness about concerning the tempo-
ral factor Definitely, an OSS project has been continually
and unceasing developed. It’s hard to believe that the com-
mitters team is composed with the same people throughout
the time. The team can be reorganized so that the openness
is possible to be changed. Since the openness is changeable,
patches can also be more or less accepted in some periods.
We will denote a period contains a relative high number of
patch acceptance as in opening season.

2.4 Evolution Pattern of OSS
The temporal-based analysis of the OSS committers’ open-

ness will inherently reveal the characteristics of OSS project
distinctively between each development period. A further
analysis from these informative characteristic will broaden
the accord about an evolution of OSS. Currently, there are
several existing studies of OSS evolution patterns [3, 4, 11],
we selected one plausible pattern proposed by Nakakoji et
al [7]. They categorized OSS project into three types, and
also outline the characteristics of each type in many dimen-
sions Three types of OSS project are Exploration Oriented,
Utility Oriented, and Service oriented. We summarize the
dimensions related to our work in table 1.

2.4.1 Exploration Oriented
An OSS project usually becomes an Exploration Ori-

ented when the project itself has been received some new
ideas. Normally, new ideas are emerged by the senior de-
velopers or the project leader whom know the project very
well so that the new ideas are usually discussed among the
core members. Being an Exploration Oriented project, core
developers or committers seem to more closed comparing be-
tween other periods. It’s more likely to be happened when
the project was just founded or after it has been mature for
a while.

2.4.2 Utility Oriented
An OSS project usually becomes this type when a project

needs of some new features or enhancements. It’s differ-
ent from Exploration Oriented, because requiring for a new
feature or enhancement can be a requirement from anyone.
Reforming into a Utility Oriented is possible anytime, either
the project is under developing and has a plenty of bugs or
the project has been being mature for a long time. Being
a Utility Oriented project, core developers or committers
seem to be most opened among other periods, since they
need more suggestions to be discussed.

2.4.3 Service Oriented
An OSS project is usually reformed into Service Oriented

after a project released a stable version. The goal of a Ser-
vice Oriented project is to provide service as stable as pos-
sible. Being this type, core developers or committers are
slightly less open than a Utility Oriented project and the

38

Table 1: Three Types of OSS Project
Exploration-Oriented Utility-Oriented Service-Oriented

Objective Sharing Innovations and Knowledge Satisfying an individual need Providing stable service
Control style Cathedral-like central control Bazaar-like decentralized control Council-like central control

Community structure Project leader and core members Core members and many peripheral developers Core members and Many passive users
Major problems Finding a novel innovation Difficult to choose the right program Less innovation

openness is likely to be continually decreased, because the
project has been more stable that would normally have less
number of defects.

From the three classified types of the OSS project pro-
posed by Nakakoji et.al [7], they believed that the evolution
pattern of any OSS will be alternating from one type to oth-
ers as illustrated in figure 1. They also gave some examples
of an idea for the transition between each types (i.e. When a
Service-Oriented project has some new needs, it will reform
into a Utility-Oriented project.) However the conclusion to
support if the evolution pattern is respected to this pattern
as shown in the figure 1 are still waiting for a proof.

Figure 1: The Evolution Pattern of OSS Projects [7]

3. RESEARCH QUESTION
To develop an understanding of the transitory changed

of OSS committers’ openness through analyzing the patch
acceptance and OSS evolution pattern, we need to answer
two research questions.

3.1 What is the key factor that makes the OSS
committers changed their openness?

Tackling this question, we would understand clearer about
the patch acceptance. Achieving the key factor that in-
duce an open season will allow us to briefly foretell the non-
committers when should they exert more contribution. Fur-
thermore, if the open season characteristic is likely to be in
common, it could be a feature for predicting the open season,
which is more promising. On the other hand, we also need
a sound reason to explain why do the committers decrease
their openness in some periods. Without a sounded reason,
the non-committer may consider that the committer teams
are having some trouble that they are unable to thoroughly
verify the submitted requirements and patches.

3.2 How can an OSS evolution pattern explain
the trend of OSS committers’ openness?

Unlike the other routine works, the openness of the OSS
committers does not always stay at the same level [14]. At
least it still respected with some trends (i.e. keeps increasing
or decreasing for a period of time). OSS evolution pattern
may have an supportive explanation since it explains the
change of OSS projects. If it is existed, we would reach a
better insight of the OSS openness and the patch submission
activity.

4. METHODOLOGY
For the case study, we develop a method to gather the

patch acceptance traces divided into period of time. The
method has three phases that are Patch extraction, Diff file
creation, and Patch acceptance identification.

4.1 Patches extraction
We have two types of data source; Mailing list and Bugzilla.

Mailing list is where committer and non-committer discuss
about patch and bug, and Bugzilla is a well-known bug
tracking system. Their structures are totally different, so
we need two specific patch extraction methods.

For the mailing list, we choose to improvise and ex-
tend the Weißgerber et al.’s proposed [13]. It is the closest
method that fulfilled our requirement in patch extraction
from email. On the other hand, we have to develop a specific
web site crawler to extract patches from Bugzilla from the
scratch since such an explicated proposed method is nonex-
istent.

In both methods, we denote our patch format with a
tuple (Ip, Pp, tp, Lp, [cp]) where Ip is the patch’s index, Pp

is the patch’s absolute path that we can identify the corre-
sponded target file in the repository, tp is the patch’s sub-
mitting time, which we has already converted into a common
timezone (UTC) for avoiding an incorrect time-stamp iden-
tification. Lp is the total number of the changed lines of
code, and [cp] is a list contained all the individual changed
lines of code. Note that, we collapse all white spaces in
[cp], because in practical the committer may apply patches
manually. It then may produce some white spaces shifted
that would lead us to an inaccuracy analysis. After we has
extracted all the information in (Ip, Pp, tp, Lp, [cp]) from the
raw-patch data , we stored them in a database.

4.2 Diff files creation
We denote a Diff file as a file that contains the changes

information between each committed version at the reposi-
tory side. These changed information make us able to track
whether the submitted patch are accepted. We create diff
files between each adjoining revision of all the target files
in the repository in order to know when do the patches are
committed. Moreover, creating a diff file between each ad-
joining revision make us able to include the gradual patch
acceptance case into our study.

In this phase, we also have two types of repository data
source: CVS and SVN. For both types of repository, at first
we extract the revision number and the timestamp of each
target file. A pair of revision number and timestamp then

39

guide us to obtain all the change information of target files.
Next, we create diff files from each pairs of adjoining revi-
sion and then extract the required information similar to
the patch extraction. We also denote the diff files as a tuple
(Ir, Pr, tr, [cr]). Ir is committed source code’s index, Pr is
the its absolute path, tr is its timestamp. We also parse the
time zone into a common timezone as the patches. [cr] is
the list of changed line in a revision which white spaces are
also collapsed . At last, we compose (Ir, Pr, tr, [cr]) into
records and store them in a database same as the extracted
patches.

4.3 Partial Acceptance Identification and Com-
mitment Counting

Since our analysis includes the gradually accepted case,
we conclude a patchi as an accepted patch if there is an
existed line of the submitted code that has been committed
with the corresponded target file to the repository within a
time limit ∆t.

(Ip = Ir ∨ Pp ∼match Pr)
∧ tp +∆t ≤ tr
∧ (∃l |l ∈ [cp]) ⊆ [cr]

We count up the number of patch commitments of the
accepted patches to study the openness. The counter of
patch commitment increases each time either when a patch
is fully committed or partially committed.

5. CASE STUDIES
We study on two well-known OSS projects: Apache HTTP

Server and Eclipse Platform. Apache HTTP Server has been
introduced as a web server since 1996 and is still popular.
Eclipse Platform is a part of Eclipse project, which is a well-
known interface development environment (IDE) project.
We analyze the patch submission and acceptance on Apache
HTTP Server between its mailing list system and its SVN
repository. For another Eclipse platform project, we ana-
lyze between its bug-tracking system named Bugzilla and
its CVS repository. Table 2 shows the quantitative informa-
tion on both case-study data sources.

Table 2: The characteristic of the case-study
datasets

(a) Repositories

Apache HTTP Server Eclipse Platform
Repository SVN CVS

Observing period 1998/06 - 2003/06 2002/06 - 2008/06
#File 6283 46,004

#Changed line 1,994,030 9,532,211

(b) Patches Data Source

Apache HTTP Server Eclipse Platform
BTS Mailing list Bugzilla

Observing period 1998/06 - 2002/06 2002/06 - 2007/06
#Patch 5,212 75,808

#Target file 1,926 71,153
#Changed line 140,391 9,919,338

We assign the time scope ∆t as 365 days on both data
sets because we concern the gradual patch accepted case.
Larger patches are normally composed with more compo-
nents so that they will probably take longer time to be fully

accepted. Note that the Patches Data Sources contain one
year less data than the repositories to make the experimen-
tal results reflected with our max ∆t as 365 days. Figure 2
is illustrated our experimental results performed on both
datasets. In both graphs the y axis denotes the total number
of patch commitment, and the x axis denotes the timeline in
month interval. We will explain about the label above the
graph later during the subsidiary of research questions.

5.1 What is the key factor that makes the OSS
committers changed their openness?

Observing through the both timelines 2(a) and 2(b), we
are massively captivated by the frequent occurrences of pulses.
It’s rather unusual that needs a satisfactory explanation.
There are several good metrics analogous to the temporal
factors [5]. Special event occurrence and trend are very in-
teresting factors. However, the pulses’ appearance seems to
have high impact and be in transitory that make us prefers
a hypothesis about the occurrence of special events over the
trend.

We have noticed two different characteristics of the pulses
in both figures 2(a) and 2(b). First is the number of com-
mitment has continually increased or decreased after a pulse
is occurred. Another one is a pulse is surrounded by lower
number of commitment that are approximate equivalence.
Therefore, there should be more than one type of event oc-
curred.

5.1.1 The number of patch commitment has contin-
ually increased or decreased after a pulse is
occurred

We start a deduction from the most ordinary case. We
thought the decreasing (i.e. 2003/02 in Apache HTTP Server
and 2006/02 in Eclipse platform) is tend to more unusual
than the increasing. Because the increasing number of patch
acceptance may as usual as the project growth. One plau-
sible explanation is during a decreasing patch commitment
period, the project was stable enough and had the less num-
ber of severe bugs.

We investigated the released dates of the project in prior
versions, and the released dates we have found are likely
matched with the pulses related to this case. We label the
corresponded released version over the graph in figure 2.
It supports our hypothesis about the stable released ver-
sions. Moreover, it also tells us about the increasing period
of patch commitment after a pulse is occurred (i.e. 2000/03
in Apache HTTP Server and 2005/02 in Eclipse platform).
The pulses belonged to this case are matched with the re-
lease of some minor versions (i.e. alpha and beta version).
Because the release of minor version still probably has many
topics needed to be discussed. Note that, here the released of
minor versions may not produce a pulse, but the number of
patch commitment is always increased for a short period af-
ter that. (i.e. 2002/02 in Apache HTTP Server and 2002/11
in Eclipse platform)

5.1.2 A pulse is surrounded by a lower commitment
periods that are approximate equivalent level

We have outlines a hypothesis about the events support-
ing this case. The supportive event for this type of pulse
should be held in a short period and probably has a transi-
tory effect, since it does not induce any change of the patch

40

(a) Analyzing Patch Acceptance from Apache HTTP Server project between June 1998 and June 2003

(b) Analyzing Patch Acceptance from Eclipse Platform project between June 2002 and June 2007

Figure 2: The Patch Acceptance Analysis Results from Apache HTTP Server and Eclipse Platform

acceptance.
We start our investigation on the first significant pulse of

Apache HTTP Server in August 1999. Focusing on that time
point, we turn up to a record of the first O’Reilly Apache
Conference held in that month. It is perfectly matched with
our hypothesis that caused by the OSS community must
have placed some advertisements for the forthcoming con-
ference. (i.e. calling for paper) It then captivated more
developer to participate with the OSS community. We also
track for more corresponding conference shown on the fig-
ure 2. Eclipse platform is more explicit to conclude this
hypothesis with the conference occurrence.

5.2 How can an OSS evolution pattern explain
the trend of OSS committers’ openness?

Focus on the control style column of each type of OSS
project in table 1, the three different styles tell us obviously
that we can distinguish each type of the OSS projects by
the amount of openness. Since patch acceptance is directly
related with the openness, a relationship between OSS evo-
lution pattern and the patch acceptance would exactly be
existed. In figure 2, if we omit the special-event pulses,
there will be only the trends of the patch acceptance left:
increasing, decreasing, and stay-the-same.

The most simple case is the increase of patch acceptance.
Since the Bazaar-like decentralized control [6] is the only
one type of OSS project that could generate it, we could

assume the project must have been a Utility-Oriented dur-
ing the increasing of patch acceptance. We then also be-
lieve that the project was transiently Utility-Oriented during
a special event pulse, because of the drastically increment
of the accepted patch. Next, the decreasing trend of the
patch commitment is usually happened after a major re-
leased. It is caused by the project is more stable, then fewer
defects needed to be fixed. Consequently, the objective of
the Service-Oriented as shown in table 1 makes it perfectly
matched with this case.

However, the stay-the-same case is quite complicated.
It can be occurred in several situations. The most simple
case for the stay-the-same is when the project has just been
founded or been well-known. This case is simply concluded
as an Exploration-Oriented type. Then, what would be hap-
pened if the stay-the-same is occurred after the increasing
(Utility-Oriented) period? After many needs and require-
ments were satisfied and many features also have been ap-
pended; the project should be more mature. We will con-
clude the stay-the-same after an increasing of patch accep-
tance period as a transition period between Utility-Oriented
and Service-Oriented. At last, what if the stay-the-same was
occurred after the decreasing (Service-Oriented) period. Af-
ter a project has been mature for while, the need of ex-
pansion should become an issue. It may be a transition to
become an Exploration-Oriented or a Utility-Oriented. If
new ideas and innovations are more important, it will be
a transition to be an Exploration-Oriented. On the other

41

hand, if the expansion is inspired by new requirement, it
will probably be a transition to be a Utility-Oriented.

6. OBSERVATION
Comparing between two projects, Eclipse Platform are

more predictable. Figure 2(b) shows that Eclipse platform
has been continual growing respected to the almost same
pattern from year to year (start in March). Most of the local
relative peaks are always in the month that held a confer-
ence, and the number of patch acceptance always decreases
after a major release. We believed it is caused by Eclipse
Platform has a clear routine on its conference (around March)
and the released date of major version (around June). Since
the target checkpoint is clearly defined, all the participant
will know how much should they exert their effort averse to
the time to make the project reached the goal. Moreover,
the clearly defined checkpoint would make the project self-
comparable and let the participants know how much does
the project develop from year to year. It is very interest-
ing that when Eclipse platform has introduced a conference
(Eclipse Summit) in 2006, the growing pattern is still the
same but has been shorten (From March to October and
October to March). This is a good proof of our caprice
that the occurrence of conference has an influence to the
openness, especially in a project that defines the important
events very well such as Eclipse platform.

7. CONCLUSION AND FUTURE WORK
In this research, we found out what makes the OSS com-

mitters changed their openness and how could an OSS evo-
lution pattern explain it. We analyzed two well-known OSS
projects: Apache HTTP Server and Eclipse Platform. The
results revealed two interesting identities of the OSS com-
mitters’ openness. First, we found that at least two types of
special event occurrences would affect the openness. When
an official conference or workshop are forthcoming, the open-
ness will remarkably increase. The conference’s announce-
ment and advertisement would arouse the newcomers as well
as the currently inactive developers and users. The project
then become more active so that wider varieties of patches
were produced and submitted. The second type of special
event is the released versions.After a minor version was re-
leased, there usually still has some open issues waiting to
be resolved so that the committers would be still or opened.
Alternately, a major version should be released after most of
opening issues has already been resolved; hence, the number
of patch acceptance would typically be decreased.

Our second finding is the relationship between the tran-
sitory changed level of openness and the OSS evolution pat-
tern proposed by Nakakoji et.al [7]. The relationship we
found can elucidate that the alternation of committer’s open-
ness level is an effect of the OSS project’s evolution. More-
over, the result from our in temporal-base patch acceptance
analysis can be a proof for the inconclusive hypothesis the
evolution pattern, which they believed an OSS project would
be evolved alternately from a type to others continually.

Beyond this research, we will explore more aspect and
study more features to develop a knowledge of OSS com-
mitters’ openness. We are ardently believed that openness
and open season are entirely predictable.

Acknowledgment
The first and second authors are grateful to the intern-

ship program cooperated and supported between Kasetsart

University, Thailand, and Nara Institute of Science and Tech-
nology, Japan. It bestows a grant as well as an opportunity
for undergraduate student to achieve a wealth experience in
abroad graduated school research.

This research is being conducted as a part of the Next
Generation IT Program and Grant-in-aid for Young Scien-
tists (B), 22700033, 2010 by the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

8. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,

and T. Zimmermann, “What makes a good bug report?” in
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering
(SIGSOFT ’08), 2008.

[2] C. Bird, A. Gourley, and P. Devanbu, “Detecting patch
submission and acceptance in oss projects,” in Proceedings
of the Fourth International Workshop on Mining Software
Repositories (MSR ’07), May 2007.

[3] A. Capiluppi, J. M. González-Barahona, I. Herraiz, and
G. Robles, “Adapting the ”staged model for software
evolution” to free/libre/open source software,” in Ninth
international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting
(IWPSE ’07), 2007.

[4] M. W. Godfrey and Q. Tu, “Evolution in open source
software: A case study,” in Proceedings of the International
Conference on Software Maintenance (ICSM’00), 2000.

[5] B. Manaskasemsak, A. Rungsawang, and H. Yamana,
“Time-weighted web authoritative ranking,” Inf. Retr.,
vol. 14, April 2011.

[6] K. Nakakoji, K. Yamada, and E. Giaccardi, “Understanding
the nature of collaboration in open-source software
development,” in Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005.

[7] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye, “Evolution patterns of open-source software systems
and communities,” in Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE
’02), 2002.

[8] P. C. Rigby and A. E. Hassan, “What can oss mailing lists
tell us? a preliminary psychometric text analysis of the
apache developer mailing list,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories
(MSR ’07), 2007.

[9] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection
of duplicate defect reports using natural language
processing,” in Proceedings of the 29th international
conference on Software Engineering (ICSE ’07), 2007.

[10] B. Shibuya and T. Tamai, “Understanding the process of
participating in open source communities,” in Proceedings
of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and
Development (FLOSS ’09), 2009.

[11] N. Smith and J. F. Ramil, “Agent-based simulation of open
source evolution,” in Software Process Improvement and
Practice, 2006.

[12] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in Proceedings of the
30th international conference on Software engineering
(ICSE ’08), 2008.

[13] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!”
in Proceedings of the 2008 international working conference
on Mining software repositories (MSR ’08), 2008.

[14] M. Yamamoto, M. Ohira, Y. Kamei, S. Matsumoto, and
K. Matsumoto, “Temporal changes of the openness of an
oss community: A case study of the apache http server
community,” in Proceedings of The Fifth International
Conference on Collaboration Technologies (CollabTech
’09), 2009.

42

A Tool for Collaborative Guitar Chords Creation based on
The Concept of The Distributed Version Control

Chakkrit Tantithamthavorn1, Papon Yongpisanpop2, Masao Ohira2,
Arnon Rungsawang1 and Kenichi Matsumoto2

1Department of Computer Engineering,
Faculty of Engineering,

Kasetsart University, Bangkok, Thailand
{ b5105256, fenganr } @ ku.ac.th

2Graduated School of Information Science,
Nara Institute of Science and Technology,

Nara, Japan
{ papon-y, masao, matumoto } @ is.naist.jp

ABSTRACT
The distributed version control system has become very popular
in software development process for years. Many software
projects, which are developed by a large group of programmers
have been using it to manage their source code. We study on
another aspect of applying a distributed version control to keep
track the version of other artifacts instead of using just for
tracking source code. An application for sharing and creating
guitar chords is used in our case study. We apply distributed
version control concept in order to interoperate musical ideas
from multiple users and preserve the versions of guitar chords
with their music styles introduced to the community. The results
show how distributed version control system can help guitarists to
collaborate on creating guitar chords and also reduce the
redundancy of derivative versions. This study has approved that
distributed version control system can be applied to any projects
that need to keep track the version of their artifacts.

Categories and Subject Descriptors
H.5.3 [INFORMATION INTERFACES AND
PRESENTATION]: Group and Organization Interfaces -
Asynchronous interaction, Collaborative computing, Web-based
interaction; H.5.5 [INFORMATION INTERFACES AND
PRESENTATION]: Sound and Music Computing -
Methodologies and techniques, Systems.

General Terms
Design, Human Factors, Experimentation

Keywords
Chord Archives, Distributed Version Control, Collaborative
Music Creation and Sharing

1. INTRODUCTION
Ultimate-guitar.com is a large guitarist community website that
has a large number of guitar tablature. Due to the large amount of
tablatures, overlapped (same) songs and many derivative versions
are usually submitted to the archives. As a result, users are having
a problem on how to choose a song. Moreover, if some parts in a
guitar chord are incorrect, guitarists cannot continue to play the
guitar chord. Since the current guitar chord archives do not
provide the permission to edit an archived chord by anonymous
users, the online music communities confront with a severe
shortage of contributors and lack of collaboration among
guitarists. To solve those problems, we came up with new
software called ChordBook, which applies distributed version
control system to keep track of guitar chord versions, reduce the
redundancy and allow guitarists to do the collaboration.

Today’s software development is usually done in a distributed
environment [1]. Many researchers focus on the area and apply
this concept to their work. Both Rocco et al [2] and Ladden et al
[3] apply distributed version control to the classroom for
improving class teaching. One of the common purposes of
distributed version control is to enable groups of people work
together on any kind of files without necessarily being connected
to a common network. They can change, archive, merge, branch
or synchronize files of which the system keeps a history. Another
purpose is archiving and backup so any files in the system should
be safe and free of data-loss.

In section 2, we purpose the architecture and key designs of
ChordBook. In section 3, we demonstrate the software and show
the empirical study on the application of distributed version
control system. And we conclude everything up in section 4.

2. DESIGN
The architecture of ChordBook is separated into two parts. The
first part is the software for guitarists to create and share guitar
chords. The software is developed as an iPad application due to
the portability. The second part is a server repository. It acts itself
as a guitar chords archive, provides necessity services for
communicating with a client-side application.
The architecture of ChordBook is based on four keys as follows:

1. Contribution – According to gain more guitar chords into the
archive, we need to have more contribution from guitarists.
ChordBook allows guitarists to easily distribute their guitar
chords to the archive.

2. Distribution – According to guitarists are spread all over the
world and guitar chords can be done by many guitarists, the
server side will be able to keep track of versions and also have
a good method to distribute the guitar chords.

3. Availability – ChordBook allow users to check out the songs
that they want and it will automatically download and save
them into their local storage.

4. Collaboration – A million heads is better than one. Guitarists
are able to access any song sheets, which are shared on the
server via ChordBook. If other guitarists notice there is a
mistake in a song sheet or if they have more information on
the song, they will be able to edit the song or provide more in-
depth explanations. This collaboration key allows guitarists to
help each other to create a better guitar chord.

In the ChordBook client, we use SQLite database as a local
repository on iPad to keep track of versions of song sheets. Song
sheets will be stored in the database as ASCII text based format as
shown in Figure 1. ChordBook allows users to have various
versions of song by creating branches for it. Figure 2 shows that a

43

user can create an acoustic version of the song, which is based on
the original one. When the user is done with the song sheet and is
ready to share or publish it, he/she can push that song sheet to the
server repository. Users do not need moderators or system
administrators to ask for a right to access repositories. The
distribution process and rights management are done by guitarists
among themselves. As a result, no special write access and no
politic are needed.

3. DEMONSTRATION
The goal of our demonstration is to show how ChordBook can
facilitate distributed version control concept in several aspects and
discuss the potential applications that are feasible using
distributed version control.

To combine musical ideas among guitarists, we get started from
“clone” to download song sheet from server to iPad. If user
notices there is a mistake or if he/she would like to provide more
information on the song, then the user can edit the song, provide
more in-depth explanations or discuss it among users. During the
mediation, one can “commit” to his/her iPad to keep track of
versions in local repository. If a user prefers to distribute or
publish his/her guitar chord to the Internet, he/she can “push” the
guitar chord to the server. If the server side finds a related song
title name, the server will return a set of the result to the user. The
user has to decide which one is a better title for the song. We
believe that human decision can solve the problem of similar song
titles repeatedly created. If the guitar chord is completely new to
the server, it will be accepted right away. For an updated version,
the server will first check whether that song version is up to date.
If it is already up to date, the server will accept user’s request. If it
is not, this version will conflict and users will be guided to have
discussions among users. ChordBook also have two ways to
handle a spam and malicious users. First, the system allows users
to report a spam and then will send a request to a moderator.
Second, if the system detects some frequently changed or updated
guitar chords within minutes, it will lock the song to be edited
automatically and stop the update from users for 24 hours.

To avoid the duplication of song titles when there are more than
one guitarists want to create the song and commit it into
ChordBook, the distributed version control will prohibit the
duplication of song titles to be created on the server.

To handle various types of a song as shown in figure 2, e.g., Hotel
California will be able to create just once but ChordBook will
allow this song to have many types of itself (i.e., acoustic, classic
and etc.) using branch to represent types of that song.

4. CONCLUSION
In this paper we have described an empirical study on an
application of distributed version control to music community.
This application is novel in the sense that it fully utilizes a version
control to keep track versions of guitar chord song sheets in chord
archives. Our study could be applied to other artifact creations
that need collaboration among users to keep track the versions of
the artifact itself. For the future work we are planning to extend
ChordBook to effectively treat other music instrument, enhance
flexibility and scalability of the user interface.

Figure 3. ChordBook Interface on iPad

5. ACKNOWLEDGMENTS
This research was supported by Nara Instituted of Science and
Technology (NAIST), Japan, and Kasetsart University, Thailand.
Thanks to anonymous reviewers for their comments.
6. REFERENCES
[1] Brian de Alwis and Jonathan Sillito. 2009. Why are software

projects moving from centralized to decentralized version
control systems?. In Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on Software
Engineering (CHASE '09). IEEE Computer Society,
Washington, DC, USA, 36-39.

[2] Daniel Rocco and Will Lloyd. 2011. Distributed version
control in the classroom. In Proceedings of the 42nd ACM
technical symposium on Computer science
education (SIGCSE '11). ACM, New York, NY, USA, 637-
642.

[3] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2010.
Teaching operating systems using virtual appliances and
distributed version control. In Proceedings of the 41st ACM
technical symposium on Computer science
education (SIGCSE '10). ACM, New York, NY, USA, 480

Figure 1. Guitar chord data format

Figure 2. ChordBook Interface on iPad

44

Poster

45

46

Empirical study on Web Crawling Process Monitoring Tool

[Extended Abstract]

Tanaphol Suebchua and Arnon Rungsawang
Massive Information & Knowledge Engineering

Department of Computer Engineering, Faculty of Engineering
Kasetsart University, Bangkok, Thailand

{job,arnon}@mikelab.net

ABSTRACT
Software monitoring and management is one of the pow-
erful development tools in software testing for managing
and tracking performance, resource consumption and ob-
ject from a running program. It helps developer to indicate
popular programming problem, such as Resource Leak and
Deadlock. In this paper, we apply Java Management Exten-
sions (JMX) to a web crawling system. Users are allowed
to keep track of the crawling status and performance of the
crawler in real-time and to do the crawling operations re-
motely. Furthermore, Adding JMX also enhance crawling
performance by allowing application to work in parallel.

Categories and Subject Descriptors
C.2.5 [Testing and Debugging]: [Monitor, Tracing]; D.1.3
[Programming Techniques]: [Distributed programming]

General Terms
Management, Design

Keywords
Monitoring and Management tools, Web Crawler

1. INTRODUCTION
Internet is currently the large portion of informative data

and also continues to grow unceasingly. Collecting every
web page from the internet is impractical because the re-
sources are limited. In general, search engine providers in
each country need to collect web pages which are written
in their own language as much as possible to make a com-
plete index that can return the search results which satisfy
their local users. To solve this kind of problem, in our on-
going research [2] , we have proposed a “language specific
website crawler” framework as a method for gathering Thai-
language web pages. However, our web crawler prototype
can only be operated in text-mode and was not initially de-
signed to work in parallel. This burdens users to start/stop
process and configure crawler manually from one computing
node to the others. As well, monitoring crawler status in
real-time is difficult for end-users.

To provide additional monitoring and management capa-
bility, in this paper, we have proposed to integrate the JMX
[1], an extensions of software monitoring and management
framework for Java Platform which widely use among Java
software developer, to our web crawling framework so that

users can easily track crawler status in real-time and manage
the crawling operation remotely through our GUI Client.

2. ARCHITECTURE

Figure 1: Architecture of Web Crawling Process
monitoring tool

Figure 1 illustrates the Web Crawling Process monitoring
tool architecture. The system consists of two parts, crawler
and client modules. The crawler module is the part which we
have mentioned earlier in introductory section. The client
module is a GUI application as shown in Figure 2 which
is responsible for handling request for crawling operation,
crawler and crawling status, as well as JVM information
through JMX extension in each crawler. Our design also
supports crawlers to work in parallel by using the client as
Job Dispatcher. For example, in a crawling task, if the target
list of websites from which we have to collect data is too
large, the client will split that list into proper smaller ones
in order to dispatch to other crawling nodes in the system.

Figure 2: Web Crawling Process monitoring client

3. REFERENCES
[1] Oracle. Java management technology, 2011.

http://www.oracle.com/technetwork/java
/javase/tech/javamanagement-140525.html.

[2] P. Tadapak, T. Suebchua, and A. Rungsawang. A
machine learning based language specific web site
crawler. In NBiS 2010, pages 155 –161, sept. 2010.

47

	2011-1st
	paper1
	paper2-1st
	paper2-2nd
	paper2-3rd
	paper2-4th
	papaer3-0
	paper3-1st
	1 Introduction
	2 Restructuring Operations
	3 Program Element Matching
	4 Inference Algorithm
	4.1 Finding match candidates
	4.2 Identifying matches

	paper3-2nd
	4 Inference Algorithm
	4.3 Interpreting restructuring operations

	paper3-3rd
	5 Evaluation
	5.1 Program element matching
	5.2 Performance

	6 Conclusion
	7 Acknowledgments
	8 References

	paper4
	paper5-0
	paper5
	paper6
	1. INTRODUCTION
	2. SUSHI: INTEGRATING INFORMATION BETWEEN MULTIPLE DSSs
	2.1 Overview
	2.2 Architecture of SUSHI
	2.3 Procedure of Estimation

	3. PRELIMINARY EVALUATION
	4. FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	paper7-0
	paper7
	paper8
	paper9-0
	paper9

