
Proceedings

International Workshop on

Empirical Software Engineering in Practice 2010

(IWESEP 2010)

Nara, Japan, December 7-8, 2010

Sponsored by
StagE Project, MEXT Japan

Foundation for Nara Institute of Science and Technology
Microsoft Research
Osaka University

Nara Institute of Science and Technology (NAIST)

In cooperation with
SIG Software Science, Information and Systems Society, IEICE

SIG Software Engineering, IPSJ

Table of Contents
Preface .. iv
Organization .. vi

Keynote Address
Empirical Software Engineering and Measurement at Microsoft 3

Thomas Zimmermann

Project Management
Process Fragment Based Process Complexity with Workflow Management Tables 7

Masaki Obana, Noriko Hanakawa, Norihiro Yoshida and Hajimu Iida

Applying Outlier Deletion to Analogy Based Cost Estimation 13
 Masateru Tsunoda, Akito Monden, Mizuho Watanabe,

Takeshi Kakimoto and Ken-ichi Matsumoto

A Survey of Public Datasets for Comparative Effort Prediction Studies 19
 Sousuke Amasaki and Tomoyuki Yokogawa

Faults and Verification
Reconstructing Fine-Grained Versioning Repositories with
Git for Method-Level Bug Prediction ... 27
 Hideaki Hata, Osamu Mizuno and Tohru Kikuno

Reachability Analysis of Probabilistic Timed Automata
Based on an Abstraction Refinement Technique .. 33
 Takeshi Nagaoka, Akihiko Ito, Toshiaki Tanaka,
 Kozo Okano and Shinji Kusumoto

Fault-prone Module Prediction Using Contents of Comment Lines 39
 Osamu Mizuno and Yukinao Hirata

ii

Process Analysis
A Preliminary Study on Impact of Software Licenses on Copy-and-Paste Reuse 47
 Yu Kashima, Yasuhiro Hayase, Norihiro Yoshida,
 Yuki Manabe and Katsuro Inoue

Using Program Slicing Metrics for the Analysis of Code Change Processes 53
Raula Gaikovina Kula, Kyohei Fushida, Norihiro Yoshida and Hajimu Iida

Flexibly Highlighting in Replaying Operation History ... 59
Takayuki Omori and Katsuhisa Maruyama

iii

Preface

It is our great pleasure to welcome everyone to the International Workshop on
Empirical Software Engineering in Practice 2010 (IWESEP 2010). Our workshop is to
foster the development of the area by providing a forum where young researchers and
practitioners can report on and discuss their new research results and applications in the
area of empirical software engineering. The workshop encourages the exchange of ideas
within the international community so as to be able to understand, from an empirical
viewpoint, strengths and weaknesses of technology in use and new technologies, with
the expectation of furthering the more generic field of software engineering.

IWESEP has received 13 submission including 12 regular papers and 1 tool
demonstration proposal. After the careful evaluations of the program committee, 8
regular papers and 1 tool demonstration have been accepted to be presented at the
workshop. The papers cover a variety of topics, including project management, fault
prediction, formal verification and analysis of software development process. In
addition, the program includes a keynote speech by Dr. Thomas Zimmermann. We hope
that these proceedings will serve as a valuable reference for researchers and developers.

In addition, we hold the MSR School in Asia as the tutorial at IWESEP 2010. The
MSR School in Asia provides an overview of the Mining Software Repositories (MSR)
filed and an opportunity to learn the techniques used in this field. MSR is a rapidly
growing field that holds an annual tutorial and a co-located working conference at the
International Conference on Software Engineering (ICSE) every year. We have invited
some of the top researchers, Dr. Ahmed Hassan, Dr. Sunghun Kim, and Dr. Thomas
Zimmermann, in the MSR field to give the tutorial.

Finally, on behalf of the program committee and the organizing committee, we thank
you for attending IWESEP 2010 and hope that you will we enjoy the workshop. We
would like to take this opportunity to thank the organizers who spend considerable time
reviewing publications and preparations for this workshop.

iv

We hope you will have a great time and an unforgettable experience at the
IWESEP2010.

Akinori Ihara, Nara Institute of Science and Technology, Japan
IWESEP 2010 General Chair

Takashi Ishio, Osaka University, Japan
IWESEP2010 Program Chair

v

Organization

General Chair
Akinori Ihara (Nara Institute of Science and Technology, Japan)

Program Chair
Takashi Ishio (Osaka University, Japan)

Publication Chair
Kyohei Fushida (Nara Institute of Science and Technology, Japan)

Publicity Co-Chair
Sunghun Kim (Hong Kong University of Science and Technology, China)
Masataka Nagura (Hitachi, Ltd., Japan)
Emad Shihab (Queen’s University, Canada)

Registration Chair
Masateru Tsunoda (Nara Institute of Science and Technology, Japan)

Local Arrangements Chair
Norihiro Yoshida (Nara Institute of Science and Technology, Japan)

vi

Program Committee
Bram Adams (Queen’s University, Canada)
Sousuke Amasaki (Okayama Prefectural University, Japan)
Christian Bird (Microsoft Research, USA)
Ahmed E. Hassan (Queen’s University, Canada)
Hideaki Hata (Osaka University, Japan)
Shinpei Hayashi (Tokyo Institute of Technology, Japan)
Israel Herraiz (University Alfonso X el Sabio, Spain)
Yasutaka Kamei (Queen’s University, Canada)
Masa Katahira (JAXA, Japan)
Shinji Kawaguchi (JAMSS, Japan)
Jacky Keung (NICTA, Australia)
Hua Jie Lee (University of Melbourne, Australia)
Shinsuke Matsumoto (Kobe University, Japan)
Koji Toda (Nara Institute of Science and Technology, Japan)
Hidetake Uwano (Nara National College of Technology, Japan)
Rodrigo Vivanco (University of Manitoba, Canada)
Thomas Zimmermann (Microsoft Research, USA)

vii

Keynote Address

1

2

Keynote Address
Empirical Software Engineering and Measurement at Microsoft

Thomas Zimmermann (Microsoft Research / University of Calgary)

Abstract:
Software engineering is an data rich activity: changes to source code are recorded in
version archives, bugs are reported to issue tracking systems, and communications are
archived in e-mails and newsgroups. The Empirical Software Engineering and
Measurement (ESM) group at Microsoft Research analyzes such data to better
understand various software development issues from an empirical perspective. In this
talk, I will highlight our research themes and activities using examples from our
research on socio technical congruence, bug reporting and triaging, and data-driven
software engineering. I will highlight our unique ability to leverage industrial data and
developers and the ability to make near term impact on Microsoft via the results of our
studies. The work presented in this talk has been done by Chris Bird, Brendan Murphy,
Nachi Nagappan, myself, and many others who have visited our group over the past
years.

3

4

Project Management

5

6

Process Fragment Based Process Complexity with
Workflow Management Tables

Masaki Obana1 , Noriko Hanakawa2 , Norihiro Yoshida1 , Hajimu Iida1
1Nara Institute Science and Technology

2Hannan University

masaki-o@is.naist.jp, hanakawa@hannan-u.ac.jp, yoshida@is.naist.jp, iida@itc.naist.jp

ABSTRACT
The actual software development processes deviate from initial
model planned at early stage. One of the reasons is that additional
processes get triggered by urgent changes of software
specifications. Such additional processes increase the complexity
of the whole development process, and possibly decrease the
product quality. In this paper, we propose a novel complexity
measure of software process, which based on the number of
process fragments, the number of simultaneous process fragments,
and the number of developers’ groups. Proposed process
complexity is applied to two industrial projects in order to show
the usefulness of this measure. As a result, we found that the
higher value of process complexity indicates higher risk of
products' faults.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management: software process
models

General Terms
Management, Measurement.

Keywords
Process complexity, risk management, a workflow management
table, change of customers’ demand.

1. Introduction
In software development projects, large gaps between planned
development processes and actual executed development
processes exist. Even if a development team has originally
selected the waterfall model unplanned small processes are often
triggered as shown in the following examples.

i. One activity of waterfall-based process is changed into new
iterative process because of urgent specification changes.

ii. Developers design GUI using a new prototype development
process at design phase.

iii. In an incremental development process, developers correct
defects in the previous release while developers are
implementing new functions in current release.

That is, the waterfall-based process at planning time is often
gradually transformed into the combination of the original
waterfall-based process and several unplanned small processes
(hereinafter referred to as process fragments). In consequence,
actual development processes are more complicated than planned
one (see also Figure 1).

In this paper, we firstly assume that complicated process
decreases product quality, and then propose a new metric for

process complexity based on the number of unplanned process
fragments, the number of simultaneous execution processes, and
the number of developers' groups. It can be used to visualize how
process complexity increases as actual development process
proceeds.

An aim of measuring process complexity is to prevent software
from becoming low quality product. A process complexity is
derived from a base process and process fragments. A base
process means an original process that was planned at the
beginning of a project. Process fragments mean additional and
piecemeal processes that are added to the base process on the way
of a project. Process fragment occurs by urgent changes of
customers’ requirement, or sudden occurrence of debugging faults.
Process fragments can be extracted from actual workflow
management tables which are popular in Japanese industrial
projects. We especially focus on simultaneous execution of
multiple processes to model the process complexity. Simultaneous
execution of multiple processes is caused by adding process
fragments on the way of a project. Finally, we perform an
industrial case study in order to show the usefulness of process
complexity. In this case study, we found that process complexity
indicated the degree of risk of post-release faults.

Section 2 shows related work about process metrics, and risk
management. The process complexity is proposed in section 3.
Section 3 also describes how the proposed complexity would be
used in industrial projects. Case studies of two projects are shown
in section 4. In section 5, we discuss a way of risk management
using the process complexity. Summary and future works are
described in Section 6.

2. Related Work
Many software development process measurement techniques
have been proposed. CMM [1] is a process maturity model by
Humphrey. Five maturity levels of organizations have been
proposed in CMM. When a maturity level is determined, various
values of parameters (faults rate in total test, test density, review
density) are collected. In addition, Sakamoto et al. proposed a
metrics for measuring process improvement levels [2]. The
metrics were applied to a project based on a waterfall process
model. Theses process measurement metrics’ parameters include
the number of times of review execution and the number of faults
in the reviewed documents. The aim of these process
measurement techniques is improvement of process maturity of an
organization, while our research aims to measure process
complexity of a project, not organization. Especially, changes of
process complexity in a project clearly are presented by our
process complexity.

7

Many researches of process modeling techniques have been ever
proposed. Cugola et al. proposed a process modeling language
that describes easily additional tasks [3]. Extra tasks are easily
added to a normal development process model using the modeling
language. Fuggetta et al. proposed investigated problems about
software development environments and tools oriented on various
process models [4]. These process modeling techniques are useful
to simulate process models in order to manage projects. However,
these process modeling techniques make no mention of process
complexity in a project.

In a field of industrial practices, Rational Unified Process (RUP)
has been proposed [5]. The RUP has evolved in integrating
several practical development processes. The RUP includes Spiral
process model, use-case oriented process model, and risk oriented
process model. Moreover, the RUP can correspond to the latest
development techniques such as agile software development,
and .NET framework development. Although problems of
management and scalability exist, the RUP is an efficient
integrated process for practical fields. The concept of the various
processes integration is similar to our process fragments
integration, while the RUP is a pre-planned integration processes.
The concept of our process complexity is based on more flexible
model considering changes of development processes during a
project execution. Our process complexity focuses on changes of
an original development process by process fragments, and
regarded as a development processes change.

Garcia et al. evaluated maintainability and modifiability of
process models using new metrics based on GQM [6]. They focus
on additional task as modifiability. The focus of additional task is
similar to our concept of process complexity. Although their
research target is theoretical process models, and our research
target is practical development processes. In this way , there was
no studies for measuring complexity of process during a project as
long as we examined it. Therefore, the originality of our proposed
complexity may be high.

3. Proposed Metrics Based on Process
fragment
3.1 Process fragment
In software development, a manager makes a plan of a single
development process like a waterfall process model at the
beginning of a project. However, the planned single process
usually continues to change until the end of the project. For
example, at the beginning of a project, a manager makes a plan
based on a waterfall process model. However the original process
is changed to an incremental process model because several
functions’ development is shifted to next version’s development.
Moreover, at the requirement analysis phase, prototyping process
may be added to an original process in order to satisfy customers’
demands. If multiple releases like an incremental process model
exist, developers have to implement new functions while
developers correct detects that were caused in the previous
version’s development. In this paper, we call the original process
“a base process”, we call the additional process “a process
fragment”. While original process is a process that was planned at
the beginning of a project, a process fragment is a process that is
added to the original process on the way of a project.
�Fragment” means piecemeal process. Process fragments are
simultaneously executed with a base process. Process fragment

does not mean simple refinement of a base process, but rather may
separately executes from a base process execution.

Figure1 shows an example of process fragment. At the planning
phase, it is a simple development process that consists of analysis
activity, design activity, implementation activity, and testing
activity. In many cases, because of insufficient information, a
manager often makes a rough simple process (macro process)
rather than a detailed process (micro process) [7]. However,
information about software increases as a project progresses, and
the original simple process changes to more complicated
processes. In the case of Figure 1, at the analysis phase, an
unplanned prototype process was added to the original process
because of customers’ requests. As a result of analysis phase,
implementations of some functions were shifted to next version
development because of constraints of resources such as time, cost,
and human. The process fragments were shown at the Figure1 as
small black boxes. In the design phase, because customers
detected miss-definitions of system specifications that were
determined in the previous analysis phase, a process for reworking
of requirement analysis was added to the development process.
Moreover, the manager shifted the development of a combination
function with the outside system when the outside system was
completed. During the implementation phase, several reworks of
designs occurred. In the test phase, reworks of designs occurred
because of low performance of several functions.

Analysis Design Implement Test A base
Process

A part of function is next version.

Process
fragments

The re-design, the re-implement, and
the re-test are executed for the
performance improvement.

A part of function is developed
by the prototype.

A fragment
process

Re-design by requirement
definition mistake.

A coordinated design with other
systems is executed. later.

Process
fragments

Analysis Design Implement Test

Analysis Design Implement Test

Analysis Design Implement Test

Process
fragments

Figure 1 A concept of process fragments

Plan phase

Analysis phase

Design phase

Implement

phase

A part of function to the next
version for the delivery date.

Analysis Design Implement Test

A part of function is re-designed and
re-implemented by the requirement
definition mistake.

Process
fragments

Test phase

8

Process fragments are caused by urgent customers’ requests,
design errors, combination with outside systems on the way of
development. Various sizes of process fragments exist. A small
process fragment includes only an action such as document
revision. A large process fragment may include more activities for
example, a series of developing activities; design activity,
implementation activity, and test activity.

3.2 Calculation of process complexity
3.2.1 Extracting process fragments
Process complexity is calculated based on process fragments.
Process fragments are identified from a series of workflow
management table. That is a continuator revised along the project.
Figure 2 shows two versions of a workflow management table.
Each column means a date, each row means an activity. A series
of A, B, C activities is a base process. D, E, F activities are added
to the base process on May 1. Therefore, D, E, F activities are
process fragments. On Jun. 1, the base process and three process
fragments are simultaneously executed. In this way, process
fragments can be identified from configuration management of a
workflow management table. Difference between current version
and previous version of a workflow management table means
process fragments. Of course, the proposed complexity is
available in various development processes such as an agile
process as long as managers manage process fragments in various
management charts.

3.2.2 Definition of process complexity
Process complexity is defined by the following equation.

�
�

���
)(

1
)()()()()_(

tN

i
itititt termLdevNumPC

…..(1)
PC(t): process complexity on time t
N(t): the total number of process on time t
Num_dev(t)i: the number of group of developers of the i-th process

fragment on time t
L(t)i: the number of simultaneous processes of the i-th process fragment

on time t. But the i-th fragment is eliminated from these
multiplications in L(t).

term(t)i: ratio of an executing period of the i-th process fragment for the
whole period of the project on time t, that is, if term(t)i is near 1, a
executing period of the process fragment is near the whole period
of the project.

Basically, proposed process complexity is the accumulation of all
process fragments including finished processes. The reason of the
accumulation is that the proposed complexity’s target is a whole
project, not a spot timing of a project. For example, many process
fragments occur at the first half of a project. Even if the process

fragments have finished, the fragments’ executions may harmfully
influence products and process at the latter half of the project.
Therefore, the proposed complexity is accumulation of all process
fragments.

The process complexity basically depends on three elements; the
number of group of the i-th process fragment on time t:
Num_dev(t)i, the number of simultaneous processes of the i-th
process fragment on time t: L(t)i, and ratio of an executing period
of the i-th process fragment for the whole period of project time t:
term(t)i. Granularity of group of developer(Num_dev(t)i) depends
on the scale of process fragments. If a process fragment is in
detail of every hour, a group simply correspond to a person. If
process fragment is large such as design phase, a group unit will
be an organization such as SE group and programmer group. The
group of developers will be carefully discussed in future research.
The ratio of an executing period of the i-th process fragment for
the whole period of project time t (term(t)i) means impact scale of
a process fragment. If a process fragment is very large, for
example an executing period of the process fragment is almost
same as the whole period of a project, the process fragment will
influence largely the project. In contrast, if a process fragment is
very small, for example an executing period is only one day, the
process fragment will not influence a project so much.

In short, when more and larger scale process fragments are
simultaneously executed, a value of process complexity becomes
larger. When fewer and smaller scale process fragments
simultaneously are executed, a value of process complexity
becomes smaller. Values of the parameters of equation� (1) are
easily extracted from configuration management data of a
workflow management table.

3.3 Setting a base process and extracting
process fragments
At the beginning of a project, a base process is determined. If a
planned schedule is based on a typical waterfall process model
such as the base process in Figure 1, the parameters’ values of
process complexity are t=0, N(�)=1, Num_dev (�)=3 (SE group
developer group, customer group), L(�)=1, and term (�)=1.
Therefore the value of process complexity PC(0) =3.

As a project progresses, unplanned process fragments are
occasionally added to the base process at time t1. A manager
registers the process fragments as new activities to the workflow
management table. The manager also assigns developers to the
new activities. Here, we assume that the planned period of a base
process is 180 days. A manager adds two activities to the
workflow management table. The period of each additional
activity is planned as 10 days. Therefore the total number of
process N (t1) = 3, and the process complexity is calculated as
follows;
 (1) for i = 1 (a base process)

� Num_dev(t1) = 3
� L(t1)1 = 3
� term(t1)1 = 180/180 = 1.0

(2) for i = 2 (the first process fragment)
� Num_dev(t1)2 = 1
� L(t1)2= 3
� term(t1)2 = 10/180 = 0.056

(3) for i = 3 (the second process fragment)
� Num_dev(t1)3 = 1
� L(t1)3 = 3
� term(t1)3= 10/180 = 0.056

A

B

C

D

E

F

current

Activity Apr.1 May 1 Jun.1 Jul.1

A

B

C

current

A table on Apr. 1 A table on Jun. 1

Added on
May 1

Figure 2 Extracting process fragments from
configuration of a workflow management table

Base
process

Activity Apr.1 May 1 Jun.1 Jul.1

9

Finally, a value of process complexity at t=t1 can be calculated as
PC(t1) = 9.000 +0.168+ 0.168 = 9.336.

In this way, the value of PC(t) at any value of time t can be
calculated based on workflow management table.

4. Application to Two Industrial Projects
The process complexity has been applied to two practical projects.

4.1 The HInT project
The first project’s name is HInT (Hannan Internet communication
Tool). The HInT project developed a web-based educational
portal system. The development began from October 2007, the
release of the HInT was April 2008. Because the workflow
management table was updated every week, 20 versions of the
workflow management table are obtained. At the beginning of the
project, the number of activities in the workflow table was 20. At
the end of the project, the number of activities reached to 123.
Each activity had a planned schedule and a practice result of
execution. Figure 3 shows a rough variation of development
process of the project. At the beginning of the project, the shape
of the development process was completely a waterfall process.
However, at the UI design phase, a prototype process was added
to the waterfall process. In the prototype process, four trial
versions were presented to customers. At the combination test
phase, developers and customers found significant errors of
specifications and two process fragments were added to the
development process in haste. Reworks such as re-design, re-
implement, and re-test for the specification errors continued until
the operation test phase. At the system test phase, an error of a
function connecting with an outside system occurred and a new
process fragment was introduced to the development process. The
introduced process fragment consists of various activities such as
investigating network environments, investigating specification of
the outside system, and revising the programs. These activities
continued until the delivery timing.
Figure 4 shows process complexity of the HInT project. At the
beginning of the project, the value of process complexity was very
low while the value of the process complexity increased as the
project progresses. In particular, after the system test phase, four
processes were simultaneously executed. Then process
complexity increased to 44.167.

4.2 The p-HInT project
The p-HInT is a lecture support system for large-scale lectures
with mobile terminals [8][9]. A base process of the p-HInT
project was an incremental development process. We released the
p-HInT product four times from April 2008 through April 2010. A
development process of the each release included analysis phase,
design phase, implement phase, and test phase. At the first version
development, basic functions and infrastructure implementation
were planned in detail. However, the manager determined only
rough design of next versions’ functions. At the second version
development, new four functions were developed while the
developers fixed defects that had been introduced at the previous
version’s development. Of course, the debugging works were not
planned in the original schedule. At the third version development,
product refactoring was executed because the design of the
product became too complicated for introduction of new functions
and also for debugging works. At the fourth version development,
customers requested new functions that were not discussed at the
requirement analysis phase. The customers said that the requested
new functions were more important than the functions that were
originally planned at the beginning of the project. At same time,
performance improvement work for some functions in the
previous releases was made at the fourth version development.

Kick off Requirement analysis UI design Programming Combination test System test Operations test Process1

Process1
November

PrototypeProcess2 Four functions are made by the prototype.

Analysis Design Programming Test Process3

Process4Two functions were redeveloped.

Process5The connect functions redeveloped.

Time

Kick off Requirement analysis UI design Programming

Process1
PrototypeProcess2

Kick off Requirement analysis UI design Programming

Analysis Design Programming Test

January

Analysis Design Programming Test Process3

Process4

Process1
PrototypeProcess2

Kick off Requirement analysis UI design Programming

Analysis Design Programming Test

February

Analysis Design Programming Test

Figure 3 A variation of development process of the HInT project

October

Combination test System test Operations test

Combination test System test Operations test

Combination test System test Operations test

Figure 4 Process complexity of the HInT project

�������	
�

�

�

��

��

��

��
��
��
�
�

��
��
�
�

��
��
�
�

��
��
�

��
��
�

��
��
�
�

��
��
�
�

�
��
�
�

�
��
�
�

�
��
�
��

�
��
�
��

�
��
�
��

�
��
�
��

Prototype process at
the design phase

Two functions were
reworked at the
combination test phase.

The connect function
was revised at the
system test phase.

10

The process complexity of the p-HInT project was measured until
June 2009. The number of items listed in the workflow table was
31. The items were divided into activities that were executable on
each week. Figure 5 shows a result of the measurement of process
complexity.
At the begging of the project, the value of process complexity was
low (3.0) because the original development process is a simple
incremental process. At November 2007, because the original
process was divided into each process for each function, the value
of the process complexity increases to about 45.0.
At the release time of the first version, the value was 63.48. In the
second version development, processes of improving performance
for the released functions were added to the original process. That
is, developers had to revise the released functions while the
developers had to implement new functions as originally planned
at the beginning of the project. The value of the process
complexity increased to 127.56.
At the test phase of the second version, some specification errors
came to light. For fixing the specification errors, several process
fragments were added and the value of process complexity
increased again.
On the first half of the third version development, the value of
process complexity did not increase because of a product
refactoring activity. Developers concentrated to the product
refactoring work. However, on the latter half of the third version,
problems such as low performance of the released functions and
miss data connection with outside systems occurred. Because
process fragments for fixing the problems were added, the value
of process complexity increased to 182.26.

5. Discussion
We discuss usefulness of process complexity. Process complexity
has a role of capturing dynamic processes as a project progresses.
If the values of process complexity for the beginning of a project
and the end of a project don’t differ so much, we can interpret that
the project was a stable because the project may have been
executed smoothly without large changes. In contrast, if a value of
process complexity largely increased, we can interpret that the
project was unstable due to large changes. Figure 6 shows
changes of the values of process complexity of the two projects.
We regard each version of the p-HInT as one project. The fourth
version development of the p-HInT is excluded because all data
extracting the workflow management table was not prepared.
It became clear change of process complexity of each project in
Figure 6. Projects with large increase of process complexity are
version 1 and version 2 of the p-HInT project, and the HInT
project. Each increase value is 63.48, 47.28, and 41.17. In contrast,

in the version 3 of the p-HInT, the value of process complexity
was 35.10.
In addition, each project has a feature of a process complexity
growth pattern. Figure 7 shows the patterns of the projects. A
maximum value of process complexity of each project is set to
100%. The value of process complexity of the version 1 of the p-
HInT increased suddenly on the first half of the project. In version
2 of the p-HInT, the value of complexity largely increased at two
timings; at the first half of the project, and at the end of the project.
In addition, in version 3 of the p-HInT, the value of complexity
gradually increased. The value of complexity of the HInT project
increased at the latter half of the project. We call these patterns as
"growth patter on early stage type", "growth patter on early and
late stage type, "growth patter smoothly type", and "growth patter
on late stage type". The "growth patter on early stage type" often
occurs when a concept of development and development methods
are changed on the first half of a project. In the version 2 of the p-
HInT, debugging activities for the previous version’s faults were
set to highest priority activities on the first half of the project. The
process of the version 2 largely changed. Moreover, the
unreasonable executions of the debugging activities caused
occurrences of new faults on the latter half of the project.
Therefore, addition of the debugging activities for the new faults
caused the increase of the value of process complexity on the
latter half of the project. On the other hand, in the HInT project,
developers presented the product demonstration to customers at
the system test phase. As a result, several specification errors and
customers’ demand changes were clarified. Therefore, many
activities such as re-design, re-implement, re-test were added to
the development process. The process fragments such as the re-
work activities caused the increase of process complexity on the
latter half of the project.
Therefore, we propose a way of evaluating project risk using the
changes of process complexity. The project risk is as follows;

VariationRankRisk �� ………..(2)
Risk: Project Risk
Rank: growth patter patterns of process complexity:

"growth patter smoothly type": 1,
"growth patter on early stage type" : 2,
 "growth patter on late stage type" : 3,
"growth patter on early and late stage type” : 4.

Variation: gap of values of process complexity between at the
beginning of a project and at the end of a project.

If a value of Risk is large, we can judge the project high risk. Rank
shows growth patter patterns of process complexity. The pattern
of "growth patter smoothly type" is most stable. The pattern of
"growth patter on early stage type" is relatively stable. The reason
is that developers can cope with the process changes on the first
half of a project. Because the changes occur on the early stage,

Figure 5� Process complexity of the p-HInT project

�������	
�

�

��

��

��

���

���

�
�
�
�
�

�

�
�
�
�
�

�
�
�
�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�

�
�
�
�
�

�
�
�
�
�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����	��
�������

����	���
�������

����	���
�������

�

�

��

��

��

��

��

��

 � � � � � � � � � ��

����� � ����� !��

����� !�� ���

�

��

��

��

��

��

��
����� �

����� !��

����� !��

���

Figure 6� Process complexities
of the four project

Time

Process complexity �

Figure 7 Patterns of growth of
process complexity

Week

Process complexity

11

developers have time for arranging their works. In contrast,
changes on the latter half of a project such as "growth patter on
late stage type" have high risk. Because developers have little
time for arranging their works, developers are confused in
simultaneous executions of processes for the changes and an
original process. The pattern of "growth patter on early and late
stage type” is worst. Because the additional works on the first half
of a project influence the works on the latter half of a project.
Managers may add the additional works in unplanned on the first
half of a project. In addition, Variation means a gap value of
process complexity between at the beginning of a project and at
the end of a project. Of course, a small value of Variation is better.
In this way, by calculating a value of Risk, we evaluate whether a
project is complicated or not. A detailed way of determining a
value of Rank will be discussed in future.
Figure 8 shows results of project risks of the four projects. The
project risk of the version 2 of the p-HInT is highest. The version�
3 of the p-HInT has lowest risk. Figure 9 shows specific gravity of
failures occurred after release. The specific gravity failure is
calculated by the number of failure and importance level of failure.
The importance level means strength of impact on a product. As
Table 1, we classified the failures into five important levels; SS, S,
A, B, C. SS means most strong impact like system-down. C
means weakest impact like GUI’s improvement. The specific
gravity of the failures is a value that multiplied the number of
failures and the importance level. In the calculation, we set up that
a constant of SS is 5, a constant of S is 4, a constant of A is 3, a
constant of B is 2, and a constant of C is 1. For example, a value
of specific gravity of the p-HInT version 1 is calculated by “5*2 +
4*3 + 3*19 +2*1 + 1*1”. The value is 82. In the same way, the
specific gravity of failure of the p-HInT version 2 is 88, one of p-
HInT version 3 is 37, and one of HInT is 156.
Comparing Figure 8 with Figure 9, Spearman rank correlation
coefficient is 0.4. Therefore, we confirmed a weak relationship
between the values of project risk and the value of specific gravity
of failures. The version 3 of the p-HInT is not only lowest risk but
also lowest specific gravity of failure. In addition, if a value of the
project risk is high, the specific gravity of failure will be high.
That is, possibility of occurrence of strong impact failures
becomes high as a value of project risk is more. In the HInT
project, because customers suddenly requested new functions,
many process fragments were added to the process on the latter
half of the project. A value of the project risk increased at the
latter half of the project. As a result, many significant failures
with SS rank occurred after release.
In this way, by the project risk we can predict possibility of failure
occurrences after release. A most useful feature of the project risk
is early prediction before start of executions of processes. The
prediction is possible when a workflow management table is
revised by adding process fragments. The possibility of the early
prediction in the project risk is most different from product
metrics. Product metrics is calculated by the already complicated
product. However, the project risk can prevent a project from
becoming high risk. It is useful for managers to judge whether
new process fragments are added.

6. Summary
We proposed process complexity model for risk management in
software development. The process complexity is calculated by
process fragments derived from a workflow management table. In
addition, project risk metric has been also proposed. The project
risk is calculated by changes of process complexity during a
project. We applied the process complexity and the project risk
metrics to two industrial projects. As a result, the project risk
values have a weak relation with specific gravity of failures.
Therefore, managers can predict the quality of released product
when the workflow management table is revised.
In future, we will apply the process complexity and the project
risk metrics to many industrial projects. We will clarify the
relationships between project risk and specific gravity of failures.
Then, we will determine value of thresholds of the project risk.

7. REFERENCES
[1] Humphrey Watts S.1989. Managing the software process.

Addison-Wesley Professional, USA.
[2] Sakamoto, K., Tanaka, T., Kusumoto, S., Matsumoto, K.,

and Kikuno T. 2000. An Improvement of Software Process
Based on Benefit Estimation. IEICE Trans. Inf. & Syst.(in
Japanese), J83-D-I(7), pp.740-748.

[3] Cugola, G. 1998. Tolerating Deviations in Process Support
Systems via Flexible Enactment of Process Models, IEEE
Transaction of Software Engineering, Vol. 24, No. 11,
pp.982-1001.

[4] Fuggetta, A. and Ghezzi, C. 1994. State of the art and open
issues in process-centered software engineering
environments, Journal of Systems and Software, Vol. 26, No.
1, pp.53-60.

[5] Kruchten, R. 2000. The Rational Unified Process, Addison-
Wesley Professional, USA.

[6] Garcia, F., Ruiz, F., Piattini, M. 2004. Definition and
empirical validation of metrics for software process models,
Proceedings of the 5th International Conference Product
Focused Software Process Improvement (PROFES'2004),
pp.146-158.

[7] Obana, M., Hanakawa, N., Iida, H. 2010. Process complexity
metrics based on fragment process on workflow management
tables, Proceeding of the Software Engineering Symposium �
SES2010� (in Japanese), pp.89-96.

[8] Hanakawa, N., Yamamoto, G., Tashiro, K., Tagami, H.,
Hamada, S. 2008. p-HInT: Interactive Educational
environment for improving large-scale lecture with mobile
game terminals, Proceedings of the16th International
Conference on Computers in Education (ICCE'2008),
pp.629-634.

[9] Hanakawa, N., Obana, M. 2010. Mobile game terminal based
interactive education environment for large-scale lectures,
Proceeding of the Eighth IASTED International Conference
on Web-based Education (WBE2010)

Figure 9 Specific gravity of
failures of the four projects

Figure 8 Project risks of the
four projects

��"��

��"�

��"

��"�

�

��

��

��

���

����� !� ����� !�� ����� !�� ���

�� ��

��

��

�

��

��

��

���

����� !� ����� !�� ����� !�� ���

Specific gravity of failures Risk

Table 1� Failures after releases of the four projects
$ % �

����� !����	�� � � �
����� !����	��� � � � �
����� !����	��� � � � �

��� � � � �

12

��������	
�����	������	��	�������	����	����	
����������	

��������	
�����	
����	���������	��	�������	��	

���������	
������	�������	�����	������ !	

"�#��	

$�������%��&�����&'#	

()���	�����	
����	���������	��	�������	��	

���������	
������	�������	�����	������ !	

"�#��	

�)����$%��&�����&'#	

��*���	+�����,��	
����	���������	��	�������	��	

���������	
������	�������	�����	������ !	

"�#��	

$�*���&-�����,���%��&�����&'#

�)����	��)�$���	
����-�	��������	�������	��	

���������	
�..	���)��������	
�)�$���������	

����-�	/���0�.0	"�#��	

)�)�$���%�&)���-�����&��&'#	

��������	�����$���	
����	���������	��	�������	��	

���������	
������	�������	�����	������ !	

"�#��	

$���$���%��&�����&'#

���������
��� ����� 	
�
�	��� �
� ������ �����
	� �
�
����� �
������ ��� ��������
���
��������	
�
���	��
�������������
������
���
�	�
��
������
�
��
����
��
���������
�
������
���������� !���������
����
���
�
�����
����"���
�!����		
����������
���
�
����#������
���
�
������
�����
�	����
����������	
�
�	��������
�
���������
�
������
������
�����
���
�� �����
	�� �	���
���	
� �����
�� �
��	
�
���������� ��	� �
�����
��
�����
�� ����
�������
�� �����
	�� �	��� �
�����	����� �	�$
���� ���

������������	�
���%�	��
����� �	
�������	�$
��������������
	���
��
��
�
���	�� ��� ��
� �	�$
��� ���
��	
�
��� ����
	� �	� ���
	� ����� ���
	�
�
�����	����� �	�$
����� ��� ��
�
��
	��
��� ��	� �
����� ����
��
����
��� �
	��	����
� ������ �����
�� �
�
������
������ ���� ��
	�
��
������&�����
��'
�����
�(�	#��������
��)*�+,����	��
�
���
�����	��
�������

��	
���
����������
�	��
����	���
-�)�.� /���	��
� �����

���:;�"����
�
��� <�����	
���������
=�>�?� /�����	��������
��:;�@	�$
��� ����@
���
�"����
�
��� <
��������	

�
����
���
"����
�
���"
���	
�
���(���������(��
	��
���������

!
"�����
���
� ���
�� 	
��������
���	�� �	
�������� ����	���� ����
� �	�$
���
�����
�
����	������������

#$	 %&��'�(��%'&�
A�� ����
�
� ����
��� ��� ������	
� �
�
����
��� �	�$
��� ��� ��� ���
��	����� ���
������
� �
�
����
���
���	�� ����	��
��� ���� ��
	
��	
�
����� B����������
�
���������� �
������ ���
� �

�� �	����
��
/):/?C:/)*:�� '
�
����� �������� ���
��
���������� /?.:� �
��� ���
��
����� ���� ����� �	�������� ���� ���
� �����
�� ���
� �

�� 	
��	�
��
/>:/C:/?D:/)?:/)):�� E������� ���
��
���������� �
�
���� �	�$
����
�� �������������������������
?� @	
�
�����������&"�F�����G����

��
�����	������	�$
���#��������	
�������	������
�
������
���	�$
���
�	��� ����� �	�$
��� �����
�� ����
������
��
���	�� ���
�� ��� ������	�
�	�$
���!�
���	���%�
���� ��
� ��������
�� ��� �������� ���
��
������
����� ��� �����
���������� 	
������ �	
� ����	
�
�����
� ��	�
�������	��
����� ��� �	�$
��������
	�� /)):� �
����
� ��
�� ���� �����	�� �
����
��	������	�$
������
�� ��	�
�����������E���������	����	��
������
����� ���
��� ��
� ���
�	� 	
�	
������ ���
��
������
� ��	����� ��	�
��
�	�$
���!�
���	�������
����
�������������
��
������������
������
��
� ����� �� ���
�� ����
������
��
���	�� ��� �
�����	����� �	��
$
���!�
���	���H�������������
��
��������������	
��
�����������������
���
������	�
���	�$
������
�����������

@�����	�$
��������
�����
���
��������
���	�$
���������������������
�����
���
����	�
����������/?+:��I�	�
�����
��	�$
������
	
�
��
�
������������������	
��	 ���
	
�����		
�����
���	�
	�
���	�������
���
	� ���
� ����
��	�$
�����E��������������
��
���	������ �������
	��
�������
��
���	�	
��	�
��	
��	�
��
���	���������
	
����	��������
���
���	���A�
�
��	�$
������������
�
�������
���	��������
���
��	
�

�����������
����
���
���
��
��
��������������	�����J��
�
	� ���
��
������ ��
�
� �	�$
���� ��� ����
���� �
����
� �����
� �
������ ���
����
�	�$
����	
�������������	
��	�
�������
������
���(�
�����������
������
���� �
� �	���
�� ��� ��� ���������� ��� �
���
�
����������� �	��
	��� �I�	�

�����
�����
���
��	��
	�����������	��������������	
��	 �#��

A����������	�$
�����	
����
��
�������
����������������������
	��
�
�
������
�������%����
	��
�
������
������ ��
�������	�$
�������������

	����
����
��������	�����!�����
���	
�
��	
�
�����	�
��	���������
����������	�����!�����
�� �
���	�� ����
����K
��	���	�����#� ��� ���	���
����
	
����	������
	��	�$
���!���
�����	
���
���
���	��������
���
��� !���������
� ������
��� ��
�� ��� �����
	� �
�
������
�������
��
������������
�	�	
�	
���������������������������������� !���������
�
���
������
	��
�
������
������ ��	�
���	��
���������� />:/?+:� ���
�
�

�� �	����
���J��
�
	� ��
	
� �	
� �
	�� �
�� ���
� �����
��������
������ �����
	� �
�
������
������ ��� �������� ���
��
���������� ����

������
�
��
�����������
	��
�
������
������ ����	�������������
��

������������

��� ����� 	
�
�	��� �
� ������ �����
	� �
�
����� �
������ ��� ��������
���
��
���������� ���
������
� ��
�	�
��
����� A��� ���
�� ��� �����
	�
�
�
������
������ ���� !�� �������
� ���
�� �
�
����� ����"���
�!��

13

��		
����������
���
�
����#��	
������
������H&HL������
��/M:�����
�
�
����
���
���	�� ���
������
�� ��� �������� ���
��
�����������
�H&HL� �����
�� ������
�� ����� �	�$
��� ����� ������ �	
� ����
��
��
�	��� ������	
� �
�
����
��� �������
�� ���� ��� ������
��� ��
�� ���
�����	
�
�	��
���

E�����
��	����
��
�������
	��
�
������
�����������
	�������	���
�
	������� ��� �������� ���
��
���������� ���� �����	
� ����
��
��� ���
���
	�����������������
��
������������
����	����
�����������
���	��
��� �
�����	����� �	�$
���� ��� ��	�
�
���������� ����	���� �
��� ����
/?>:��%�	��
�������
�����
�����	�$
��������������
	���
����
�
���	��
��� ��
� �	�$
��� ���
��	
�
��� ����
	� �	� ���
	� ����� ���
	� �
�����	�
����� �	�$
���� ����
�����
�� ��� �	��� ������������ ���
������
��

���	���E������
���	������
�����	������	�$
���������	����K
�����N�
���	
� ������������ /.:� ������
�� ��
� ��	����K
�� ����
� ��� ��	�
	�
�������	
��������
��	�$
��������
�����
�������������
	������
�
�����
�����
�
������
������
�������
�������
	���	���
���	
������
���
��	
�

������������	��
�������
���	����
�����	������	�$
�����

��� ����� �������� H
������)�
�������� �������� ���
��
�����������
H
������ D�
�������� �����
	� �
�
����� �
������ ���� H
������ O� �
�
��	��
��
��
	��
����� �
�������� H
������ M� ������ 	
������ ��� ��
�
��
�
	��
��������������
���������H
������>��������
����
����
	������
�������	���

)$	 �&�*' +����������%���%'&�
A�
��	����� ��� �����������
��
���������� ��� �&'� ����
� ���
�� 	
��
������#���������������
������	������������
����
��
���
����H�
��
	��

������/?.:������
���&'����������	
��
�
����
���
���	��
�����������
�&'��
�
���������
�������	������		
�������
��	������������
�������
���
�����������
����������������
����
������
�����
���&'������
��
������	� ����
�� ���� �
� ����
�� ��� ������	� ����������E������� ���
��

���������������
���
�����	������������	#��	�$
�����I�	�
�����
�
�
�
����
�����K
�������
���	��	��������������
����������	#����
�
������	�
���	�� ����
������
��
���	�� ���
�� ��� �
�����	����� �	��
$
���!�
���	��� E�������� 	
�������
�
���������� ���
��� ����� ���
�%�%"%�/):�������
�
���������������������	
�� ������	
��	��
$
��������
�������������
��
�����������������
������
��������� ����
���������
� ���������������������
��
����������������������
���
	�
���
����������������������
���

E����������
��
������������
�	�P�����	������������A���
�?�����
��
� ���	��� ������ ��� ����� �	�$
����
������ ��� ����� ��	����
� ���� ��� ��
����
�����
������������������������
��
�
����
�����K
��
�������������
�����#� ��������� ���� ��� ��� ��
� �������
���	�� �����������
� �	
���
�
����� ���
������
�� �	�$
��� ���� �Q ���� ��
�
������
�� ����
� ��� ���
@	��
��	
����������������
��
�����������������������
���	

���
���
�
��	��
���
�����

�	
�� #,�H���
�
������	����
��
��������������
	
��� 	���
��������
�
����� ��
����
�� ��
� 	���
�� /*� ?:��A�
� ����
��R��� ��	����K
�� ��
�
����
�������������������
����;�

� �
� � � ���

���
�� �
�����
����

�
�����
�

������
���

�
�

�� � � � �?#�

��� ��
�
B������������
�����#� ���������
�����#� �
���
� ��
������
��������������������
�����
������	
��
����
����

�	
��),� A�� ����� �	�$
���� ������ �	
� ������	� ���
������
�� �	�$
���
����� ���
�� ��
��������� �
�����	����� �	�$
���#� �������
� �
��

��
����� ���� ���
	� �	�$
���	 ������ ��� ��������
��� E�������� ��	�����

�
���	
���
�������
���	
���	
������������������������	����
�#��	
�
�	����
��/?:��
������
��(�����
����������
��
���	
��
����
�������
���
��� ��
�� /)?:�� ��� ��
� �
���	
� ���	�� �������
� �������
�� ����
�	�$
�����	
�������	��-������
�-��������������#��
��

�����������
�����������������
����;�

� � � ��
�

����
�

�
����� ����������

?

)-��� � � �)#�

�	
�� -,�A�
�
������
��
���	�� �Q �����	�$
�������� ��� ��������
�����
�������
���	�� ��� ��� �� �
�����	����� �	�$
����� ����
� ��
	��
� ���
�
�����	����� �	�$
���!�
���	�� ��� �
�
	����� ��
�� �
� ������ ��K
�
��$����
��� �
����� ������ ����
�� �����
���������� ����	���� ���
���
� 	
�
�	��
�� /C:/?D:/)):�� H�K
� ��$����
��� �
����� �����
��

���	����� ��� �� ���
�� ��� ��� 	
��� ����
	� �	
��
	� ����� *#� ��	�
	���
��
�
�
����
��� ��K
� ���� ��� �� ���
�� ��	�
	� ���� ��
� �
����� ��$�����

���	��������
�����	��������
������
���	�$
��!�� ��K
� ��� �����
����
��	����� �	�$
��!�� ��K
� ����� E�$���
��
���	�� ����	 ��� ��������
�� ���

B��������D#�����
������
��
���	�� �Q ������������
�����
B��������O#��
��� ��
�
B������� �������
���� �
���
�� ��
� �
�� ��� �� �
�����	�����
�	�$
�������������
�����������	���������������

�

�� ��

������ �� �� � � � �D#�

�

���
� ��������
���

�

�
	�Q � � � � �O#�

-$	 '(�*%�����*��%'&����.'���
%����
	� �
�
����� �
�����
�����
�� ��
��
	� �� ���
� ��	�$
��#� ���
�����
�������������
	��	���������
�������
������	��������
����
�����
��� ��
�����
�� ��� ��� �����
	����
�� ������	
� �
�
����
���
���	�� ���

������
����� !���������
����
���
�
�����������
��������
���
��	
�
��������������
�	�	
�	
���������
�����
�������
������
	���
����/?):#��
J��
�
	���
	
��	
��
��	
�
�	��
�������������K
��
��
�����������
��
	� �
�
����� �
������ /?+:� �	� �	����
�� �����
	� �
�
������
�����
�������
���	������������
��
����������/>:��

H
��
�� ���� /?+:��	����
�� �����GAH� ��
���� �	���
�� �B��	
�#� ���
��
�
�
����� ���� ���
���� ���
�� �
�
����� �	
� �����
�� �
��	
�
���	��

��������������
������
����
�	�
��
�������
�����������
�
����
���

���	����������
�	�	
�	
���������
���
�	����
���	 �����&��
�����
�
���	 ��J��
�
	���
������������
������������
��
���������������
���
�
������
������=
����
������/>:��	����
��"���
�!����		
�������
���
���
�
������E����������
�������K
���������	�$
�����
	
�
����

�����
�#$���	��
	���
���"�������"����
��
�	���	����

� ������� ���
� �
�������
����	 � S� �
����	�� S��
����	��

�����	 ��� ���� ���� �� � S� ���� S� ����

���� � � � �� � � �� � � S� � �� S� � ��

S� S� S� S� S� � S� � S�

������ ��� ���� ���� �� � S� ���� S� ����

S� S� S� S� S� � S� � S�

������ ��� ���� ���� �� � S� ���� S� ����
�

14

����
�� ��
���������������	
� �����������
	� �
�
������
�����
����
��������
�
����
���
���	��������	����������������%����
	��
�
�����
�
��������
�������	�	
�
�	����	
�
������
���
�����

-$#	 ���/0�����	���
����
���
�
	����
��� !���������
����
���
�
����������
��������������
����
�	�	
�	
��
��������������������
�����
����������
	���
����
����
��	
�������	�
��
��
�����
��������
�	
�	
���������
������ !���������
��������
������
����� 	
������� ��� ���� ���
�� ��	�
����
�� �� �
	����� ���
� ��� �����
��
�	������
������������G�	�
���� !���������
��
������
����
��	
���
��� ���
���� ��
� ���
��� E� ���
� ���
�������
�� �	��� �����
�� ��
��
��� !���������
���� ��	�
	� �����O� T��� ��� ��� ��
�����
	�������
�� ���
��
� �����
�#�� E�������� ��� !�� �������
� ���
�� �
�
����� ��� ��
��
��
�� ���
�	� 	
�	
������ ���
�� ��� ������ �
� �����
�� ��� ��� ��������
���
��
�����������
����
����������
�����
����������
���	��
������
�����	
�
�	��
���

-$)	 ���	
�0����
��	�������
���
�
	����
"���
�!�� ��		
������� ���
�� �
�
����� ��
�����
�� ��� �����
	� ��
�� ��
�
�� ��� ���
�
��
��� ��	����
�!� ����
�� ��� ������	� ���� �
�
��
���
��	����
!������
��������������	�������
	����
���A�
��
���������	����
������ �	����
�� ��� E�������U� �
����� />:� �
����
�� ��	� ��������
���
��
�����������E�������U��
���������?#��
���
	������������������
������ �)#� �
�
������ �� �������������� ������������ 	
����������� ���� 	
�
$
��� ���������������� 	
������������ �D#� �	�������� �����
� � �
����
����� ��	� ��	����
� �
�
������ �O#� ��
��������� ����	���� ����� ������
��	�$
��#���������������
�� ������M#������	������
�������������������
����������
�
������	�������		
������������������
����
������
�������
������D#���������
	��
�
������
������

����
� �	����	�� ��		
������� ��
�����
��� ��
� @
�	���!�� ��		
�������
�
���
����	
�������� 	
������������
��

�� ������	����
��"���
�!��
��		
������� ��
���
��

�� ���� �
�� ��� ��	����
�� ���
�� �� �
�� ��� ���
�
�
��
�����	����
���������
�
��
�����	����
#��"���
�!����		
�������
���	���
����
��
	��
�
����
���
���	����
�
��
�����	����
#���������
��	� �	� ���� ��
�� �	�$
��� ���	����
�� ��
� ��	������ �	� �
�
����
���
��K
�����
����� ���
�
��
�����	����
#� ���������	��A�� �
���
�"���
�!��
��		
������� (�����
��� �������
� ���
�� ��� ���
�
��
��� ��	����
��
����(�����
����������
����
������
�
��
�����	����
������������
��
������
����		
���������
�����
��������
�������������
����

"���
�!����		
����������
���
�
����� ��
�����
�������
	����� ��
� ����
��������	��
��	
��

?�	 I�	������	�$
����"���
�!����		
���������� �����������
�����
��
��������������	�$
����

)�	 E�
	��
�������� � #�����������	���
�����������������#��	
�����
�����
���

D�	 G
�
	��
��
�	���!�������������������	�$
������ � �������������

�������
�����������
B������;�

��!� �� �� �� � � � �M#�

O�	 !�����������
��������������
����
�����
��������	�����	
#����
��	�
	������O���
��	�$
������
�������
���	��������
���

-$-	 &
��1��1���0��
���	����
���
�
	����
%�	� �
����� �
�����	����!��
���	�� ���
�� �
�
����� ��
�����
�� ���
�����
	���
��
���	��������	�$
������
��	
�
�������
	��	����
	������
���
	��
�����	������	�$
�����E������
������
������)��	��
��	
����
�����������
��
����������������������	���
���	����K���������
��?#�
�
�����	����� �	�$
���� �
�
������ ���
��)#� ����
������
��
���	��

���������������
��D#����
��
���	������
�����	������	�$
�����������
�����
�
���������
��)�
��������������	�����
�������/?>:��I�����
���������
�����
���	��
�������
�����
����������
	������
��)��E�����
��� ���
��
���������� �����
�� ��
�� ���	���
	������� ����
�
��
���
��	����
�!� ����
�#� ��� �	�$
��� ��� ������	�
���	�� ��
�
��
��� ��	���
��
!������
#���������������	��%�	��
������	
�������	�$
�������������
��
	���
����
��	�$
��� ��� ���� ���� ��� ��
�����������������
�
��������
�
�
����� �
������
�������
�� �����
	�� �	���
���	
� �����
�� �
��	
�

���������� ��	��
�����
�������
�� �����
	�� ���
	� �
�
������ �
����
��	������	�$
�����
A����
��������������
	�
���	�����
�����
�����	������	�$
����������
��	
�������
	��
�����
�����	������	�$
���!�
���	���J��
�
	���
��
��	����
�����
�����	������	�$
���!�
���	�� ��� ��	�
�
�����	�$
��!��
�
���������	�����
���
	��
�
���	������������	�
��H��N����	
�������
������� /.:� ��� �����
�� ��� ������	��K
�
���� �
�����	����!��
���	��
�
��	
� ��
� �����	������ ��� ��	
� �
����� ��	� �
�����
�������
��
�����
	�� �	��� �� �
�����	����� �	�$
���� ��� ���������V��
� ����� ����
�������
�����	������	�$
��!��
���	�� ����
���
����������� �������
��
��K
���$���
��
���	�������������
���	����
�������� ��K
���$����
���
�
������
?�	 E�
	��
�������� � #�����������	���
�����������������#����������

���
���
)�	 H�����	��K
��
���	���"�� ��� ��������
����� ��
� ����������
B���

������N����	
#;�

��
��� �

�
�

�� �� � � � �>#�

D�	 E� �	�$
��� ��� ��
�����
�� ��� ��� �����
	� ����
�������
�� ��
��
�������
�����
�����"�� ����	
��
	� ����� ��	
������ ��� ���
����
��
�
���������	��� � �����	
��
	������������
����#��V��
�������������
�
�����	������	�$
���� �	
� ��
�����
�� ��� �����
	�� ��� �	�$
���
���
�������
��� (������
��
���	��

�Q ���� ��������
�� ��� ��
� ����
�������
B������;�

��

�
� ����
����!�����
�� �
 �
�
� 	Q � � � �C#�

�����
�
B��������!�����
�����
�����
���
�����
��������
����
��	����� �	�$
����
�����
���� �����
	� �	�$
������
� �
�� ��� ���
?�>M����
����
��M,����������	����	��������	�������#��

H��
�	
�
�	��
�������
�������������
���	�������������
�
����
���
��K
� T�
���	�#� ����
�����	������	�$
���� ������������
�
����
����
������� ����	���� ����� ��K
� ��$����
��� �
����� �
��� ���� /C:/?D:��
%�	��
������������K
���$����
������	
��	�
�����
�������
������
	��
���
������	��������������
����K
���$����
��������
����	��
�����

�������
�����	�$
�������
���$���
��
���	����������
��	
�
��������

	��	����
	��I	���
B��������D#�����������������
�����������������

������
���	�$
��!�� ��K
� ��� ��� ��
� 	
���	������	�������������� T� ����
�������
���	��������
�����	������	�$
���������������
�
����
�����K
�
������#�����������
���	������
�����	������	�$
����������
	
��	
�������
	
��	�
�����������������A�
	
��	
���������	
��	�
������	�����������
�����	��
������
%�	��
��������������������
	
����	����
�����	������
�
�����������
��� �������
����
�� �
�����	����� �
�
������� ��
�� �
�����	������
�	
� �
�
��
�� ����� ���
�
��
��� ��	����
�� �	
� ��
�� ���� �
�
��
���
��	����
� ��� ���� ��
�� �
����
� ��
� ����
� ��� �
�
��
��� ��	����
� ���
��
���	�
���	�$
�������� ������%����
�����	�	����	��
����������
��
���
�
��
�����	����
��

15

2$	 �34��%��&��
2$#	 ��	��
	�
A��
������
�
���������
�
������
������������	��
������
�����
��	
��
��������������	������������������
��
������������
��
����
�����
	� �
�
����� �
����� ��� �����
����
� ��
�� �H&HL� �����
�� /M:�
����������	����
��������
	���������H�����	
�&
�����	 �H�����	��
L	���� ��H&HL#�� ��� ������
�� �	�$
�������� ����
��
�� �	��� ������	
�
�
�
����
��� �������
�� ���)*� �����	�
�� ���� ��
� �	�$
���� �
	
�
��		�
�������
��

��?.+.�����)**O��

�
������
��
���������������������
�
�������	�$
������������
��H��
�������	����
������
�����
���
	
����
�������
��������
	
���
�����
���
�
��
�����	����
�� ���������..���	����
�� �	
� 	
��	�
�� ��� ��
�
�����
���A�
����
�
��
�����	����
���	
����
������
��	
������������
/??:������$���
������������������
�
����
��� ���
��	��	�������
�������
� ���� �
�
����
��� ������	�#�� -
�
����
��� ���
� �	��
�	��������������
������
�
����
���������	���
	
��	�����	�
��
�������������	����
���
����
���
���	
�������������
���	����
���

�H&HL� �����
�� ������
�� ���� B������� �	�$
��� ����� �-���� B�������
	��������	
������������
�������
������
�#��H���
�
��	���
���	�$
����
���
����� ��
��	
������������ /??:� �-����B������� 	������ ���E��	�&�
���� ������������������� 	
��	�
�� ��� �IW@L��
����� ���� �����#��
E�����
�
�����
���	�$
���������� ������
��������������
���E�� ��
	
������
���
��M.D��	�$
�����

2$)	 �5����	������	
���
A��
������
� ����	���� ���
���	��
���������� �
� ��
�� ��
	��
� ����
�
����� ��� #�� �E������
� (�	#� ���� �"�������
� ��� '
�����
�
(�	#�/O:������"�������
����(�	�'
�����
������
�
������
#�/+:�
���������&�����
��'
�����
�(�	#�/?O:���

��
�� �� �
���
�� �������
���	�� ���� � �Q ��
���
��
������
��
���	��

�����	��
	���������������
�������
�����������
B�������;�

��#� Q�� � � � � � �+#�

�
��

���
Q�

� � � � � � �.#�

�
��

���
Q
Q�

� � � � � � �?*#�

�

�

�

�

�

��
�

��
�

�
*Q

Q
Q

*Q
Q
Q

��
�
��

��
�
��

��� � � � �??#�

G��
	�����
����
�����	��
	�����������
������
	�
��������������	�����
��������
��������
���� 	
�����
�
		�	� ��� �������
���	�� ��������
�
����	
�����
�
		�	����
������
������
��J��
�
	��������	����
���
� ����
�� ��	�
���������� ���
	� ���� ��
	�
���������� /D:/?*:��
"����������� ��� ?�
�
�� ��� �
		���
� ���
	
������
� ��� ����		
��
�I�	� �������
� ��
�� �������
���	�� ��� ?***� �
	�������	� ����
����
���
��
���	�� ��� *� �
	�������	����� ��� ?#�� H�����	��� ��������
������������
	������?���
����
	
������
��������		
���H����������
���������������������
������
����������
�
�����������������
����
�� ��������� �������� /?M:�� �
� ���� ���� ��
� @	
��)M#� /O:�
������ ��� ���
���
�� ��
�� ��� ���
���������� �	��
	���� �
����
�
@	
��)M#�������
��������������������������������	�
�������������
�
	�
������������

2$-	 ���
��
�	���4��
��
�
(��
	��
������	��
��	
���	�
���������
�
������
����������������;�

?�	 -����
�����	�������������
�����������
B�����
���%�
�����	
���

����� ���������
��������
����
	� ��� �	
��
����� �
��������
���I���
�����
�������
�����������
�
������
��
���	���	
��	�
����������
�	�$
���#� ���� �
��� �����
�� ��� ��
�� ���
���������� ��	�
�� �	
�
��	�
��������������	�$
���#���

)�	 %����
	��
�
������
�������������
��������������
�����
�������
�
�����
	���	������������
���

D�	 A���
���
��
�����	�������K
���
������������	����� �����
�� ���
�
	��	�
��������������	���?����)*��E��
	�
����������	
����
������������B��	
�����������
������������B��	
�����#������
���
�����
����	�
�������������
���
�
������/?*:#�������������

�� ���� �� ������ ������ �����
��� 	
������� ���� ��� �B��	
� ���
�����
���

O�	 (������������	��
��������
������
	��	�
���������������
���
�����
��
��D������
���

M�	 (���������� �	��
	��� �	
� ��������
�� ��� �������
���	�� ��� �
���
�����
������
������
��
���	���

>�	 H�
��?� ���M� ��� 	
�
��
��?*� ���
�� �E���� 	
����� ?*��
������ ����
�����
���
��������
������
�����������	��
	����	
����
#��

(��
	��
������	��
��	
���	���	��
���������������;�

?�	 -����
�����	�������������
�����������
B�����
���%�
�����	
���

��������������
��������
����
	�����	
��
������
��������
���

)�	 (������������	����������
������
	��	�
��������������	���?����
)*�� E��
	�
���������� 	
������� ���� ��� �B��	
� ��� ��������
��
�����������������������
���	
���������������B��	
����������

���

D�	 (������������	��
��������
�� ����
	��	�
���������	��
��������
����������
���
�������
��)������
���

O�	 (���������� �	��
	��� �	
� ��������
�� ��� �������
���	�� ��� �
���
�����
������
������
��
���	���

M�	 H�
��?����O����	
�
��
��?*����
���

6$	 ���(*����&���%��(��%'&�
(��
	��
����� 	
�������	
������� ���A���
�)� ����A���
� D��A���
�)�
�
���
�� ��
�����
�����
���������� �	��
	��� �����
�
����� 	�������
��

���� �����
	� �
����� ��� �����
��� -
�
����� 	����� ��� �
���
�� ��� ��
�
����
	�����
�
�
���	�$
����T���
�����
	���������	�$
�������
����	�
�
�������������
���������
���
�������
	��
������
�����
	�����
�
��

���	�$
����T��
�����	�������K
��A�
�����
�����
�����������	��
	���
�	
� ��
	��
� ��	� ?*� �
��� �����
��� A���
� D� �
���
�� ����
	
��
�� ���

�����������	��
	����
��

����
��
���������
	��
�
������
����� ���
�����
���������������
���V
�����
�����
���
���
�����������	��
	���
������	�
������������������
	��
�
������
������A���
�D������������
������������ �
��� 	
������ ��	� ��
�����
	
��
�����������������
��	�� �
�
����A�
�����
�����
�����������	��
	��������������
���	��������	��
������#���H������������
�
�������
�����M,������������K
������	
�����
��
�����
�����������
	
��
	
�����������������
	
��
���

��
����	��
��������������
����
	��
�����������	�
��������
	�
�	��
	��� ���� �
��
	� �E�
	��
� #�� �
����� #�� ���� �
���������
����
�� ������������ ����
	
��
#�� (��
������� ��
	��
����� ����
��
)*�+,����	��
�
��������
�������������M�D,��������
����"���

16

�
�!�� ��		
������� ���
�� �
�
����� ���	�
���������� �	��
	��� ���� ���

����� �
	
� ���	��
�� ���� ���
	���� ��� ��
� ���
	� �	��
	��� �
	
�
�����
	������?�D,��J��
�
	���
�
��
���������	��
�
�������D�),�
��� ��
	��
� ���� ���� ��� ���� �
	�� ������ ��� �
��������� �%����
��
	��
����� ����
�� ������������ ����
	
��
#����
�� ��� !�� ����
����
����
���
�
��������������
�����������
�����������	��
	�������
���
����� �
	
� ���	��
�� ���� ��	
��
	� �
�	�������� ��� ��
	��
�
���������
����������
	
���	
������>,���

�
����������	
���������
	��������
�	
�������
����
��
���
�������
��
������
�� ������� �
������	��
����� ������������
	��	����
� ���

�������
� �����
	�� ����	�� �� �
	����� ���� ��� �����
�� ���
�� �H&HL�
�����
�#������
������������������	��
���������	���������A�
�
��
�
������"���
�!����		
����������
���
�
�������������
	����	������
��
�����
�� ��� �H&HL� �����
��� A�
� 	
����� ��
�� ���� �
���� "���
�!��
��		
������� ���
�� �
�
����� ��� ������� ����
��
����
� ���
�������
�
�����
	�������
���������������
	��
��
����
�������
	����� ����������
���
��� E�������� ��� !�� �������
� ���
�� �
�
��������
�
����������
����	�������
	����� !���������
����
���
�
����������
�
��
����
�
������
	������
������ ��� ������� ���� ������
	����� ������������
�� ����
��
	
��	
��
��������������
	���
��
	���� !���������
����
���
�
�
������������	������
��	
������������������
��
������������

����
�
�������� �
�
����� �
������ ��
�����
�� �����
	�� �	��� ����
�
�����
����	��
�������
���	����
�����	������	�$
���������
�
����
���
���	�$
����A�
����	���
	������������	��
����������
�
��
����
�

��
���������
�������������
����������
�� ��
��H&HL������
��������
������
����	������	�$
�����

7$	 �'&�*(�%'&��
��� ����� 	
�
�	����
� �����
�� �����
	� �
�
������
������ ��� ��������
���
��������	
��
�
����
���
���	��
��������������
������
����
�	�

��
�����E�����
��	����
��
�������
	��
�
������
�������	���������
���
��
����������� ����
�
�������� �
�
����� �
������
�������
��
�����
	�� �	���
���	
� �����
�� �
��	
�
���������� ��	� �
����� ��
��

���
	��
�����	������	�$
�����	
��
�
��
����������������
��
������
������ ��� ��	��
�������
�� ��
�
���	�� ��� ��
� �	�$
��� ���
��	
�
���
����
	� �	� ���
	� ����� ���
	� �
�����	����� �	�$
���� ��� ��� ���� ��
��
��	�
���	��
����������� ��� ��
�
��
	��
��� �
�
������
�� �
�
����
�
���
���	���������H&HL������
�����������
�	
��������	��
��������
�����
��
����
� "���
�!�� ��		
������� ���
�� �
�
����� ��� ���� �
	��

��
����
� ���� ��� !�� �������
� ���
�� �
�
����� ���
�
����������
����	���� ���
	�� E�� ����	
� ��	 � �
� ����� ������ ���
	� �
�
�����
�
������ ��� ���
	� �����
�� ���� �����	
� ��
�	�
��
���� ���
�����
�
	
���������������	�	
�
�	����

8$	 ��!&'9*�� ��&���
A������	 �����
�����������
���������	�������
�H���(��	�$
���A�
�
-
�
����
������V
���L
�
	�������A����	���	����	
�����L	�������
���� ��	�X�����H��
������� �&#�))C***DO�)*?*� �����	�
����� ��
�
"�����	�����(��������������	
�H��	���H��
��
�����A
����������
�
���������
�������� �-	��V�� ��%��������	����
	������
��������
�	����
�����
	����������

:$	 ��;���&����
/?:	 E��
����G������H���
�������)***��E�H����������A������	�

(�����
���E�������&��
�������(�����������������!	�����
$�
	�����

�����M�?�DM�>+��

/):	 &�
���&��?.+?������$�
	�����

����	�����������@	
����
�
J�����

/D:	 &�	�
����������G
��
��"��)**?�������
�
�����	��	�������
���	��
�������	
�
���	��
���������Y�E������	����
�
������
������%�&��!	��	'���������	��	����$�
	(
����!����OD�
?O�+>D�+CD��

/O:	 ����
�H��-�����	
�J������H�
��Z��?.+>������$�
	�����
�

����)	�
�����	��	���
!���&
�$����T����������

����
�)$��5����	������	
������
��1���	��
��
�
	�����
	1���

'�	��
��
�
	����
�
	1���

�5
��
�
���

�
�����
���

�5
��
�
����

�
�����
����

�5
��
�
����

�
�����
����

�5
��
�
����

�
�����
����

�
�
	����
�	����

V��������
�� D>+*�� ?>*C�� ?>>�.D,� M.�M.,� .?�)C,� M+�*M,�)?*�D>,� .?�>.,� *�**,�
V
�����	����!��
���	�� D)M)�� ?DCO�� ?D+�*C,� MM�.+,� .C�DM,� M>�>C,� ?+.�M>,� +>�D>,� C�CM,�
"���
�!����		
������� DMO.�� ?>*D�� ?>)�O*,� >*�O*,� .)�>?,� M+�O+,�)*C�?C,� .)�*?,� ?�)?,�
��� !���������
� DDC?�� ?>??�� ?MO�>.,� >)�M*,� ??*�DM,� M+�+*,�)?>�DM,� ..�*M,� O�>M,�

�
�

����
�-$�����

��
����
5����	������	
������
��1���	��
��
�
	�����
	1���

'�	��
��
�
	����
�
	1���

� �5
��
�
���

�
�����
���

�5
��
�
����

�
�����
����

�5
��
�
����

�
�����
����

�5
��
�
����

�
�����
����

V
�����	����!��
���	��
-���
	
��
� O)+��)DO��)+�.,� D�>,� �>�?,� ?�O,�)*�+,� M�D,�
������
	 +,		 *+**		 *�*>�� *+*,		 *�OD�� *�C*�� *�*+�� *�*>��

"���
�!����		
�������
-���
	
��
� ?D?�� O�� O�M,� �*�+,� �?�D,� �*�O,� D�),� �*�D,�
������
	 �+�� *�M+�� *+*�		 *�)M�� *�OD�� *�CO�� *�?.�� *�+O��

��� !���������
�
-���
	
��
� D*.�� �O�� ?)�),� �)�.,� �?.�?,� �*�+,� �>�*,� �C�O,�
������
	 +�		 *�C*�� *�*>�� *�)*�� *�*>�� *�+M�� *�OD�� *�CC��

�

17

/M:	 ���
	���������H�����	
�&
�����	 ����H�����	���L	����
��H&HL#��)**O���H&HL�(���������;�&
�����	 ��������	
�
�
�	�������
���H&HL��

/>:	 =
����F��=����
�����&������F
��
	��'��)**+��E�������U;�
@	��������H��������������
	
��
����E�������&��
��H�����	
�
�����(�����������'���	(���+	��	����$�
	�����DO�O�OC?�
O+O��

/C:	 =�	��������"
��
��(��@	
�	�$�'������H�
��
	��"��
)**D��E��(���	�����E�����������G��
�	�E����������A
���
��B�
����	����
�&��
��@	
����������������+	��	'��
������!	
����
�
��
	��
���
�	�
�������A	����
���V�	����
F��
�)**D�)D?�)OM��

/+:	 =����
�����&��"��-��
���H��@�� �	��G������H�
��
	��
"��)**?�������E���	����H����������'
�����"
���	
���������+	
��	'��	����$�
�?O+�D�+?�+M��

/.:	 G�	�
��'������"�	��"��)***��#�	'�����&�����	��	���
�
����!	���������	��	'��	#��!���������@	
����
�J�����

/?*:	G� ������)**M�������H������X���%�����K
���
��&��������
���(����������"��
�Y��������+	��	'��
������!	����$�
	
�
�����	�������&�	-��(�'��.������������H
���)**M�DO��

/??:	G� ����������"
��
��(��)**>���	���������������������
�
��������
���	�����
�����������
��H&HL�-������
;�����	��
	�
	
������
���������������+	��	��
	'��
������!	�������&�	��	
�������!	����$�
	�����

����	-'����.�'����
�F��
�	��
&	�K���H
���)**>�CM�+O��

/?):	"
��
��(��"�	�����H��I
		�����I������L	���������)**+��
�	���������������������
����������
��
���	�����
���������
��
�A� ��� ���������
;�E��
��
��
���������(�
	%�&��!	��	
����
��	��	����$�
�+?�M�>CD�>.*��

/?D:	"
��
��(��"���
��V�����������
���H��)**D��E�'
������
��
E��
���
��������
�W�
����E����������'��
��������	��
��
��
�����(������������������+	��	��
	'��
������!	�������&�	��	
�������!	����$�
	�����

����	-'����.�'��
�������H
��
�
��
	�)**D�?**�?*.��

/?O:	"���K� ��X��A
	� ����"��%K� ��=������V�K� ��J��?..O��
'������'
�	
��������	�-
�
�������H�����	
�(����������
"��
����%�&��!	��	����
��	��	����$�
�)C�?�D�?>��

/?M:	"[��
��\�������=������F[�
��
��"��)**M��E������	��
�������H�����	
�@	�$
���%�
		����I�
����
��
	����H
B�
������
-
�
����
���"��
���'���	(���+	��	����$�
	�����D?�.�
CMO�C>>��

/?>:	%������V��"���
��E��=� �����V��&�	
	�"��A�������
"��=� ������A������"���������=��)**C�����A���������(��
�����
�'
�����
Y�����
�'
������������
��

��J����
�
�������
E������
������(����������'
������������������+	��	��
	'��
��
�����!	�������&�	��	�������!	����$�
	�����

����	��	
�
�&�
�
��	-����.�"��	���H�����H
��
��
	�)**C�D+O�
D.)���

/?C:	H
����'������@�	�
	�E��?.++�G
�	������	���
�����
�;�
�
�
	����������
��������������
��������	

����	�������	
�	
�
���	�
�����������'���	(���+	��	����$�
	�����?O�?)�COD�
CMC��

/?+:	�H
��X��X����=������&�
�-��)**+��E��(���	�����E��������
���H�����	
�(���	��(���������������%����
	�(���������������
����+	��	��
	���
������!	$�������	��	��
������	���
!�	��	
����$�
	
����

����	-��/�'��.�G
��K���L
	�����"���
)**+�)M�D)��

/?.:	H�
��
	��"������H�����
������?..C��(����������������	
�
�	�$
���
���	���������������
���'���	(���+	��	����$�
	�����
)D�?)�CD>�COD��

/)*:	H	���������=������I���
	�-��?..M��"�����
�G
�	�����E��
�	����
�����(����������H�����	
�-
�
����
���(���	���'���	
(���+	��	����$�
	�����)?�)�?)>�?DC��

/)?:	A�����E��A�	����&������&
�
	�E��)**.��I
���	
�
�
���������
�	���������	������������
��
���	��
����������
���
�������
��	����
��	$���	#��!��������D>�C�?*D)M�
?*DDD��

/)):	���
	�
��I������'��F
��
	���?...��E��(���	�����H��������
E����������
��H�����	
�(���	��(������������������!	�����
$�
	�����

�����O�)�?DM�?M+�

	

18

A Survey of Public Datasets for Comparative Effort
Prediction Studies

Sousuke Amasaki
Okayama Prefectural University

111 Kuboki, Soja
Okayama, Japan

amasaki@cse.oka-pu.ac.jp

Tomoyuki Yokogawa
Okayama Prefectural University

111 Kuboki, Soja
Okayama, Japan

t-yokoga@cse.oka-pu.ac.jp

ABSTRACT
Background: In the past survey, available public datasets for ef-
fort prediction study were listed up. In addition, using sufficient
number of datasets and statistical tests was recommended for valid
comparative effort prediction study. Aim: This paper aims to iden-
tify a set of useful public datasets in terms of comparative effort
prediction study. Method: We sieved 38 public datasets listed in
the past study and PROMISE repository with respect to their avail-
ability, variety of features, and applicability of statistical practice.
Results: Only 12 public datasets were found to be available and
useful for simple models. For complex models 8 of 12 datasets
were specified. Among 8 datasets, only 3 datasets could keep orig-
inal sample size and feature scale. This is because newly proposed
effort prediction methods usually try to improve performance by
using a multiple predictors and many datasets included categorical
features with a level which was not found frequently. To obtain
more datasets, it was needed to adapt remained 5 datasets by case
reduction, feature reduction, or numeric conversion. Conclusions:
It is difficult to compare multiple effort prediction methods with a
large number of public datasets along with good statistical practice.
However, selected datasets must be used for valid study at least.

Categories and Subject Descriptors
D.29 [Software Engineering]: Cost Estimation

General Terms
Economics

1. INTRODUCTION
Software cost estimation is still popular and important research
area. To evaluate performance of a proposed software estimation
model construction method, datasets from real projects are used in
an experiment.

Although it is usually difficult to obtain a dataset from real projects,
we can find public datasets in the past study. There are many public
datasets available to researchers for model evaluation. PROMISE
repository[3] now serves 18 downloadable datasets. In [14], the

authors identified 31 datasets freely available to researchers from
publications.

One of criticisms for cost estimation papers is the small number of
datasets used for evaluation. In [11], it is thus recommended to use
more public datasets shown in [14] and [3]. However, examination
of that listing is needed because comparative effort prediction study
was not considered in [14] and [3]. For example, existence of size-
related metric such as lines of code(LOC), Function Points(FP),
and effort record was not checked while those are essential infor-
mation for models.

In this paper, we thus examined datasets listed in PROMISE repos-
itory[3] and [14] in order to specify common datasets available and
useful for comparative effort prediction study. As a result of exami-
nation, 12 datasets were found to be available and useful for simple
models. For complex models 8 of 12 datasets were specified. For
valid study, these datasets must be used at least.

2. COMPARATIVE STUDY DESIGN
In comparative study, the followings must be considered.

• Simple and Complex models

• Benchmark

• Evaluation procedure

Most of newly proposed software estimation model construction
methods utilized predictors in order to improve predictive perfor-
mance. For example, feature weighting method[1] for Estimation
by Analogy(EbA)[18] was proposed to improve EbA by weighing
effects of predictors differently. We called models with multiple
features complex models in this paper. On the other hand, simple
models including only effort and size-related metric are also pop-
ular because it is easy to evaluate new methods and to use in case
of small sample size. Both types of models are important but their
requirements for dataset are different. We thus selected datasets for
simple and complex models differently.

Benchmark is important for comparative study to evaluate how
well performance of a newly proposed model is. For this purpose,
conventional models such as linear regression and EbA are often
used. In fact, most comparative study used one of these methods
as benchmark. Kitchenham recommended to confirm whether a
new proposed model outperformed linear regression at least[11].
Both models can be used for simple and complex models. In this

19

study, we thus supported that linear regression and EbA are used as
benchmarks.

In comparative study, two types of cross-validation[7] were of-
ten used as evaluation procedure: leave-one-out and K-fold cross-
validation (CV). Leave-one-out CV can be used for smaller datasets
and it is preferable to K-fold CV in terms of variety of datasets. It
was also recommended in [11] because of its deterministic prop-
erty.

On the other hand, K-fold CV is preferable to leave-one-out CV
in terms of evaluation reliability because an estimate obtained us-
ing leave-one-out CV has high variance, leading unreliable esti-
mates[5]. Furthermore, some performance measures for effort es-
timation study cannot be differentiated when leave-one-out CV is
adopted. In each round of leave-one-out CV, one test case is used
for calculating performance measures. That is, MMRE and MdMRE
[17] of each test set always have identical value. In case of K-fold
CV, MMRE and MdMRE have different values if each test set has
more than 2 cases.

In [11], bootstrapping[6] was also recommended for performance
comparison based on statistical tests. On the other hand, Kohavi
recommended 10-fold CV after comparing to bootstrap[13]. Fur-
thermore, property of resampling with replacement used in boot-
strapping seems unsuitable for EbA. When a replicated project is
placed in both training and test sets, identical project is always se-
lected as the nearest neighbor in EbA. If the number of neighbors
is set to 1 for EbA, EbA can estimate exact effort for replicated
projects.

In this study, we considered 10 × 10-fold CV followed with t-test
as evaluation procedure in order to avoid inflated Type I error[4].

3. DATASETS
In this study, we examined published datasets served on PROMISE
repository[3] at November 2010 or listed in [14]. PROMISE repos-
itory serves datasets as readable text file which can include com-
ments. From this repository, we selected datasets which contain a
comment regarding information of projects or a citation they were
used. Datasets from [14] were collected from three journals: Trans-
actions on Software Engineering, Information & Software Tech-
nology, and Journal of Systems & Software. After removing du-
plicates, we prepared an initial set of 38 datasets shown in Table
1.

We then checked these datasets in terms of availability. First and
second columns of Table 1 show whether a dataset can be obtained
actually from referenced papers in [14] or PROMISE repository. If
both columns of a dataset were marked as ‘N’, this dataset is not
easily available.

We found that 7 datasets were not easily obtained from referenced
papers and PROMISE repository. ID 3, 4, and 30 were not shown
in an original paper[2] cited in [14] and this paper said that an old
book published in 1986 contains these datasets. We assessed ID
12 as unavailable though it was registered in PROMISE reposi-
tory. This is because the number of features in this dataset was very
fewer than that described in a referenced paper[18]. The number of
features was 29 according to [18] while dataset held on PROMISE
repository included only 6 features (excluding logarithm of effort
and size.) Referenced papers of the others did not have a dataset,
a pointer to a paper, nor a book which may include corresponding

datasets.

In the following sections, remained 31 datasets were examined.

4. SELECTION FOR SIMPLE MODELS
Simple models usually estimate effort from single size-related met-
ric such as KSLOC(kilo source LOC) and FP. Thus, size-related
metric must be included in a dataset. Sample size is also important
for evaluation procedure and reliability of results.

Datasets were selected by evaluation criteria related to these points.

4.1 Effort and Size Records
Third and fourth columns of Table 1 show whether a dataset in-
cludes effort and size records. Here, unavailable 7 datasets in the
previous section were ignored and blanks were placed.

We found that 6 datasets did not include effort or size metric. ID
25, 26, and 27 did not include effort records. These datasets only
included KSLOC and size related-metrics such as the number of
screens and were used to construct sizing models[15]. ID 5 in-
cluded 3 features: actual effort, expert estimates, and company la-
bels. ID 18 and 19 only included actual effort and experts estimates.
These datasets were not suitable for comparative effort estimation
study because an expert estimate was rarely used as the only pre-
dictor in a software estimation model.

4.2 Sample Size
In many situations, a fitted regression model is likely to be reliable
when the number of predictors p (the number of candidate predic-
tors if using variable selection) is less than m/10 or m/20, where
m is total sample size[7]. Following this rule, at least, a dataset has
to include more than 10 projects in case of simple models. Further-
more, the size of training subsets becomes smaller when the size
of training set in evaluation procedure is considered. In case of 10-
fold CV, sample size N must be N > 12 because 9/10 · N > 10
must be held.

To make performance measures such as MMRE and PRED(25)[17]
reliable, the size of test set must be larger as described in Section 2.
If the size of test set must be always equal or larger than 3, though
performance measure based on 3 results is still less precise and less
fine-grained, sample size must be equal or larger than 30 because
1/10 ·N ≥ 3 must be held.

Fifth column of Table 1 shows whether a dataset has the sufficient
number of projects. Here, we marked as ‘Y’ if a dataset had 30
or more projects; otherwise we marked as ‘N’ with its size. This
column indicated that 13 datasets were too small to be used in com-
parative effort prediction study.

Finally, 12 public datasets were remained for comparative effort
prediction study of simple models.

5. SELECTION FOR COMPLEX MODELS
Complex models assume multiple predictors. For instance, CART
selects and combines predictors so that a software effort estimation
model achieves higher prediction accuracy. Sample size is more
important for reliable evaluation of complex models. Furthermore,
types of candidate predictors are also important. If there is discrete
variables, using k-fold CV may be difficult.

20

Table 1: Public datasets from [14] and [3]
ID Name Paper PROMISE Effort Size Sample Size Multiple Features Categorical

1 Abran-Robillard Y N Y Y N(21)
2 Albrecht-Gaffney Y Y Y Y N(24)
3 Bailey-Basili N N
4 Belady-Lehmann N N
5 Shepperd-Cartwright Y N Y N
6 BT-software-houses Y N Y Y N(10)
7 BT-systemX Y N Y Y N(10)
8 COCOMO N Y Y Y Y Y(16) Y(16)
9 CSC Y N Y Y Y Y(2) Y(2)

10 Desharnais N Y Y Y Y Y(7) Y(1)
11 Dolado Y N Y Y N(24)
12 Finnish N N
13 Hastings-Sajeev Y N Y Y N(8)
14 Heiat-Heiat Y N Y Y Y Y(1) N
15 ICL Y N Y Y N(10)
16 Jørgensen97-A Y N Y Y N(16)
17 Jørgensen97-B Y N Y Y N(20)
18 Jørgensen04-X Y N Y N
19 Jørgensen04-Y Y N Y N
20 Kemerer Y Y Y Y N(15)
21 MERMAID1 N N
22 MERMAID2 Y N Y Y Y Y(1) Y(1)
23 Misic-Tesic Y N Y Y N(7)
24 Miyazaki et al.1 Y Y Y Y Y Y(7) Y(1)
25 Miyazaki et al.2 Y N N Y
26 Miyazaki et al.3 Y N N Y
27 Miyazaki et al.5 Y N N Y
28 Moser-etal Y N Y Y Y Y(1) Y(1)
29 Telecom Y Y Y Y N(18)
30 Wingfield N N
31 WSD1 N N
32 WSD2 N N
33 cocomonasa_v1 Y Y Y Y Y(15) Y(15)
34 cocomo_sdr Y Y Y N(12)
35 Maxwell Y Y Y Y Y(22) Y(22)
36 NASA93 Y Y Y Y Y(20) Y(20)
37 usp05 Y Y Y Y Y(14) Y(14)
38 usp05ft Y Y Y Y Y(12) Y(12)

We evaluated 12 datasets selected in the previous section by criteria
related to these points.

5.1 Multiple Features
Complex models utilize multiple features. Therefore datasets must
include multiple features for comparative effort prediction study.

Seventh column of Table 1 shows whether a dataset includes at
least one feature other than KSLOC and FP-variants. The num-
ber following ’Y’ indicates the number of features. For example,
Desharnais (ID 10) has 7 features because unadjusted and adjusted
FP were ignored and elements such as Transactions were counted.
Inappropriate features such as duration were also ignored.

As a result, all 12 datasets were remained.

5.2 Sample Size
Usually the size of datasets for complex models must be larger than
that for simple models. For instance, if linear regression models

using size-metric and one feature as predictors are considered as
benchmark, a dataset must include more than 23 projects according
to the rule described in subsection 4.2.

Here, we left all 12 public datasets because they all have equal
or more than 30 projects and complex models based on linear re-
gression with two predictors can be constructed at least. Although
additional samples might be needed for other models, we did not
consider that case here.

5.3 Categorical Features
Ten-fold CV can be applied to a dataset with categorical features if
each training subset includes all levels of each categorical feature
included in corresponding testing subset. To satisfy this condition,
each level of a categorical feature must be found in more than N/10
records. If there is categorical feature with a level which was found
less than N/10 times, case reduction, feature reduction, or numeric
conversion is needed.

21

Eighth column in Table 1 shows whether a dataset includes categor-
ical feature(s) and the number of them. Datasets having categorical
features can be classified into two groups:

• a few categorical variable(s) are included(5 datasets) and

• many categorical variables are included(6 datasets).

In the first group, Desharnais(ID 10) and MERMAID2(ID 22) have
one categorical feature which satisfies the condition for levels. A
categorical feature of Desharnais dataset has three levels each of
which was found in more than one-eighths of records. A categorical
feature of MERMAID2 dataset also has two levels each of which
was found in at least one-thirds of records. Thus, they can be used
for comparative study as is.

CSC(ID 9), Miyazaki1(ID 24), and Moser-etal(ID 28) datasets have
one or two categorical features with a level which was found less
than N/10 times. These categorical features were not used as pre-
dictor in original papers[12, 15, 16].

Miyazaki1 has one categorical feature representing companies. For
this dataset, case reduction is useless because there is no level with
more than N/10 records. Concatenation of levels or numeric con-
version cannot be applied because this feature is nominal scale and
there is no knowledge of relations among companies. Thus, we
concluded that feature reduction is the best way for comparative
study. We think that this feature has too many levels for sample
size and is useless for estimation.

Moser-etal has one categorical feature representing project charac-
teristics. If case reduction is applied, the size of this dataset be-
comes lower than 30. Concatenation of levels or numeric conver-
sion cannot be applied because it is nominal scale. Feature reduc-
tion makes this dataset inappropriate for complex models because
it has only one feature.

CSC has two categorical features representing clients and project
types. Case reduction decreased the size of this dataset to 106. It
also reduced the numbers of client types and project types to 1 and
2, respectively. Thus, one categorical feature of project types was
remained. In [12], the authors considered simple models and used
several types of partitioning based on categorical features. On the
other hand, we considered complex models and thus case reduction
was prefer to feature reduction.

In the second group, all datasets have multiple categorical features
with a level which was found less than N/10 times. It is difficult
to adapt these datasets to comparative study by case reduction. Be-
cause there are many categorical features and case reduction based
on a categorical feature may influence on the other features. Fur-
thermore, large portion of cases may be reduced for satisfying equal
to or more than N/10 cases for all levels. Concatenation and fea-
ture reduction are also difficult because there is no general way for
all possible effort estimation models. Thus, numeric conversion
was first considered for this group.

Most of categorical features in COCOMO(ID 8), cocomonasa_v1
(ID 33), and NASA93(ID 36) were COCOMO or COCOMO II at-
tributes. For these attributes, adjustment factors were often used in
the past study. With adjustment factors, 10-fold CV can be applied
to COCOMO and cocomonasa_v1.

NASA93(ID 36) dataset included some nominal scale features hav-
ing a level which was found less than N/10 times. For develop-
ment mode among these features, case reduction is helpful because
this feature can satisfy N/10 rule by removing one level with 3
projects. Other nominal features were looked as less important for
software estimation models. In fact, they were not used in the past
study. Thus, we concluded that NASA93 dataset can be used after
numeric conversion, small case reduction, and feature reduction are
applied.

Maxwell(ID 35) dataset contains ordinal features and nominal fea-
tures. Numeric conversion can be applied to ordinal features. Four
out of 7 nominal features have a level which was found less than
N/10 times. All of them were looked important and feature reduc-
tion was not preferable to case reduction. Case reduction based on
these features reduced the size of this dataset from 62 to 46. Three
nominal features were also removed because they have only one
level in this reduced dataset.

Many features in usp05 and usp05ft datasets(ID 37 and 38) were
categorical with many levels and it is difficult to determine the way
for adapting it to comparative study. Thus, we concluded that 10-
fold CV cannot be applied for these datasets.

As a result, 9 datasets were remained.

5.4 Detailed Examination
Desharnais, Heiat-Heiat, MERMAID2, and Miyazaki1 are prefer-
able to the other datasets. Because they could keep original sample
size and feature scale. Here, we examined 4 datasets selected in
terms of usefulness and reliability. Since Desharnais has already
been examined in [11], we examined other 3 datasets.

5.4.1 Heiat-Heiat dataset[8]
This dataset came from projects completed for private and public
organizations in Billings, Montana. There was no missing value.
These projects were selected on the basis of 6 attributes so that the
dataset consists of homogeneous projects.

Figure 1 shows a scatterplot of FP and Effort for all 35 projects.
There are no apparent skewness, no heteroscedacity, and no outlier.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

50 100 150 200 250 300

15
0

20
0

25
0

30
0

35
0

FP

E
ffo

rt

Figure 1: Heiat-Heiat dataset

This dataset included a feature representing the sum of total num-
ber of corrected relationships at data stores and total number of

22

data flows which connect the system to external entities. Heiat et
al. proposed this metric, called REIO, as alternative measure of
size such as LOC[8]. In fact, REIO and LOC were highly corre-
lated (Spearman’s ρ is 0.93.) These facts imply that the difference
between simple and complex models will be subtle.

Thus, we concluded that this dataset was inappropriate for compar-
ative effort prediction study in terms of variety of features.

5.4.2 Miyazaki1 dataset[15]
This dataset came from 48 projects in 20 companies. There is no
missing value. All systems were newly developed except for one
project, in which more than half of its code was adapted from an
existing system[15].

●
●

●
● ●●

●●
●

●
●●

●

●

●
●

●
● ● ●
●●

●● ●●

●

●

●

●

●

●

●● ●●
●

● ●● ●●

●

●● ● ●●

0 100 200 300 400

0
50

0
10

00
15

00

KLOC

E
ffo

rt

Figure 2: Miyazaki1 dataset

Figure 2 shows a scatterplot of KLOC and Effort. There is one
outlier. There is skewness and small heteroscedacity. It looks as if
all projects except for the outlier have similar relationships between
size and effort.

Six continuous features in this dataset can be classified into three
pairs with respect to their semantic similarity. Features of each pair
were also highly correlated. Even if a half of features were dropped
by a software estimation model construction method, the others still
remain.

In this study, we concluded that the dataset may be useful for com-
parative effort prediction study because there is room for model
selection and optimization.

5.4.3 MERMAID2 dataset[10]
This dataset has one categorical feature representing new projects
and enhancement projects. Here, dividing the dataset into two
project types is not appropriate approach because the number of
new projects is less than 10.

There is two missing values on a categorical value. If raw FP is
used instead of adjusted FP, other 2 projects must also be removed
because of missing values. Figure 3 shows a scatterplot of adjusted
FP and Effort of 28 projects. The dataset has two outliers[10].
There is skewness and heteroscedacity.

EEEEEEE N NE NEE

NE

N

N

E N

E

E

NE
E E

EEE

0 500 1000 1500

0
10

00
0

30
00

0
50

00
0

AdjFP

E
ffo

rt

Figure 3: Mermaid2 dataset (N = New projects, E = Enhance-
ment Projects)

From these characteristics, we concluded this dataset was some-
times inappropriate for comparative effort prediction study. Be-
cause this dataset is too small to perform 10-fold CV when missing
values must be removed. We determined to leave this dataset.

Table 2 shows remained 8 datasets. Size and the number of fea-
tures are from reduced datasets. Marks ‘FR’, ‘CR’, and ‘NC’ in-
dicate feature reduction, case reduction, and numeric conversion,
respectively.

As a result of examination, available 38 public datasets were de-
creased to 12 datasets for simple models and to 8 datasets for com-
plex models.

6. DISCUSSION
In subsection 5.3, several types of preprocessing was applied to
datasets in order to adapt them to comparative effort prediction
study. These preprocessing have drawbacks.

The problems of case reduction are decreasing of size and change
of population. In this study all selected datasets have sufficient
number of projects and the size was not problem. Case reduction
in this study was based on categorical feature having a level which
was found less than N/10 times. Thus, population was changed but
it becomes more homogeneous. Homogeneity of dataset is consid-
ered as important property for effort estimation.

Most of reduced features in this study were due to case reduction.
Thus, dropped features seemed less important at least for reduced
homogeneous datasets.

Although using adjustment factors is like a calibration, not con-
struction of software estimation model, it was popular method for
dealing COCOMO drivers. Numeric conversion of ordinal scales
was also popular though this conversion implicitly assumes linear
relationship among levels. To manage these problems, feature sub-
set selection may be useful. When all selected categorical features
satisfy N/10 rule, these features can be used as is.

This study did not use technique concatenating levels though using
it instead of case reduction may also be useful. Because it is dif-
ficult to automate concatenation process because human decision

23

Table 2: Selected Datasets for Complex Models
No. Name Size Features FR CR NC

8 COCOMO 63 16 X
9 CSC 106 1 X X

10 Desharnais 77 7
22 MERMAID2 30 1
24 Miyazaki1 48 6 X
33 cocomonasa_v1 60 15 X
35 Maxwell 46 19 X X X
36 NASA93 90 16 X X X

plays an important role as shown in [9].

7. CONCLUSION
In this paper, we examined the list of public datasets in [14] and
PROMISE repository. As a result, we found 12 of 38 datasets were
only appropriate for comparative effort prediction study of simple
models. For complex models, this number was decreased to 8.
Among 8 datasets, only 3 datasets could keep original sample size
and feature scale. We thus concluded that using one or two public
datasets is insufficient but there is not so many datasets suitable for
comparative study.

To make effort prediction study of complex models more compa-
rable, we recommend to use those 3 datasets at first. In practical
view, CSC and MERMAID2 has too few features to evaluate com-
plex models such as CART though. In this case, it is recommended
to consider remained 5 datasets next to Desharnais. The fact that
many datasets need to be changed for use implies that repositories
like PROMISE should provide detailed and recommend prepro-
cessing sequence for removing heterogeneity among comparative
studies.

8. REFERENCES
[1] M. Auer and S. Biffl. Increasing the accuracy and reliability

of analogy-based cost estimation with extensive project
feature dimension weighting. In Proc. of the 2004
International Symposium on Empirical Software Engineering
(ISESE’04), pages 147–155, 2004.

[2] R. D. Banker, H. Chang, and C. F. Kemerer. Evidence on
economies of scale in software development. Information
and Software Technology, 36:275–282, 1994.

[3] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE
repository of empirical software engineering data.
http://promisedata.org/repository, West
Virginia University, Department of Computer Science, 2007.

[4] R. R. Bouckaert. Choosing between two learning algorithms
based on calibrated tests. In Proc. of 20th International
Conference on Machine Learning, pages 51–58, 2003.

[5] B. Efron. Estimating the error rate of a prediction rule:
Improvement of cross-validation. Journal of the American
Statistical Association, 78:316–330, 1983.

[6] B. Efron and R. J. Tibshirani. An Introduction to the
Bootstrap. Chapman & Hall, 1993.

[7] F. E. Harrel. Regression Modeling Strategies. Springer, 2001.
[8] A. Heiat and N. Heiat. A model for estimating efforts

required for developing small-scale business applications.
Journal of Systems and Software, 39:7–14, 1997.

[9] B. Kitchenham. A procedure for analyzing unbalanced

datasets. IEEE Trans. on Software Engineering,
24(4):278–301, 1998.

[10] B. Kitchenham. The question of scale economies in software
— why cannot researchers agree? Information and Software
Technology, 44(1):13–24, 2002.

[11] B. Kitchenham and E. Mendes. Why comparative effort
prediction studies may be invalid. In Proc. of PROMISE
Workshop 2009, 2009.

[12] B. Kitchenham, S. Pfleeger, B. McColl, and S. Eagan. An
empirical study of maintenance and development estimation
accuracy. Journal of Systems and Software, 64:57–77, 2002.

[13] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proc. of
International Joint Conference on AI, pages 1137–1145,
1995.

[14] C. Mair, M. Shepperd, and M. Jørgensen. An analysis of data
sets used to train and validate cost. In Proc. of 1st
International Workshop on Predictor Models in Software
Engineering(PROMISE’05), 2005.

[15] Y. Miyazaki and M. Terakado. Robust regression for
developing software estimation models. Journal of Systems
and Software, 27(1):3–16, 1994.

[16] S. Moser, B. Henderson-Sellers, and V. B. Mišić. Cost
estimation based on business models. Journal of Systems and
Software, 49:33–42, 1999.

[17] D. Port and M. Korte. Comparative studies of the model
evaluation criterions MMRE and PRED in software cost
estimation research. In Proc. of 2nd International
Symposium on Empirical Software Engineering and
Measurement (ESEM’08), 2008.

[18] M. Shepperd and C. Schofield. Estimating software project
effort using analogies. IEEE Trans. on Software Engineering,
23(11):736–743, 1997.

24

Faults and Verification

25

26

Reconstructing Fine-Grained Versioning Repositories with
Git for Method-Level Bug Prediction

Hideaki Hata
Dept.of Information Systems

Engineering
Osaka University

Osaka, Japan
h-hata@ist.osaka-u.ac.jp

Osamu Mizuno
Dept. of Information Science
Kyoto Institute of Technology

Kyoto, Japan
o-mizuno@kit.ac.jp

Tohru Kikuno
Dept.of Information Systems

Engineering
Osaka University

Osaka, Japan
kikuno@ist.osaka-u.ac.jp

ABSTRACT
Change metrics derived from software repositories are known to
be effective for bug prediction. However, bug prediction based
on change metrics is limited to file-level because existing SCM
repositories stores file histories. To tackle fine-grained (method-
level) bug prediction, we try to establish fine-grained versioning for
repositories. This paper presents an automatic technique construct-
ing software repositories that can manage method histories. We uti-
lize Git, one software configuration management (SCM) systems,
and reconstruct fine-grained versioning repositories from existing
repositories. We utilize these method-level versioning repositories
for method-level bug prediction with one eclipse related project.
The result shows that method-level change metrics are effective for
method-level bug prediction.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.8 [Software Engineering]: Met-
rics; D.2.9 [Software Engineering]: Management—Software con-
figuration management

General Terms
Management

Keywords
fine-grained versioning, software repository, bug prediction, method-
level, Git, software evolution

1. INTRODUCTION
Software configuration management (SCM) repositories have been
widely targeted for many research areas because of their rich prod-
uct and process related data. Bug prediction is one of those research
areas. Many studies reported that change metrics derived from soft-
ware repositories are effective for bug prediction [9, 11, 13, 20, 23,
25].

SCM systems can track the history of files and record, for ex-
ample, existence periods, previous operations, and the reasons of
the changes. Therefore, change metrics, such as age, number of
changes, bug fixes are easily available from software repositories.
Previous studies conducted file-level bug prediction based on file
histories. In this paper, we tackle method-level bug prediction
based on method histories because we think it is easy to localize
bugs if the size of predicted modules is smaller.

From existing software repositories, seeing method histories is not
so easy. It is reported that though there are lots of refactorings,
which include the file relocations and method signature changes,
developers do not always leave in commit logs enough information
describing the changes they did in commit logs [21]. Since gen-
eral repositories do not control method histories explicitly, we can-
not obtain rich information for methods as for files. In this paper,
we prepare method-level version control repositories before mining
change metrics.

The concept of fine-grained version control can be seen in Or-
well [27] as method-level version control in object-oriented pro-
gramming. Though several tools have been proposed to support
fine-grained versioning, no such a tool has been actually integrated
within widely used SCM systems [6]. Since existing repositories
remain file-level versioning, what we have to do is converting exist-
ing repositories into fine-grained versioning repositories. Though
there are some studies tackling extraction of method histories from
repositories, we try not only to extract method histories but also
to controlling method histories. For the purpose of converting, we
utilize Git, one SCM system.

Herraiz et al. presented software repository evolution from CVS,
Subversion to Git, and insisted that those improvements made repos-
itories research friendly [16]. Bird et al. studied both promise
and peril of Git [3]. Though Git is known for the decentraliza-
tion of source code management, we found that Git architecture
is also useful for our purpose. “Directed acyclic graph (DAG),”
“origin analysis,” and “revisionist history,” which are Git features
explained by Bird et al. [3], are also desirable for our purpose. In
addition, “snapshots” is also an important feature.

The rest of the paper is structured as follows. Section 2 introduces
four Git features, which is important for our purpose of reconstruc-
tion. Then, Section 3 presents a technique of reconstructing reposi-
tories from existing repositories based on Git. Section 4 shows use-
fulness of our fine-grained versioning repositories with a case study
with an open source project. In addition, we utilize fine-grained
versioning for method-level bug prediction. Section 5 introduces

27

(a) Difference-based storing (Subversion)

(b) Storing snapshots (Git)

Figure 1: Differences in storing version data

Figure 2: A subgraph of the Git DAG of commits leading up to
2.1 release 1 of Android

related work. Finally, we concluded this paper in Section 6.

2. GIT FEATURES
Recently Git attracted the attention of some researchers [3, 14, 16].
Though decentralization is one of the main characteristics com-
pared to Subversion, there are some other distinctions. In this sec-
tion, we introduce four Git features that are desirable for recon-
structing fine-grained versioning repositories.

2.1 Snapshots
One of the major differences between Git and Subversion (or CVS)
is the way it stores version data. Figure 1 shows an example of
version control of three files. The file A is changed in version 2
and version 3, the file B is changed in version 3 and 4, and the file
C is changed in version 2. Subversion stores a set of files and the
changes made to each file over time, as illustrated in Figure 1 (a).
Figure 1 (b) shows how Git stores data. Git stores each snapshot
of what all files look like at each commit. To be efficient, if files
have not changed, Git does not store the files but stores links to the
previous files that have been already stored. What is import is that
each file is stored without begin connected to files in the previous
version.

2.2 DAG
As explained in [3], parent-child relation in commits is represented
as a graph in Git. A commit have more than or equal to one par-
ent except for the initial commit. Since no commit cannot be its

Figure 3: Retaking snapshots without changing commit DAG

own ancestor, the graph is a directed acyclic graph (DAG). Figure
2 shows an example of commit DAG. As shown in the example,
merging commits have more than one parent commit. As seen in
Figure 1 (b), each version of one file is stored in each snapshot sep-
arately. Each commit knows its snapshot. The orders or relations
of file versions are kept as DAG of commits relation.

2.3 Origin analysis
As explained by Bird et al., Git tracks the file content history [3].
Therefore, files with the same content but different names or loca-
tions in the parent and child commits are found as a renamed or
moved file. This origin analysis is not limited to identical content
but also similar content. When file paths are changed, often files
content are also modified. Even in such cases, Git is able to de-
tect relationships between changes if the file contents are similar
enough. Origin analysis is conducted by checking that the amount
of deletion of the original content and insertion of new content is
larger than the threshold, which is set to 50% of the size of smaller
files (original or modified). Therefore, if deletion or insertion is
less than 50%, two files in parent and child commits are detected
as moving or renaming. The threshold value can be changed. With
this feature, developer can recognize the renaming and moving.

2.4 Rewriting histories
Bird et al. introduced rewritable Git histories from the aspect of
DAG changing [3]. Git allows a repository owner to rearrange DAG
retaining each snapshot. This rewriting is commonly conducted to
simplify commit relation. In addition to that rewriting, it is also
possible to change snapshots by calling filter-branch command1.
As shown in Figure 3, each snapshot can be changed retaining its
DAG. One of the uses of this rewriting is getting rid of a subset of
unnecessary files.

3. REPOSITORY RECONSTRUCTION
As seen in Section 2, there are some features in Git different from
Subversion. We found that these features are desirable for our pur-
pose of reconstructing fine-grained versioning repositories. In this
Section, first we show the fundamental idea of our approach, and
then we explain our technique and its implementation.

3.1 Idea
For fine-grained (method-level) version control, what we have to do
is making each method controllable in repositories. Since reposito-
ries are able to control file histories, it is possible to control method

1This command is not limited to changing snapshots retaining
DAG. It is also possible to change DAG.

28

Figure 4: Retaking a snapshot for method storing

Figure 5: File structure

histories if each method is stored as a file. As explained in Section
2.1, Git stores existing files at each commit as a snapshot. In ad-
dition, it is possible to retake snapshots without changing commit
history relation as stated in Section 2.4.

Figure 4 shows a concept of our approach. We retake each snap-
shot and replace it with a snapshot that includes additional method
files. This replacement enables us to control method histories like
traditional file histories. In original snapshot S, there exist original
files F ,G, andH . To retake snapshot S′, methods exist in each file
are copied and stored as files. Each snapshot is retaken separately
without retaining file-level and method-level relations. Relations
between methods will be detected by Git origin analysis. If meth-
ods are moved or renamed, the corresponding methods should be
detected automatically, and method histories are managed by Git.

3.2 Technique
To retake the snapshots, we have to obtain the list of Java files that
exist in the original snapshots. From each Java file, exiting methods
are extracted and copied to individual files.

For storing method files, file structures are designed as Figure 5.
Here, we explain the case of Java language. Each java file is saved
as it is (file-name.java in Figure 5); if there are methods in the file,
a directory named as the file’s name (file-name) is created; files of
methods are saved in the directory; these files are named by their
method signatures. For simplicity, we limited to methods in top-
level classes in this paper. Methods in inner classes or anonymous
classes are ignored. In addition, abstract methods are not stored.
Directories and files in gray space of Figure 5 are newly prepared
for new snapshots.

Changes of method signatures correspond to file name changes and

moving of methods correspond to moving files. If a method is
deleted in a commit and reappear in later commit, Git can output
its history including disappearing periods. As described in Section
2.3, the origin analysis is conducted based on file content similarity.
Based on the threshold of content similarity, corresponding meth-
ods are identified. If two methods are highly similar, it is rational
to detect them as corresponding methods. However, they might
be corresponding methods in spite of not high similarity. In Sec-
tion 4.1, we manually investigate whether found method origins are
correct or not.

3.3 Implementation
Though existing repositories are not in Git system, it is possible
to convert them to Git repositories for most SCM systems, as ex-
plained as ninth promise of Git in [3]. Therefore we can concen-
trate on reconstruction of Git repositories. In this paper, we target
repositories of software written in Java language. As stated in Sec-
tion 2.4, filter-branch command can be used for our purpose with a
–tree-filter option. With this option, each snapshot appears in work-
ing directory and we can retake a snapshot after conducting some
procedure. For our purpose, we copy the methods before retaking
the snapshots. For locating the methods in Java files, we used the
source code analysis tool MASU2, which is an open source tool. It
utilizes ANTLR for parsing source code [1].

4. ANALYSIS
In this Section, we investigate the usefulness of fine-grained ver-
sioning repositories. First, we examine whether Git origin analy-
sis is useful for method-level origin analysis. Next, we conducted
method-level bug prediction based onmethod-level changemetrics.
We targeted the WTP incubator project in Eclipse3 for the analysis.
This project is written in Java and is maintained with Git4. We
cloned the Git repository on the 15th November, 2010.

4.1 Origin analysis evaluation
Git detects origins of methods after changing names or location of
the methods. When contents of methods are modified, detection
of corresponding methods is conducted by calculating similarity
of potential method pairs. If similarity is greater than or equal to
threshold, the potential method pairs are detected as renamed meth-
ods as stated in Section 2.3. Users can change the threshold.

In this Section, we classify the method pairs according to similarity
values to see the impact of the threshold and investigate whether
detected method pairs seem to be correct or not. To knowwhether it
is correct matching or not, we investigate every matching methods
based on their method signatures and method paths. Since it is
difficult to distinguish correct matches from mismatches perfectly,
we count the number of obvious mismatches.

As shown in Figure 6, the found method matches are classified
based on similarity values from 0% to 100% at 10% intervals. To
see the impact of the text size for the similarity calculation, the
result is summarized separately, (a) different lines (deletion lines
+ insertion lines) is less than 10, and (b) the others. Dark gray
bars represent the numbers of detected obvious mismatches, and
the numbers of other matches are represented as light gray bars.

2http://sourceforge.net/projects/masu/
3http://www.eclipse.org/webtools/incubator/
4http://git.eclipse.org/c/webtools/org.
eclipse.webtools.incubator.git/

29

(a) different lines < 10

(b) different lines >= 10

Figure 6: Method matches based on a threshold

After checking manually, we found that automatic method match-
ing based on Git works relatively well. There is a large number of
method pairs whose similarity value is 100%, which means these
methods have been renamed without being modified. There are few
obvious mismatches if the similarity is greater than 20% whether
the number of different lines is less than 10 or not.

Though the results of origin analysis evaluation may depend on
projects or applications, line-based matching works relatively well
as shown by Kim [19]. We think this is because there should be
few cases where a newly created method is similar in content to
a deleted method when the created and the deleted methods are
independent of each other. We think that developers tend to commit
simple changes, that is, the number of matching candidates is small
andmatching pairs are easy to find, not to confuse module histories.

4.2 Bug Prediction Based on Method History
Table 1 shows metrics we collected in this paper. The threshold of
origin analysis is the default value (50%). This means that methods
are regarded as newly created if most lines (>50%) are changed
when names or locations of the methods are changed. In this paper,
file-level bug prediction is also conducted to evaluate method-level
bug prediction. For file-level bug prediction, the same metrics in
Table 1 are collected except for NCHG_SIG.

Whether modules are faulty or not is decided by using the SZZ
algorithm [26]. We obtained bug reports from the bug databases
(Bugzilla) under the following conditions. The type of these faults
is “bugs”; therefore, these faults do not include any enhancements
or functional patches. The status of faults is either “resolved”, “ver-
ified”, or “closed”, and the resolution of faults is “fixed”. This

Table 1: Change metrics collected in this paper
Metrics Description
NCHG Number of individual changes
NFIX Number of bug fixes
NAUTH Number of authors
AGE Existing period
ITVAL_{MAX, MIN} Period of {maximum, minimum}

interval between commits
LOC_{ADD, DEL} Some of {added, deleted} lines of

code between first and last revisions
NCHG_BUG_INTRO Number of changes that is in

commits that include bug-introducing
changes to other methods

NCHG_BUG_COPL Number of changes that is in
commits that include changes to other
methods (change coupling)

NCHG_SIG Number of method signature changes
NCHG_FILE Number of file name changes
NCHG_PCK Number of package changes
IS_FAULTY Faulty or not. Dependent variable in

prediction models

Table 2: Results of the 10-fold cross validation
(a) Method-level

Model Recall Precision F1

Naive Bayes 0.704 0.030 0.057
Logistic regression 0.556 0.750 0.638
J48 0.593 1 0.744

(b) File-level
Model Recall Precision F1

Naive Bayes 0.778 0.073 0.134
Logistic regression 0.111 0.286 0.160
J48 0.389 0.875 0.538

means that the collected faults have already been fixed and have
been resolved, and thus fixed revisions should be included in the
entire repository. The severity of the faults is either “BLOCKER”,
“CRITICAL”, or “MAJOR” in order to remove trivial bugs. Her-
raiz categorized these severity categories as important and the oth-
ers without ENHANCEMENT as non-important [15].

We conducted a 10-fold cross validation on a snapshot with the tag,
v20090510. There are 4, 733 methods including 27 faulty meth-
ods, and there exist 698 files including 18 faulty files in this snap-
shot. We adopted the WEKA data mining toolkit [29] for building
bug prediction models. We built the following three models: naive
Bayes, logistic regression, and J48. For the evaluation of the exper-
iment, we use three measures: Recall
(TP

TP+FN
), Precision(TP

TP+FP
), and F1(2×recall×precision

recall+precision
)5.

Table 2 shows the method-level and file-level results. The precision
values of naive Bayes are low because of lots of false positive. As
a result, F1 values of naive Bayes are low. Though the ratio of
faulty modules per entire modules in method-level is lower than
file-level, F1 values in method-level are superior to file-level from
logistic regression and J48 models. Those two models achieved
more than 0.63 F1 values. Though bug prediction is conducted on
only one project, it seems that method-level change metrics may be
effective for method-level bug prediction.

5. RELATEDWORK
5TP (true positive), TN (true negative), FP (false positive), FN
(false negative)

30

Table 3: Comparison of method history analysis
Method/Tool/Authors Objective Relationship analysis target Storing
JDiff [2] detection of structural changes name -
C-REX [12] assessment of change propagation tools calls, tokens XML
Origin analysis [8] detection of merging & splitting name, code metrics, calls BEAGLE repository

(relational database)
S. Kim et al. [19] detection of renaming name, code metrics, calls, text -
UMLDiff [31] detection of structural changes name, structure -
RefactoringCrawler [7] detection of refactorings tokens, structure XML
Weißgerber and Diel [28] detection of refactorings name, structure, text -
SemDiff [5] recommending adaptive changes name, calls, structure -
LSdiff [17] detection & representation of systematic changes name, calls, structure -
AURA [30] detection of structural changes calls, text -
This paper fine-grained versioning text Git

Bug prediction based on change metrics. Graves et al.
have studied software change history and found that if modules
were changed many times, the modules tended to contain faults [9].
In addition, they found that if modules had not changed for one
year, the rate of the modules containing faults would be low. Na-
gappan and Ball examined code churn, which is a measure of the
amount of code change, and showed that relative code churn is
highly predictive of defect density [22]. Ostrand et al. showed
that fault and modification history of the file from previous release
could be predictive of faults in the next release of a system [23].
Schröter et al. have studied the correlation with past failure com-
ponent history and failure-prone components [25]. They analyzed
SCM repositories and bug-tracking systems to extract the failure
component’s usage pattern, and applied some prediction models to
compare the results. Hassan and Holt computed the ten most fault-
prone modules after evaluating four heuristics: most frequently
modified, most recently modified, most frequently fixed, and most
recently fixed [11]. Kim et al. have tried to predict the fault density
of entities using previous faults localities based on the observation
that most faults do not occur uniformly [20]. Ratzinger et al. in-
vestigated the interrelationship between previous refactoring and
future software defects [24]. Hassan predicted faults using the en-
tropy of code changes [10].

Method history analysis. Table 3 shows the related work about
method history analysis. JDiff is a tool of identifying differences
of Java structure between changes [2]. In method level, it identifies
insertion and deletions. C-REX is a tool for C [12]. Its architecture
is similar to Git-base system in the point of origin analysis timing.
Method origins are found between snapshots. Merging and split-
ting are detected by origin analysis [8]. Detection of renames is
tackled in [19, 31]. Refactorings are detected in [7, 28]. SemDiff
detects adaptations to client programs [5]. LSdiff detects method
relations and infers change rules [17]. AURA can detect one-to-
many and many-to-one change rules [30].

The main objective of the proposed system is not the identification
of method histories but the controlling the method histories. We in-
tend to make the system a research platform like BEAGLE in origin
analysis [8]. Our Git-based system has the following advantages:

• Method histories can be seen as SCM logs since data are
stored in Git repositories.

• Incremental reconstruction is possible. Additional new com-
mits can be stored in reconstructed repositories.

• Relations betweenmethods are not stored explicitly. Git does
not store relations between files, but stores snapshots and
commit DAGs. This enables us to see necessary method his-
tories when we need. If we do not trace method histories be-
yond renames, Git show us the method histories before and
after renaming separately. This is important for a research
platform because there should not be an unique relation be-
tween methods in two sequential commit. A method, which
is identified as merged method by origin analysis, may be
identified as many-to-one changed method by AURA, and
might be a clone of other methods. Though this paper eval-
uate the performance of Git origin analysis, it is possible
to identify different relations by different technique if we
replace Git origin analysis with them. Consequently, code
clone genealogies [18] and documenting program changes
[4], for example, can be conducted on the system.

6. CONCLUSION
Lots of studies examined and investigated the power of change met-
rics mined from software repositories. File-level changemetrics are
widely studied and those effectiveness is shown so far. To proceed
to method-level bug prediction, we choose to enrich repositories by
converting them to fine-grained versioning repositories. This paper
contributes to the following:

• A technique of reconstructing method-level version control
repositories from existing repositories is presented.

• Method-level change metrics are collected and used for bug
prediction on a real software project.

Since lots of SCM repositories can be converted to Git reposito-
ries, lots of existing repositories can be converted to fine-grained
versioning repositories. Since reconstructed repositories are also
Git repositories, there is no additional labor to mine change met-
rics compared to natural Git repositories.

With reconstructed repositories, method-level change metrics can
be easily collected. In addition, bug location using the SZZ al-
gorithm can be conducted on method-level. As a result, we can
realize method-level bug prediction. The result of one real soft-
ware project shows that method-level change metrics are effective
for method-level bug prediction.

7. REFERENCES
[1] Antlr. http://www.antlr.org/.

31

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. A
differencing algorithm for object-oriented programs. In Proc.
of 19th IEEE International Conference on Automated Softw.
Engg., pages 2–13, Washington, DC, USA, 2004. IEEE
Computer Society.

[3] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu. The promises and perils of mining
git. In Proc. of 6th International workshop on Mining
software repositories, pages 1–10, Washington, DC, USA,
2009. IEEE Computer Society.

[4] R. P. Buse and W. R. Weimer. Automatically documenting
program changes. In Proc. of 25th IEEE/ACM International
Conference on Automated Softw. Engg., ASE ’10, pages
33–42, New York, NY, USA, 2010. ACM.

[5] B. Dagenais and M. P. Robillard. Recommending adaptive
changes for framework evolution. In Proc. of 30th
International Conference on Softw. Engg., pages 481–490,
New York, NY, USA, 2008. ACM.

[6] A. De Lucia, F. Fasano, R. Oliveto, and D. Santonicola.
Improving context awareness in subversion through
fine-grained versioning of java code. In Proc. of 9th
international workshop on Principles of software evolution,
pages 110–113, New York, NY, USA, 2007. ACM.

[7] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving components.
In Proc. of 20th European Conference on Object-Oriented
Programming, pages 404–428. Springer, 2006.

[8] M. W. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
Softw. Eng., 31(2):166–181, 2005.

[9] T. L. Graves, A. F. Karr, J. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[10] A. E. Hassan. Predicting faults using the complexity of code
changes. In Proc. of 31st International Conference on Softw.
Engg., pages 78–88, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. In Proc. of 21st International Conference on
Softw. Maintenance, pages 263–272, Washington, DC, USA,
2005. IEEE Computer Society.

[12] A. E. Hassan and R. C. Holt. Replaying development history
to assess the effectiveness of change propagation tools.
Empirical Softw. Engg., 11:335–367, September 2006.

[13] H. Hata, O. Mizuno, and T. Kikuno. Fault-prone module
detection using large-scale text features based on spam
filtering. Empirical Softw. Engg., 15(2):147–165, 2010.

[14] L. Hattori and M. Lanza. Mining the history of synchronous
changes to refine code ownership. In Proc. of 6th
International workshop on Mining software repositories,
pages 141–150, Washington, DC, USA, 2009. IEEE
Computer Society.

[15] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and
G. Robles. Towards a simplification of the bug report form in
eclipse. In Proc. of 5th International workshop on Mining
software repositories, pages 145–148. ACM, 2008.

[16] I. Herraiz, G. Robles, and J. M. Gonzalez-Barahona.
Research friendly software repositories. In Proc. of the joint
international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol)
workshops, pages 19–24, New York, NY, USA, 2009. ACM.

[17] M. Kim and D. Notkin. Discovering and representing

systematic code changes. In Proc. of 31st International
Conference on Softw. Engg., pages 309–319, Washington,
DC, USA, 2009. IEEE Computer Society.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proc. of the
10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 187–196, New
York, NY, USA, 2005. ACM.

[19] S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions
change their names: Automatic detection of origin
relationships. In Proc. of 12th Working Conference on
Reverse Engineering, pages 143–152, Washington, DC,
USA, 2005. IEEE Computer Society.

[20] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller.
Predicting faults from cached history. In Proc. of 29th
International Conference on Softw. Engg., pages 489–498,
Washington, DC, USA, 2007. IEEE Computer Society.

[21] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. In Proc. of 31st International
Conference on Softw. Engg., pages 287–297, 2009.

[22] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc. of 27th
International Conference on Softw. Engg., pages 284–292,
2005.

[23] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems.
IEEE Trans. Softw. Eng., 31(4):340–355, 2005.

[24] J. Ratzinger, T. Sigmund, and H. Gall. On the relation of
refactorings and software defect prediction. In Proc. of 5th
International workshop on Mining software repositories,
pages 35–38. ACM New York, NY, USA, 2008.

[25] A. Schröter, T. Zimmermann, and A. Zeller. Predicting
component failures at design time. In Proc. of ACM/IEEE
international symposium on Empirical software engineering,
pages 18–27, New York, NY, USA, 2006. ACM.

[26] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? (on Fridays.). In Proc. of 2nd
International workshop on Mining software repositories,
pages 24–28, 2005.

[27] D. Thomas and K. Johnson. Orwell: A configuration
management system for team programming. In Proc. of 3rd
conference on object oriented programming languages and
applications, pages 135–141. ACM, 1988.

[28] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. In Proc. of 21st IEEE/ACM
International Conference on Automated Softw. Engg., pages
231–240, Washington, DC, USA, 2006. IEEE Computer
Society.

[29] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2
edition, 2005.

[30] W. Wu, Y.-g. Guéhéneuc, G. Antoniol, and M. Kim. AURA:
A hybrid approach to identify framework evolution. In Proc.
of 32nd International Conference on Softw. Engg., 2010.

[31] Z. Xing and E. Stroulia. UMLDiff: an algorithm for
object-oriented design differencing. In Proc. of 20th
IEEE/ACM International Conference on Automated Softw.
Engg., pages 54–65, New York, NY, USA, 2005. ACM.

32

Reachability Analysis of Probabilistic Timed Automata
Based on an Abstraction Refinement Technique

Takeshi Nagaoka, Akihiko Ito, Toshiaki Tanaka, Kozo Okano, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University
{t-nagaok,a-ito,tstanaka,okano,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
Model checking techniques are considered as promising techniques
for verification of information systems due to their ability of ex-
haustive checking. Well-known state explosion, however, might
occur in model checking of large systems. In order to avoid it, sev-
eral abstraction techniques have been proposed. Some of them are
based on CounterExample-Guided Abstraction Refinement (CE-
GAR) technique proposed by E. Clarke et al.. This paper proposes
a reachability analysis technique for probabilistic timed automata.
In the technique, we abstract time attributes of probabilistic timed
automata by our abstraction technique proposed in our previous
work. Then, we apply probabilistic model checking to the gener-
ated abstract model which is just a markov decision process (MDP)
with no time attributes. Also, our technique can produce a counter
example as a set of paths when a given model does not satisfy a
specification. The paper also provides some experimental results
on applying our method to IEEE 1394, FireWire protocol. Experi-
mental results show our algorithm can reduce the number of states
and total execution time dramatically compared to one of existing
approaches.

Keywords
Probabilistic Timed Automaton, CEGAR, Model Checking, Real-
time System, Formal Verification

1. INTRODUCTION
Model checking[1] techniques are considered as promising tech-
niques for verification of information systems due to their ability
of exhaustive checking. For verification of real-time systems such
as embedded systems, timed automata are often used. On the other
hand, probabilistic model checking[2, 3, 4] can evaluate perfor-
mance, dependability and stability of information processing sys-
tems with random behaviors. In recent years, probabilistic mod-
els with real-time behaviors, called probabilistic timed automata
(PTA) attract attentions. As well as traditional model checking
techniques, however, state explosion is thought to be a major hurdle
for verification of probabilistic timed automata.

Clarke et al. proposed an abstraction technique called CEGAR
(CounterExample-Guided Abstraction Refinement)[5]. In the CE-
GAR technique, we use a counter example (CE) produced by a
model checker as a guide to refine abstracted models. In [6], we
have proposed an abstraction algorithm for timed automata based
on CEGAR. In this algorithm, we generate finite transition systems
as abstract models where all time attributes are removed. The re-
finement modifies the transition relations of the abstract model so
that the model behaves correctly even if we don’t consider the clock
constraints.

This paper proposes a reachability analysis technique for prob-
abilistic timed automata. In the technique, we abstract time at-
tributes of probabilistic timed automata by applying our abstrac-
tion technique for timed automata proposed in [6]. Then, we apply
probabilistic model checking to the generated abstract model which
is just a markov decision process (MDP) with no time attributes.
The probabilistic model checking algorithm calculates summation
of occurrence probability of all paths which reach to a target state
for reachability analysis. For probabilistic timed automata, how-
ever, we have to consider required clock constraints for such paths,
and choose the paths whose required constraints are compatible.
Since our abstract model does not consider the clock constraints,
we add a new flow where we check whether all paths used for prob-
ability calculation are compatible. Also, if they are not compatible,
we transform the model so that we do not accept such incompatible
paths simultaneously.

This paper also provides some experimental results on applying
our method to some examples. Experimental results show our al-
gorithm can reduce the number of states and total execution time
dramatically compared to one of existing approaches.

Several papers including Paper [2, 3, 4] have proposed probabilistic
model checking algorithms. These algorithms, however, don’t pro-
vide CEs when properties are not satisfied. Our proposed method
provides a CE as a set of paths based on k-shortest paths search.
This is a major contribution of our method. The proposed method
also performs model checking considering compatibility problem.
Few approaches resolve the compatibility problem. Our approach
also shows the efficiency via performing experiments.

The organization of the rest paper is as follows. Sec.2 provides
some definitions and lemmas as preliminaries. Sec.3 describes our
proposed abstraction technique for the probabilistic timed automa-
ton. Sec.4 gives some experimental results. Finally, Sec.5 con-
cludes the paper and gives future works.

33

2. PRELIMINARY
2.1 Clock and Zone
Let C be a finite set of clock variables which take non-negative real
values (R≥0). A map ν : C → R≥0 is called a clock assignment.
The set of all clock assignments is denoted by R

C
≥0. For any ν ∈

R
C
≥0 and d ∈ R≥0 we use (ν + d) to denote the clock assignment

defined as (ν+d)(x) = ν(x)+d for all x ∈ C. Also, we use r(ν)
to denote the clock assignment obtained from ν by resetting all of
the clocks in r ⊆ C to zero.

DEFINITION 2.1. Syntax and semantics of a differential inequal-
ity E on a finite set C of clocks is given as follows:
E ::= x− y ∼ a | x ∼ a,
where x, y ∈ C, a is a literal of a real number constant, and
∼∈ {≤,≥, <,>}. Semantics of a differential inequality is the
same as the ordinal inequality.

DEFINITION 2.2. Clock constraints c(C) on a finite set C of
clocks is defined as follows: A differential inequality in on C is an
element of c(C). Let in1 and in2 be elements of c(C), in1 ∧ in2

is also an element of c(C).

A zone D ∈ c(C) is described as a product of finite differential
inequalities on clock set C, which represents a set of clock assign-
ments that satisfy all the inequalities. In this paper, we treat a zone
D as a set of clock assignments ν ∈ R

C
≥0 (For a zone D, ν ∈ D

means the assignment ν satisfies all the inequalities in D).

2.2 Probability Distribution
A discrete probability distribution on a finite set Q is given as
the function μ : Q → [0, 1] such that Σq∈Qμ(q) = 1. Also,
support(μ) is a subset of Q such that ∀q ∈ support(μ).μ(q) > 0
holds.

2.3 Markov Decision Process
A Markov Decision Process (MDP)[7] is a markov chain with non-
deterministic choices.

DEFINITION 2.3. A markov decision process MDP is 3-tuple
(S, s0, Steps), where S is a finite set of states, s0 ∈ S is an initial
state, and Steps ⊆ S ×A×Dist(S) is a probabilistic transition
relation where Dist(S) is a probability distribution over S.

In our reachability analysis procedure, we transform a given PTA
into a finite MDP, and perform probabilistic verification based on
the Value Iteration[8] technique.

2.3.1 Adversary
An MDP has non-deterministic transitions called action. To resolve
the non-determinism, an adversary is used. The adversary requires
a finite path on an MDP, and decides a transition to be chosen at the
next step.

2.3.2 Value Iteration
A representative technique of model checking for an MDP is Value
Iteration[8]. The Value Iteration technique can obtain both of max-
imum and minimum probabilities of reachability and safety prop-
erties, respectively. At each state, Value Iteration can select an ap-
propriate action according to the property to be checked. Therefore,
the technique can obtain the adversary as well as the probability.

�

�

�

�
���

���
	
��

	�������

	��
�

�

Figure 1: An Example of a PTA

2.4 Timed Automaton
DEFINITION 2.4. A timed automaton A is a 6-tuple (A,L, l0,

C, I, T), where A is a finite set of actions, L is a finite set of lo-
cations, l0 ∈ L is an initial location, C is a finite set of clocks,
I ⊂ (L → c(C)) is a mapping from locations to clock constraints,
called a location invariant, and T ⊂ L × A × c(C) × R × L is
a set of transitions, where c(C) is a clock constraint, called guards
and R = 2C is a set of clocks to reset.

DEFINITION 2.5. Given a timed automaton A = (A,L, l0, C,
I, T), let S ⊆ L × R

C
≥0 be a set of whole states of A . The ini-

tial state of A shall be given as (l0, 0
C) ∈ S. For a transition

(l1, a, g, r, l2) ∈ T , the following two transitions are semantically
defined. The former one is called an action transition, while the
latter one is called a delay transition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

DEFINITION 2.6. For timed automaton A = (A,L, l0, C, I, T),
an infinite transition system is defined according to the semantics
of A , where the model begins with the initial state.

2.5 Probabilistic Timed Automaton
A PTA is a kind of a timed automaton extended with probabilistic
behavior. In the PTA, a set of probabilistic distributions is used
instead of a set T of discrete transitions on the timed automaton.

DEFINITION 2.7. A probabilistic timed automaton PTA is a
6-tuple (A,L, l0, C, I, prov), where A is a finite set of actions, L
is a finite set of locations, l0 ∈ L is an initial location, C is a fi-
nite set of clocks, I ⊂ (L → c(C)) is a location invariant and
prob ⊆ L × A × c(C) × Dist(2C × L) is a finite set of proba-
bilistic transitions, where c(C) represents a guard condition, and
Dist(2C × L) represents a finite set of probability distributions p.
The Distribution p(r, l) ∈ Dist(2C×L) represents the probability
of resetting clock variables in r and also moving to the location l;

Figure 1 shows an example of a PTA. In the figure, from the lo-
cation a, the control moves to the location b with the probability
0.5 and also moves to the location c letting the value of the clock x
reset to zero with the probability 0.5.

DEFINITION 2.8. Semantics of a probabilistic timed automaton
PTA = (A,L, l0, C, I, prob) is given as a timed probabilistic
system TPSPTA = (S, s0, TSteps) where, S ⊆ L× R

C is a set
of states, s0 = (l0, 0

C) is an initial state, and TSteps ⊆ S ×
A ∪ R≥0 × Dist(S) is composed of action transitions and delay
transitions, where

34

a) action transition
if a ∈ A and there exists (l, a, g, p) ∈ prob such that g(ν)
and I(l′)(r(ν)) for all (r, l′) ∈ support(p), ((l, ν), a, μ) ∈
TSteps where for all (l′, ν′) ∈ S

μ(l′, ν′) =
∑

r⊆C∧ν′=r(ν)

p(r, l′).

b) delay transition
if d ∈ R≥0, and for all d′ ≤ d, I(l)(ν + d′), ((l, ν), d, μ) ∈
TSteps where μ(l, ν + d) = 1.

In this paper, using a location l and a zone D, we describe a set of
semantic states as (l, D) = {(l, ν) | ν ∈ D}.

DEFINITION 2.9. A path ω with length of n on a timed proba-
bilistic system TPSPTA = (S, s0, TSteps, L

′) is denoted as fol-
lows.

ω = (l0, ν0)
d0,μ0−→ (l1, ν1)

d1,μ1−→ . . .
dn−1,μn−1−→ (ln, νn)

, where (li, νi) ∈ S for 0 ≤ i ≤ n and ((li, νi), di, μ) ∈ TSteps∧
((li, νi + di), 0, μi) ∈ TSteps ∧ (li+1, νi+1) ∈ support(μi) for
0 ≤ i ≤ n− 1.

For model checking of a probabilistic timed automaton, we extract
a number of paths and calculate a summation of their occurrence
probabilities in order to check the probability of satisfying a given
property. The important point is that we have to choose a set of
paths which are compatible with respect to time elapsing.

LEMMA 2.1. If a set Ω of paths on a timed probabilistic system
TPSPTA satisfies the following predicate isCompatible, then all
of the paths over Ω are said to be compatible.

isCompatible(Ω) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if ∀i ≤ min(Ω)
∧

ωα,ωβ∈Ω

∧ωα �=ωβ

(lαi = lβi ∧ dαi = dβi)

or there exists i ≤ min(Ω) such that∧
ωα,ωβ∈Ω

∧ωα �=ωβ

(lαi = lβi ∧ dαi = dβi ∧
∧
j≤i

(lαj = lβj ∧ dαj= dβj)),

and also
∧

Ω′∈2Ω∧
Ω′ �=Ω∧|Ω′|≤2

isCompatible(Ω′)

false, otherwise.

In Lemma2.1, we give the predicate isCompatible for a set Ω of
paths on a timed probabilistic system. In the lemma, we let paths
in Ω be compatible if there is no contradiction with respect to time
elapsing at the branching point of all the paths in Ω, and also if
the compatibility is kept for every subset of Ω which contains more
than two paths.

2.6 CounterExample-Guided Abstraction Re-
finement

2.6.1 General CEGAR Technique
Since model abstraction sometimes over-approximates an original
model, we may obtain spurious CEs which are infeasible on the

��������	
��������

����������

����� �����������
������������
���������

���������� ���	�
������������
�������������

���������������

�������
�����

��������

�������������
���������

Figure 2: A General CEGAR Technique

��������	
��������

����������

����� �����������
������������
���������

���������� ���	�
������������
�������������

���������������

�������
�����

��������

�������������
���������

������ ������������� �������
�����
�������

���������������������
���������

Figure 3: Our CEGAR Technique for Reachability Analysis of
a Probabilistic Timed Automaton

original model. Paper[5] gives an abstraction refinement frame-
work called CEGAR (CounterExample-Guided Abstraction Refine-
ment) (Fig.2).

In the algorithm, at the first step (called Initial Abstraction), it gen-
erates an initial abstract model. Next, it performs model checking
on the abstract model. In this step, if the model checker reports that
the model satisfies a given specification, we can conclude that the
original model also satisfies the specification, because the abstract
model is an over-approximation of the original model. If the model
checker reports that the model does not satisfy the specification,
however, we have to check whether the CE detected is spurious or
not in the next step (called Simulation). In the Simulation step, if
we find that the CE is valid, we stop the loop. Otherwise, we have
to refine the abstract model to eliminate the spurious CE, and repeat
these steps until valid output is obtained.

2.6.2 CEGAR Technique for a Timed Automaton
In [6], we have proposed the abstraction refinement technique for
a timed automaton based on the framework of CEGAR. In this ap-
proach, we remove all the clock attributes from a timed automa-
ton. If a spurious CE is detected by model checking on an abstract
model, we transform the transition relation on the abstract model so
that the model behaves correctly even if we don’t consider the clock
constraints. Such transformation obviously represents the differ-
ence of behavior caused by the clock attributes. Therefore, the fi-
nite number of application of the refinement algorithm enables us
to check the given property without the clock attributes. Since our
approach does not restore the clock attributes at the refinement step,
the abstract model is always a finite transition system without the
clock attributes.

3. PROPOSED APPROACH
In this section, we will present our abstraction refinement technique
for a probabilistic timed automaton. In the technique, we use the
abstraction refinement technique for a timed automaton proposed

35

�

�

�

�
���

���

�

�	
��

Figure 4: An Initial Abstract Model

in [6]. In addition, we resolve the compatibility problem shown in
Sec.2.5 by performing a backward simulation technique and gen-
erating additional location to distinguish the required condition for
every incompatible path. Figure 3 shows our abstraction refinement
framework. As shown in the figure, we add another flow where we
resolve the compatibility problem.

Our abstraction requires a probabilistic timed automaton PTA and
a property to be checked as its inputs. The property is limited by the
PCTL formula P<p[true U err]. The formula represents a property
that the probability of reaching to states where err (which means
an error condition in general) is satisfied, is less than p.

3.1 Initial Abstraction
The initial abstraction removes all the clock attributes from a given
probabilistic timed automaton as well as the technique in The gen-
erated abstract model over-approximates the original probabilistic
timed automaton.

DEFINITION 3.1. For a given probabilistic timed automaton
PTA = (A,L, l0, C, I, prob), a markov decision process

ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) is produced as its abstract model,
where Ŝ = L, ŝ0 = l0, and ˆSteps = { (s, a, p) | (s, a, g, p) ∈
prob }

Figure 4 shows an initial abstract model for the PTA shown in Fig.1
As shown in the figure, the abstract model is just an MDP where all
of the clock constraints are removed though we keep a set of clock
reset as a label of transitions.

3.2 Model Checking
In model checking, we apply Value Iteration[8] into the markov
decision process obtained by abstraction and calculate a maximum
reachability probability. Also, it decides an action to be chosen at
every state as an adversary. If the obtained probability is less than p,
we can terminate the CEGAR loop and conclude that the property
is satisfied.

Although Value Iteration can calculate a maximum reachability
probability, it cannot produce concrete paths used for the proba-
bility calculation. To obtain the concrete paths, we use an approach
proposed in [9] which can produce CE paths for PCTL formulas.
The approach translates a probabilistic automaton into a weighted
digraph. And we can obtain at most k paths by performing k-
shortest paths search on the graph.

DEFINITION 3.2. A path ω̂ on an abstract model ˆMDPPTA =
(Ŝ, ŝ0, ˆSteps) for PTA = (A,L, l0, C, I, prob) is given as fol-
lows,

ω̂ = ŝ0
a0,p0,r0−→ ŝ1

a1,p1,r1−→ . . .
an−1,pn−1,rn−1−→ ŝn

� � �

�
	�����
	��

�
	������
	��

�
	�����
���

����������������������������

���������������������������� !�

 ���"�������#����������������
���$�����������%$�������"������

�
	������
���

� � �
	��

� � �
����������������������������

���������������������������� !�
� � �	�����

���
	
��

	
��

��� ���

��� ���

���

���������

��� ���

���

����
	������
	��

�
�&	��

 ���"�������#����������������
���$�����������%$�������"������

Figure 5: Products of zones obtained by Forward and Back-
ward Simulation

, where ŝi ∈ Ŝ for 0 ≤ i ≤ n and (ŝi, ai, pi) ∈ ˆSteps ∧
(ri, ŝi+1) ∈ support(pi) for 0 ≤ i ≤ n− 1.

As defined in Def. 3.2, we associate a set r of clock reset with a
path on an abstract model in order to show the difference of r over
the probabilistic distribution p.

For the abstract model shown in Fig.4, Value Iteration outputs 1.0
as the probability that it reaches to the state d from the state a. On
the other hand, k-shortest paths search (k ≥ 2) detects two paths

ω̂α = a
τ,0.5,{}−→ b

τ,1.0,{}−→ d and ω̂β = a
τ,0.5,{x:=0}−→ c

τ,1.0,{}−→ d,
where τ represents a label for transitions with no label in the figure.

3.3 Simulation
Simulation checks whether all the paths obtained by k-shortest paths
search are feasible or not on the original probabilistic timed au-
tomaton. We use the simulation algorithm proposed in [6] If there
is at least one path which is infeasible on the original PTA, we pro-
ceed to the abstraction refinement step.

3.4 Abstraction Refinement
In this step, we refine the abstract model so that the given spuri-
ous CE also becomes infeasible on the refined abstract model. We
can use the algorithm proposed in [6]. Since the algorithm of [6]
performs some operations on transitions of a timed automaton, we
replace such operations by those on probability distributions of a
probabilistic timed automaton.

3.5 Compatibility Checking
When all the paths obtained by k-shortest paths search are feasible
and a summation of occurrence probabilities of them is greater than
p, we also have to check whether all the paths are compatible or not.
In this compatibility checking step, at each location of the paths, we
have to obtain a condition (zone) which is reachable from the initial
state and also reachable to the last state along with the path. Next,
we check the compatibility of such conditions among all paths. To
obtain such conditions, we have to perform both forward simulation
shown in Sec. 3.3 and backward simulation for each path, and
merge the results. For the result of forward simulation, we can
reuse the result obtained in the Simulation step. Then we check the
compatibility based on Lemma 2.1. Paper[10] shows the algorithm
of compatibility checking in detail. In the algorithm, we check the
compatibility of such products of zones at every location of the
paths.

Figure 5 shows the products of zones obtained by both forward and
backward simulation for two paths ω̂α and ω̂β in Sec.3.2. For the
path ω̂α, the product zone at a is given as Dω̂α

c,0 = (x == y ∧ x <

36

Table 1: Experimental Result
Digital Clocks[3] Proposed Approach

D(μs) p Result T ime(s) State MEM(MB) Result T ime(s) Loop State Heap(MB)

5
1.09×10−1 false 20.90 297,232 10.2 false 4.19 10 37 8.0

3.28×10−1 true 20.89 297,232 10.2 true 3.60 9 36 8.0

10
1.26×10−2 false 54.80 685,232 21.7 false 8.16 19 134 8.0

3.79×10−2 true 54.82 685,232 21.7 true 6.57 15 115 8.0

20
1.85×10−4 false 176.93 1,461,232 41.0 false 1186.08 47 477 64.0

5.56×10−4 true 177.46 1,461,232 41.0 true 31.32 32 435 8.0

� �
��

��

�'

�'

�(

�(

	���

����&	����

	���	���

�&	��

�)	���*��)	���	���*

�)����&	��*��)�&	��*

	�������

	��
���

���

�

�

���

���

���

���

	
��

	
��

	
��

Figure 6: A Transformed PTA

1), which means a zone which is reachable from the initial state
and also can move to d. Similarly, for the path ω̂β , the product

zone is given as Dω̂β

c,0 = (x == y ∧ y > 1). Since Dω̂α

c,0 and Dω̂β

c,0

contradict each other, we can conclude that the paths ω̂α and ω̂β

are incompatible each other.

3.6 Model Transformation
When the compatibility check procedure decides a given set Ω̂ of
paths is incompatible at i-th location, our proposed algorithm re-
solves the incompatibility by refining behaviors from the i-th lo-
cation. Our algorithm uses Dω̂

c which is a product of results of
forward and backward simulation for a path ω̂ ∈ Ω̂. It duplicates
locations which are reachable from the zone Dω̂

c,i by an action as-
sociated with the i-th distribution pi. Also it constructs transition
relations so that the transformation becomes equivalent transfor-
mation. For example, transition relations from a duplicated loca-
tion are duplicated if the relations are executable from the invari-
ant associated with the duplicated location. Detailed Algorithms to
transform the model are given in [10].

Figure 6 shows the transformed PTA by applying the model trans-
formation procedure for the paths ω̂α and ω̂β . The locations b1

and c1 are duplicated locations based on the path ω̂α and the zone

Dω̂β

c,0 = (x == y ∧ x < 1) on the location a. We associate invari-

ants to b1 and c1 based on zones which are reachable from Dω̂β

c,0

through transitions from a to b, and from a to c, respectively. Also,
we duplicate a transition from b to d as the transition from b1 to d
because the transition is feasible from the invariant of b1. On the
other hand, we do not duplicate a transition from c to d because the
transition is not feasible from the invariant of c1. Similarly, loca-
tions b2 and c2 are duplicated locations based on the path ω̂β and

the zone Dω̂β

c,0 . Locations b3 and c3 are generated as complements
of the invariant associated with each duplicated location in order to
preserve the equivalence.

By transforming the original PTA in such a way, if we remove all
clock constraints from the model in Fig.6, Value Iteration on its

abstract model outputs 0.5 as the maximum probability.

4. EXPERIMENTS
We have implemented a prototype of our proposed approach with
Java, and performed some experiments. Though the prototype can
check the compatibility of a given set of paths, currently it cannot
deal with the model transformation.

The prototype performs k-shortest paths search and simulation con-
currently in order to reduce execution time. By implementing the
algorithms concurrently, we have not to wait until all of k paths are
detected, i.e. if a path is detected by the k-shortest paths search
algorithm, we can immediately apply simulation and (if needed)
abstraction refinement procedures. Also, our prototype continues
the k-shortest search algorithm when a spurious CE is detected and
the refinement algorithm is applied. If other paths which do not
overlap with the previous spurious CEs, are detected, we can ap-
ply simulation and refinement algorithms to it again. This helps us
reduce the number of CEGAR loop.

4.1 Goal of the Experiments
The goal of this experiment is to check that our approach, which
also searches a CE, is performed within realistic time. In this ex-
periment, we evaluated the performance of our proposed approach
with regard to execution time, memory consumption, and quali-
ties of obtained results. As a target for comparison, we chose the
approach of Digital Clocks[3], which is considered as a basic ap-
proach, where they approximate clock evaluations of a PTA by in-
teger values.

4.2 Example
We used a case study of the FireWire Root Contention Protocol[11]
as an example for this experiment. This case study concerns the
Tree Identify Protocol of the IEEE 1394 High Performance Serial
Bus (called “FireWire”) which takes place when a node is added
or removed from the network. In the experiment, we checked the
probability that a leader is not selected within a given deadline. The
probabilistic timed automaton for the example is composed of two
clock variables, 11 locations, and 24 transitions.

4.3 Procedure of the Experiments
In this experiment, we checked the property that “the probability
that a leader cannot be elected within a given deadline is less than
p.” We considered three scenarios where the parameter deadline
is 5, 10, 20 μs, respectively. Also, for each scenario, we conducted
two experiments where the value of p is 1.5 times as an approximate
value of the maximum probability obtained by the Digital Clocks
approach[3] and a half of it, respectively. In the proposed approach,
we searched at most 5000 paths by letting the parameter k of the k-
shortest paths search algorithm be 5000. For evaluation of existing
approach, we used the probabilistic model checker PRISM[12].

37

Table 2: Analysis of Counter Example Paths
D(μs) p Path Probability CC(ms)

5 1.0938×10−1 7 1.2500×10−1 0.7

10 1.2635×10−2 43 1.2695×10−2 5.9

20 1.8500×10−4 2534 1.8501×10−4 296.9

The experiments were performed under Intel Core2 Duo 2.33 GHz,
2GB RAM, and Fedora 12 (64bit).

4.4 Results of the Experiments
The results are shown in Table 1. The column of D means the value
of deadline. For each approach, columns of Results, T ime,
and States show the results of model checking, execution time of
whole process, and the number of states constructed, respectively.
The column MEM in the columns of the Digital Clocks shows the
memory consumption of PRISM. The columns Loop and Heap in
the columns of the proposed approach show the number of CEGAR
loops executed and the maximum heap size of the Java Virtual Ma-
chine (JVM) which executes our prototype, respectively.

Table 1 shows that for all cases we can dramatically reduce the
number of states and obtain correct results. Moreover, we can re-
duce the execution time more than 80 percent except for the case
when deadline = 20μs and p = 1.85 × 10−4. In this case, how-
ever, the execution time drastically increases.

Table 2 shows the results of analysis of CE paths obtained when
the results of model checking are false. The columns of Path,
Probability and CC show the number of CE paths, the summation
of occurrence probability of them, and execution time for compati-
bility checking, respectively. For this example, the obtained sets of
CE paths are compatible in every case.

4.5 Discussion
From the results shown in Table 1, we can see that our proposed
approach is efficient with regard to both execution time and the
number of states. Especially, the number of states decrease dramat-
ically. The execution time is also decreased even though we per-
form model checking several times shown in the column of Loop.

On the other hand, in the case when deadline = 20μs and p =
1.85 × 10−4, the execution time increases drastically. We think
that as shown in Table 2 we have to search 2534 paths and this
causes the increase of execution time especially for k-shortest paths
search. A more detailed analysis shows that the execution time for
k-shortest paths search accounts for 1123 seconds of total execu-
tion time of 1186 seconds. Also, the results shows that the JVM
needs 64MB as its heap size in this case. This is because com-
patibility checking for 2534 of paths needs a large amount of the
memory. From the results, we have to resolve a problem of the
scalability when the number of candidate paths for a CE becomes
large.

5. CONCLUSION
This paper proposed the abstraction refinement technique for a prob-
abilistic timed automaton by extending the existing abstraction re-
finement technique for a timed automaton. The main contribution
of this work is generation of a CE. Also, the experimental results
show the efficiency of our technique compared to one of existing
approaches.

Future work includes completion of implementation. General DBM
does not support not operator[13]; so we have to investigate effi-
cient algorithms for the not operator.

Acknowledgments
This work is being conducted as a part of Stage Project, the Devel-
opment of Next Generation IT Infrastructure, supported by Min-
istry of Education, Culture, Sports, Science and Technology, as
well as Grant-in-Aid for Scientific Research C(21500036), as well
as grant from The Telecommunications Advancement Foundation.

6. REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. A. Peled, editors. Model

checking. MIT Press, 1999.

[2] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Information and Computation, 205(7):1027–1077, 7 2007.

[3] M. Kwiatkowska, G. Norman, and J. Sproston. Performance
analysis of probabilistic timed automata using digital clocks.
Int. Journal on Formal Methods in System Design,
29(1):33–78, 7 2006.

[4] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic
games for verification of probabilistic timed automata. In
Proc. of the 7th Int. Conf. on Formal Modeling and Analysis
of Timed Systems (FORMATS’09), volume 5813 of LNCS,
pages 212–227, 9 2009.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut.
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM, 50(5):752–794, 2003.

[6] T. Nagaoka, K. Okano, and S. Kusumoto. An abstraction
refinement technique for timed automata based on
counterexample-guided abstraction refinement loop. IEICE
Transactions on Information and Systems,
E93-D(5):994–1005, 5 2010.

[7] C. Derman, editor. Finite-State Markovian Decision
Processes. New York: Academic Press, 1970.

[8] D. P. Bertsekas. Dynamic programming and optimal control.
Athena Scientific, 1995.

[9] H. Aljazzar and S. Leue. Directed explicit state-space search
in the generation of counterexamples for stochastic model
checking. IEEE Transactions on Software Engineering,
36(1):37–60, 1 2010.

[10] A. Ito, T. Nagaoka, K. Okano, and S. Kusumoto.
Reachability analysis for probabilistic timed system based on
timed abstraction refinement technique (in japanese). In
IEICE Technical Report, volume 109, pages 85–90, 3 2010.

[11] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic
model checking of deadline properties in the ieee1394
firewire root contention protocol. Formal Aspects of
Computing, 14(3):295–318, 4 2003.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker:.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. of the 12th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920, pages 441–444, 2006.

[13] A. David, J. Hakansson, K G. Larsen, and P. pettersson.
Model checking timed automata with priorities using dbm
subtraction. In Proc. of the 4th Int. Conf. on Formal
Modelling and Analysis of Timed Systems, pages 128–142,
2006.

38

Fault-prone Module Prediction Using Contents of
Comment Lines

Osamu Mizuno
Kyoto Institute of Technology

Matsugasaki Goshokaido-cho, Sakyo-ku
Kyoto 606-8585, Japan
o-mizuno@kit.ac.jp

Yukinao Hirata
Kyoto Institute of Technology

Matsugasaki Goshokaido-cho, Sakyo-ku
Kyoto 606-8585, Japan

y-hirata@se.is.kit.ac.jp

ABSTRACT
Comment lines in the software source code include descriptions
of codes, usage of codes, copyrights, unused codes, comments,
and so on. From the viewpoint of fault-prone module prediction,
comment lines may have useful information for faulty modules as
well as in code lines. In fault-proneness filtering approach, which
we have been proposed based on text filtering technique, comment
lines and code lines in a source code modules are regarded as text
without any distinction. For better prediction results of fault-prone
modules, the effects of the comment lines on prediction should be
investigated. This study conducts experiments using Eclipse data
sets to reveal the effects of comment lines on the fault-proneness
filtering. The result of experiments was somehow unexpected: pre-
diction using comment lines shows better recall and precision than
that of code lines.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement; D.2.9
[Software Engineering]: Management

General Terms
Measurement

1. INTRODUCTION
Fault-prone prediction is one of the most mature areas of soft-
ware engineering. The prediction of faulty software modules is
important for both the reduction of development cost and the as-
surance of software quality. Much research has been conducted
so far [1, 3, 4, 6–13, 16]. Most research used some kind of soft-
ware metrics, such as program complexity, size of modules, object-
oriented metrics, etc., and constructed mathematical models to cal-
culate fault-proneness. This approach is usually based on a hy-
pothesis that the more complex module the more bugs. However,
such a hypothesis is not always true. For example, although many
if-sentences increase program complexity,

We thus tried to break through the conventional fault-prone predic-

tion by introducing a text-mining technique. This paper introduces
a new idea for fault-prone module detection. The idea is inspired
from a spam e-mail filtering technique. Spam filters are usually im-
plemented as a generic text discriminator. We thus tried to apply a
generic text discriminator to the fault-prone detection. We call our
approach “fault-prone filtering.” In fault-prone filtering, we con-
sider a software module as an e-mail message, and assume that all
of the software modules belong to either fault-prone(FP) modules
or not-fault-prone(NFP) modules. After learning of existing FP and
NFP modules, we can classify a new module into either FP or NFP
by applying a spam filter. One advantage of such a statistical ap-
proach is that we do not have to investigate source code modules in
detail. We do not measure any metrics explicitly, but implicitly our
approach measures only one metric: frequency of tokens found in
the source code.

Although we have confirmed usefulness of our approach, there are
several remaining issues. One issue is effect of comment lines.
Previous implementation of fault-prone filtering did not distinguish
the comment lines and code lines. This is because the source code
module is passed into text filter without any modification. How-
ever, since code lines and comment lines have different roles in
source code modules, we need to consider such difference in the
fault-prone filtering. We expect to improve the prediction accuracy
of fault-prone filtering by using information obtained from com-
ment lines.

To do so, we conducted an experiment to confirm the effect of com-
ment lines in the source code modules to the fault-prone filtering.
The result of experiment showed that comment lines have almost
the same capability as code lines to predict fault-prone modules.

2. OBJECTIVE
2.1 Fault-prone module filtering
The basic idea of fault-prone filtering is inspired by spam mail fil-
tering. In spam e-mail filtering, the spam filter first trains both spam
and ham e-mail messages from the training data set. Then, an in-
coming e-mail is classified into either ham or spam by the spam
filter.

This framework is based on the fact that spam e-mail usually in-
cludes particular patterns of words or sentences. From the view-
point of source code, a similar situation usually occurs in faulty
software modules. That is, similar faults may occur in similar con-
texts. We thus guessed that similar to spam e-mail messages, faulty
software modules have similar patterns of words or sentences. To
obtain such features, we adopted a spam filter in fault-prone mod-
ule prediction.

39

Intuitively speaking, we try to introduce a new metric as a fault-
prone predictor. The metric is “frequency of particular words”. In
detail, we do not treat a single word, but use combinations of words
for the prediction. Thus, the frequency of a certain length of words
is the only metric used in our approach.

We then try to apply a spam filter to identification of fault-prone
modules. We named this approach as “fault-prone filtering”. That
is, a learner first trains both faulty and non-faulty modules. Then,
a new module can be classified into fault-prone or not-fault-prone
using a classifier.

In this study, we define a software module as a Java class file.

2.2 Effect of comment lines
In this paper, we call “comments” in the source code module as
comment lines, and call other lines as “code lines”.

Code lines describe a list of operations that developers would like
to realize on computers. Comment lines include descriptions of
code lines, usage of methods or modules. Code lines are written in
a specific programming language, but comment lines are written in
a free form.

Previous implementation of fault-prone filtering did not distinguish
the comment lines and code lines. This is because the source code
module is passed into text filter without any modification. How-
ever, since code lines and comment lines have different roles in
source code modules, we need to consider such difference in the
fault-prone filtering.

For example, comments are usually placed near the difficult codes.
Therefore, learning the contents of comment lines may be useful to
identify the bug-related part in modules. We expect to improve the
prediction accuracy of fault-prone filtering by using comment lines
effectively.

3. IMPLEMENTATION OF FAULT-PRONE
FILTER

In the previous studies [14,15], we used a ready-made open-source
text classifier, CRM114 [19]. However, use of ready-made software
hides essential information in experiments. We thus implement a
text classifier from scratch for this experiment.

3.1 Tokenization
First of all, inputs of fault-prone filter must be tokenized. Code
lines are tokenized by the Java syntax scanner as follows:

1. Strings with alphabets, numeric characters, and period

2. Operators in Java language

3. Strings with single quotations

4. Strings with double quotations

Other characters, spaces, commas, braces, colons, semicolons, and
so on, are used as a separator to make tokens.

As for the comment lines, tokenization is done by similar manner
with the case of code lines. However, since it is difficult to deter-
mine the end of quoted strings in comment lines, we treat single

Comment lines
in faulty modules

Faulty

Comment lines
in non-faulty

modules

Non-faulty

Faulty comment
corpus

Non-faulty
comment
corpus

Tokenize and
learn

Tokenize and
learn

Mft
com Mnf

com

Figure 1: Learning procedure

and double quotations as a separator in the comment lines. Con-
sequently, a code piece output("Hello, world!"); is to-
kenized into 2 tokens, “output” and “"Hello, world"”, in
code lines, but is tokenized into 3 tokens, “output”, “Hello”,
and “world” in comment lines.

3.2 Learning algorithm
The algorithm of learning and classification is the same as that of
[5].

Step 1 Tokens are extracted from faulty and non-faulty modules.
The number of occurrence for each token in faulty and non-
faulty modules are counted. For a given token t, the follow-
ing two hash functions can be defined:

• nonfaulty(t): The occurrence of token t in all non-
faulty modules.

• faulty(t): The occurrence of token t in all faulty mod-
ules.

Step 2 We construct a hash table to obtain the probability, Pft|t,
by equation (1) that a module that includes the token t is
faulty. Here, Nnf denotes the number of non-faulty modules
and Nft denotes the number of faulty modules. We call this
hash table as a corpus.

rnf = min

„
1,

2× nonfaulty(t)

Nnf

«

rft = min

„
1,

faulty(t)

Nft

«

Pft|t = max

„
0.01, min

„
0.99,

rft

rnf + rft

««
(1)

3.3 Classification algorithm
The classification process is also based on Graham’s algorithm [5].

40

A new
Java source code

module

Comment lines
in a module

Code lines
in a module

Classification Classification

Faulty
comment
corpus

Non-faulty
comment
corpus

Faulty code
corpus

Non-faulty
code

corpus

Probability to
faulty

Probability to
faulty

Mcom Mcode

M

Figure 2: Classification procedure

Step 1 For a new module, distinct tokens are extracted. In this
study, we use all extracted tokens. Here, we count the num-
ber of tokens, n, for the next step1.

Step 2 According to the equation (2), the probability Pft is calcu-
lated. We determine whether a module is fault-prone or not.
If Pft ≥ 0.9, the module is determined as fault-prone.

Pft =

Qn
i=1 Pft|tiQn

i=1 Pft|ti
+

Qn
i=1(1− Pft|ti

)
(2)

To both comment lines and code lines, we separately apply this
classification algorithm. Intuitive description of the classification
procedure is shown in Figure 2.

4. EXPERIMENT
4.1 Target project
In order to conduct experiments, we prepare a data set obtained
from Eclipse project by Zimmermann [2,20], which is called promise-
2.0a data set. In the data set, 31 complexity metrics as well as the
number of pre- and post-release faults are defined and collected.
Although promise-2.0a includes metrics collected from both files
and packages, we used the metrics from files for this study. One of
advantages to use promise-2.0a from Eclipse is that it is publicly

1We can use a limited number of tokens here. To do so, among
those extracted tokens, most characteristic n tokens, t1 · · · tn are
determined. In more detail, Cx = abs(0.5 − Pft|tx) is calculated
for each token tx, and we select n tokens with the largest Cxs by
descending order. For calculation of Cx, if a token t is a never seen
one, we assume that Pft|t = 0.4. Based on the pre-experiment, we
found that the prediction performance does not differ if we use, for
example, 20 characteristic tokens. But for simplicity, we used all
tokens in this experiment.

Table 1: Target projects
Project Eclipse

Version 2.0 2.1 3.0

Number of modules 6,729 7,888 10,593

Number of faulty 975 854 1,568
modules (14.5%) (10.8%) (14.8%)

Number of non- 5,754 7,034 9,025
faulty modules (85.5%) (89.2%) (85.2%)

Total lines of code 1,267,350 1,564,872 2,098,034

Comment lines 475,486 577,033 788,055
(37.5%) (36.9%) (37.6%)

Code lines 791,864 987,839 1,309.979
(62.5%) (63.1%) (62.4%)

Table 2: Classification result matrix
Classified

non-fault-prone fault-prone

Actual non-faulty True negative (TN) False positive (FP)
faulty False negative (FN) True positive (TP)

available on the Web. Many researchers can use the same data set
and compare their approaches. The data set includes the values of
software complexity metrics shown and fault data collected by the
SZZ algorithm [18] for each class file, that is, software modules.
The data is obtained from Eclipse version 2.0, 2.1, and 3.0. The
number of modules in Eclipse 2.0, 2.1 and 3.0 are 6,729, 7,888 and
10,593, respectively.

4.2 Evaluation measures
Table 2 shows a classification result matrix. True negative (TN)
shows the number of modules that are classified as non-fault-prone,
and are actually non-faulty. False positive (FP) shows the number
of modules that are classified as fault-prone, but are actually non-
faulty. On the contrary, false negative shows the number of mod-
ules that are classified as non-fault-prone, but are actually faulty.
Finally, true positive shows the number of modules that are classi-
fied as fault-prone which are actually faulty.

In order to evaluate the results, we prepare two measures: recall,
precision. Recall is the ratio of modules correctly classified as
fault-prone to the number of entire faulty modules Recall is defined
by equation (3).

Recall =
TP

TP + FN
(3)

Precision is the ratio of modules correctly classified as fault-prone
to the number of entire modules classified fault-prone. Precision is
defined by equation (4).

Precision =
TP

TP + FP
(4)

Accuracy is the ratio of correctly classified modules to the entire
modules. Accuracy is defined by equation (5).

Accuracy =
TP + TN

TN + TP + FP + FN
(5)

Since recall and precision are in the trade-off, F1-measure is used
to combine recall and precision. F1-measure is defined by equation

41

Java source code
modules

Faulty
Java source code

modules

Faulty
Non-faulty

Java source code
modules

Non-faulty

Comment lines
in faulty modules

Faulty

Code lines
in faulty modules

Faulty

Comment lines
in non-faulty

modules

Non-faulty

Code lines
in non-faulty

modules

Non-faulty

M

Mft Mnf

Mnf
com Mnf

code
Mft

codeMft
com

Figure 3: Getting modules

(6).

F1 =
2× recall× precision

recall + precision
(6)

In this definition, recall and precision are evenly weighed.

4.3 Application to Eclipse
In this section, we describe a procedure of experiments.

We obtained the source code modules from tar archives of corre-
sponding Eclipse versions. We can define faulty and non-faulty
source code modules by the metric “post-release failure (post)” in
promise-2.0a. If post > 0, a module is faulty; otherwise non-
faulty. Based on the faulty/non-faulty information, we divide source
code modules into “faulty” and “non-faulty”, represented ft and
nf , respectively. Moreover, we separate a module into code and
comment lines for each source code module. This procedure is
shown in Figure 3.

Here, let Mcode and Mcom be code lines and comment lines ex-
tracted from a module M , respectively. In the classification with
code lines, we use only Mcode as training and test data. Similarly,
we use only Mcom in the classification with comment lines.

The following procedure was conducted in this experiment:

1. For the learning step, we first pick up a version of Eclipse
project as a training data set. We then divide the training
data set into faulty and non-faulty. For each faulty module,
Mft

code is extracted and conducted learning for a faulty code

corpus. Similarly, Mft
com is extracted and learnt in a faulty

comment corpus. For non-faulty modules, the same proce-
dure for Mnf

code and Mnf
com is performed.

2. For the classification step, we pick up the other version of
Eclipse project as a testing data set. The, the testing data
set is applied to the classification procedure. For each mod-
ule in the testing data set, Mcode and Mcom are extracted.

Table 3: Result of prediction: (comment, 2.0, 2.1)
Prediction

non-fault-prone fault-prone

Actual not faulty 5,952 1,082
faulty 508 346

Table 4: Result of prediction: (code, 2.0, 2.1)
Prediction

non-fault-prone fault-prone

Actual not faulty 5,711 1,323
faulty 492 362

Table 5: Result of prediction: (comment, 2.0, 3.0)
Prediction

non-fault-prone fault-prone

Actual not faulty 7,625 1,400
faulty 835 733

Table 6: Result of prediction: (code, 2.0, 3.0)
Prediction

non-fault-prone fault-prone

Actual not faulty 7,477 1,548
faulty 934 634

By using code and comment corpuses, Mcode and Mcom are
classified.

In this experiment, we use versions 2.0 and 2.1 for training and ver-
sions 2.1 and 3.0 for testing, since it is natural to use older version
for training and newer version for testing. These training pairs are
used for different targets: code lines or comment lines. We thus
prepare six experiment 3-tuples denoted by (target, training, test-
ing): (code, 2.0, 2.1), (comment, 2.0, 2.1), (code, 2.0, 3.0), (com-
ment, 2.0, 3.0), (code, 2.1, 3.0), and (comment, 2.1, 3.0).

The results of six prediction experiments are shown in Tables 3 –
8.

4.4 Result of experiment
A summary of experimental results are shown in Table 9. Bold
figures show the best result. We can find following three findings
from Table 9:

1. Predicted results with comment lines have better F1’s than
that of code lines.

Table 7: Result of prediction: (comment, 2.1, 3.0)
Prediction

non-fault-prone fault-prone

Actual not faulty 7,563 1,462
faulty 986 582

Table 8: Result of prediction: (code, 2.1, 3.0)
Prediction

non-fault-prone fault-prone

Actual not faulty 7,883 1,142
faulty 1,133 435

42

Table 9: Summary of experimental results (Threshold = 0.9)
Train Test Target Acc. Rec. Prec. F1

2.0 2.1 Comment 0.798 0.405 0.242 0.303
Code 0.770 0.424 0.215 0.285
All 0.782 0.419 0.228 0.294

2.0 3.0 Comment 0.789 0.467 0.344 0.396
Code 0.766 0.404 0.291 0.338
All 0.777 0.420 0.312 0.358

2.1 3.0 Comment 0.769 0.371 0.285 0.322
Code 0.785 0.277 0.276 0.277
All 0.781 0.289 0.274 0.281

Table 10: Summary of experimental results (Threshold = 0.5)
Train Test Target Acc. Rec. Prec. F1

2.0 2.1 Comment 0.789 0.419 0.234 0.300
Code 0.755 0.438 0.204 0.279
All 0.778 0.426 0.224 0.294

2.0 3.0 Comment 0.776 0.492 0.328 0.394
Code 0.747 0.415 0.270 0.327
All 0.770 0.430 0.304 0.356

2.1 3.0 Comment 0.738 0.416 0.260 0.320
Code 0.768 0.292 0.254 0.272
All 0.769 0.302 0.259 0.279

2. Recalls are usually higher than precisions.

In Table 9, we show results of regular fault-prone filtering, that is,
predictions using both comment lines and code lines. Rows “All”
show the results.

As we described in subsection 3.3, the threshold of probability to
determine as fault-prone is 0.9. Since we guessed that this thresh-
old is too high, we conducted another experiments using thresh-
old of 0.5. The summarized result is shown in Table 10. Because
we decrease the threshold to determine fault-prone, the number of
fault-prone modules is increased. Consequently, recalls are rela-
tively higher than that of Table 9.

5. DISCUSSIONS
The result in Tables 9 and 10 are unexpected for us. The result in-
dicates that using only comment lines can achieve a certain extent
of prediction accuracy. Furthermore, it is better than that of code
lines from the viewpoint of F1. We can also see that prediction
results using both code and comment show the intermediate result
between that of comment lines and code lines. However, the eval-
uation measures are very close between comment lines and code
lines. We expected that there is more difference between them. We
guess a reason for this result as follows: We used only one revision
for training. This may decrease the accuracy of fault-prone filter-
ing. The fault-prone filtering originally aims to utilize historical
information of texts in the source code modules. When we adopt
such data, we may get different result with this. In order to inves-
tigate the effects of comment lines in more detail, we will conduct
further research using historical data.

One concern on this experiment is the number of modules that do
not include comments. We cannot deal with modules without com-
ments correctly in the prediction with comment lines. Table 11
shows the number of modules without comment lines for each ver-
sion. We can see that there is few modules without comment lines.

Table 11: Number of modules without comments
version faulty non-faulty

2.0 3 (0.31%) 34 (0.59%)

2.1 0 (0%) 0 (0%)

3.0 0 (0%) 3 (0.03%)

Table 12: Comparison with Zimmermann’s result [20]
Train Test Target Acc. Rec. Prec. F1

2.0 2.1 Comment 0.789 0.419 0.234 0.300
Code 0.755 0.438 0.204 0.279

Zimmermann 0.890 0.191 0.478 0.273

2.0 3.0 Comment 0.776 0.492 0.328 0.394
Code 0.747 0.415 0.270 0.327

Zimmermann 0.861 0.171 0.613 0.267

2.1 3.0 Comment 0.738 0.416 0.260 0.320
Code 0.768 0.292 0.254 0.272

Zimmermann 0.864 0.139 0.717 0.233

On the other hand, we need to compare with the other fault-prone
prediction approach. The most appropriate subject of comparison
is Zimmermann’s result [20] since the data we used in this study
is quoted their paper. The result of comparison is summarized in
Table 12. Table 12 shows that Zimmermann’s approach has higher
precision than ours, but our approach has higher recall. At least,
from the viewpoint of F1, we can say that our approach is as ac-
curate as that of [20]. For another comparison, we compare with
the results obtained by Shihab et al. [17]. Table 13 shows the re-
sults. We can see that their result is similar to the result of Zimmer-
mann’s. That is, we guess that software metrics based approaches
tend to achieve high precision, whereas spam filter based approach
high recall. In further research, we need to analyze why our ap-
proach shows high recall.

6. CONCLUSIONS
In this study, we tried to investigate the effects of comment lines
in the source code modules on the accuracy of fault-prone filtering,
which is a text-classification based fault-prone module prediction
method. We conducted experiments using Eclipse data sets to re-
veal the effects of comment lines on the fault-prone filtering. The
result of experiments was somehow unexpected: prediction using
comment lines shows better recall and precision than that of code
lines.

Future work includes more experiments using entire historical data
in the repository. In this study, we only used comment lines only,
but logs in SCM can be a good candidate of input for fault-prone
filtering. On the other hand, analysis to identify important tokens
for fault-prone modules is an interesting future research. We are
currently tackling this issue.

7. ACKNOWLEDGMENTS

Table 13: Prediction results obtained by Shihab et al. [17]
Version Acc. Rec. Prec.

2.0 0.875 0.285 0.663

2.1 0.898 0.158 0.600

3.0 0.869 0.257 0.641

43

This research is partially supported by the Japan Ministry of Edu-
cation, Science, Sports and Culture, Grant-in-Aid for Young Scien-
tists (B), 20700025, 2008–2010.

8. REFERENCES
[1] P. Bellini, I. Bruno, P. Nesi, and D. Rogai. Comparing

fault-proneness estimation models. In Proc. of 10th IEEE
International Conference on Engineering of Complex
Computer Systems, pages 205–214, 2005.

[2] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE
Repository of empirical software engineering data
repository. http://promisedata.org/, West Virginia University,
Department of Computer Science, 2007.

[3] L. C. Briand, W. L. Melo, and J. Wust. Assessing the
applicability of fault-proneness models across
object-oriented software projects. IEEE Trans. on Software
Engineering, 28(7):706–720, 2002.

[4] G. Denaro and M. Pezze. An empirical evaluation of
fault-proneness models. In Proc. of 24th International
Conference on Software Engineering, pages 241–251, 2002.

[5] P. Graham. Hackers and Painters: Big Ideas from the
Computer Age, chapter 8, pages 121–129. O’Reilly Media,
2004.

[6] L. Guo, B. Cukic, and H. Singh. Predicting fault prone
modules by the dempster-shafer belief networks. In Proc. of
18st International Conference on Automated Software
Engineering, pages 249–252, 2003.

[7] T. M. Khoshgoftaar and E. B. Allen. Logistic regression
modeling of software quality. International Journal of
Reliability, Quality and Safety Engineering, 6(4):303–317,
1999.

[8] T. M. Khoshgoftaar and E. B. Allen. Controlling overfitting
in classification tree models of software quality. Empirical
Software Engineering, 6(1):59–79, 2001.

[9] T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using
regressin trees to classify fault-prone software modules.
IEEE Trans. on Reliability, 51(4):455–462, 2002.

[10] T. M. Khoshgoftaar and N. Seliya. Software quality
classification modeling using SPRINT decision tree
algorithm. In Proc. of 14th International Conference on
Tools with Artificial Intelligence, pages 365–374, 2002.

[11] T. M. Khoshgoftaar and N. Seliya. Comparative assessment
of software quality classification techniques: An empirical
study. Empirical Software Engineering, 9:229–257, 2004.

[12] T. M. Khoshgoftaar, R. Shan, and E. B. Allen. Using
product, process, and execution metrics to predict fault-prone
software modules with classification trees. In Proc. of 5th
IEEE International Symposium on High Assurance Systems
Engineering, pages 301–310, 2000.

[13] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. on
Software Engineering, 33(1):2–13, January 2007.

[14] O. Mizuno and T. Kikuno. Training on errors experiment to
detect fault-prone software modules by spam filter. In Proc.
of 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the
foundations of software engineering, pages 405–414, 2007.

[15] O. Mizuno and T. Kikuno. Prediction of fault-prone software
modules using a generic text discriminator. IEICE Trans. on
Information and Systems, E91-D(4):888–896, 2008.

[16] N. Seliya, T. M. Khoshgoftaar, and S. Zhong. Analyzing

software quality with limited fault-proneness defect data. In
Proc. of 9th IEEE International Symposium on
High-Assurance Systems Engineering, pages 89–98, 2005.

[17] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E.
Hassan. Understanding the impact of code and process
metrics on post-release defects: a case study on the eclipse
project. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, pages 4:1–4:10, New York, NY,
USA, 2010. ACM.

[18] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? (on Fridays.). In Proc. of 2nd
International workshop on Mining software repositories,
pages 24–28, 2005.

[19] W. S. Yerazunis. CRM114 – the Controllable Regex
Mutilator. http://crm114.sourceforge.net/.

[20] T. Zimmermann, R. Premrai, and A. Zeller. Predicting
defects for eclipse. In Proc. of 3rd International Workshop
on Predictor models in Software Engineering, 2007.

44

Process Analysis

45

46

A Preliminary Study on Impact of Software Licenses on
Copy-and-Paste Reuse

Yu Kashima
Graduate School of

Information Science and
Technology, Osaka University

y-kasima@ist.osaka-
u.ac.jp

Yasuhiro Hayase
Faculty of Information

Sciences and Arts, Toyo
University

hayase@toyo.jp

Norihiro Yoshida
Graduate School of

Information Science, Nara
Institute of Science and

Technology
yoshida@is.naist.jp

Yuki Manabe
Graduate School of

Information Science and
Technology, Osaka University

y-manabe@ist.osaka-
u.ac.jp

Katsuro Inoue
Graduate School of

Information Science and
Technology, Osaka University
inoue@ist.osaka-u.ac.jp

ABSTRACT
Source code of open-source software is permitted to be reused
when and only when the conditions of its license are satis-
fied. There are many different conditions for reusing, since
various open-source licenses are used. Therefore, the license
of the source code may affect the frequency of reusing or
the property of the software for which the source is reused.
To identify the relationship between software license and
reusing, we are planning to classify copy-and-pasted code
fragments based on the license of the fragments. This pa-
per presents a preliminary and manual investigation on a
small source file set. The result indicates that the license
of a fragment affects the quantity and the license of copied
fragments.

Categories and Subject Descriptors
K.5.1 [LEGAL ASPECTS OF COMPUTING]: Hard-
ware / Software Protection—Licensing
; K.6.3 [MANAGEMENT OF COMPUTING AND

INFORMATION SYSTEMS]: Software Management—
Software Selection

General Terms
Legal Aspects, Experimentation

Keywords
Software License, Open Source Software, Reuse, Copy and
Paste

1. INTRODUCTION

Source code of open source software (i.e. OSS) is avail-
able for anyone to modify or redistribute. According to the
growth of OSS development [16], software developers can
reuse huge amount of OSS source code nowadays.

Everyone has to adhere to the license of a software product
when he/she obtains or uses the product. The license of
a product expresses the intent of the right holder; Several
OSS licenses require the derivative works to apply the same
license of the original product, i.e. copyleft1. Since different
right holders have different intents, many OSS licenses are
used.

Software reuse is recognized as a practice for reducing the de-
velopment cost and improving the product quality. Software
reuse happens at several levels of granularity; from simple
copy and paste of code snippet, to whole the inclusion, to
subsystem reuse.

Software reuse must adhere the license of the reused product.
Furthermore, developers must pay attention not to violate
the licenses of the product they are developing by reusing
other software.

OSS licenses have different attitudes toward reuse.[14] For
example, the GNU General Public Licenses (GPL)[5] re-
quires derivative works, including a product that contains a
code fragment copied from a GPL product, to be distributed
under the GPL. On the other hand, the BSD license[13] only
requires that the copyright notice, the license text and the
disclaimer are retained. Thus, the reused product must be
carefully selected to not conflict with the license of a product
under development.

Consequently, software license may affect the frequency of
code reuse or the variety of the derived products. For in-
stance, the source code distributed under a copyleft license
may be reused less frequently and reused in narrow a vari-
ety of software products, compared to non-copyleft license

1http://www.gnu.org/copyleft/ (accessed Oct 2010)

47

source code. To the knowledge of the available, there is no
quantitative study of CnP reuses from the point of view of
software license.

This paper presents a preliminary study on the impact of
the software licenses on CnP reuse on a small data set.
The preliminary experiment intends to assess the process
of evaluating CnP source code based on the software li-
cense. The target of the experiment is Java source code
distributed in Debian GNU/Linux lenny[3]. We investigated
copy-and-pasted code fragments that are distributed under
three major licenses; the 3-clause BSD license (BSD3), the
GPL Version 2 or later (GPLv2+) and the Apache License
2.0 (Apachev2)[1]. To detect copy-and-pasted code frag-
ments, CCFinder[10] and LNR filtering criterion are used.

Result of the experiment shows that source code distributed
under the BSD3 or the Apachev2 is more frequently reused
than the GPLv2 code. On the other hand, Apachev2 and
GPL code has a trend to be reused in code distributed un-
der specific licenses. Through the preliminary experiment,
we confirmed that the process of evaluation is effective and
applicable for large data set.

The rest of this paper is organized as follows. Section 2 ex-
plains background of this study. Section 3 illustrates design
and result of the experiment, and Section 4 interprets the
result of the experiment. Section 5 discusses about the valid-
ity of the experiment, finally, Section 6 shows the conclusion
and future remarks.

2. SOFTWARE LICENSE AND REUSING
Nowadays, many open-source licenses are used; for instance,
the Open Source Initiative officially approves 67 licenses 2.
This section illustrates three of most major licenses, 3-clause
BSD license (BSD3), Apache License 2.0 (Apachev2) and
GNU General Public License version 2 (GPLv2) from the
perspective of a developer who makes a derivation product.
From the point of view of a developer, different licenses mean
different restrictions.

When a developer makes a derivative work from a BSD3
product, the former should retain the copyright notice and
the full text of the license.

If a developer makes a derivative work from an Apachev2
product, all copyrights, patents, trademarks, and attribu-
tion notices should be retained in the new product. More-
over, changed file also should have notices of the modifica-
tion.

When a developer makes a derivation from a GPLv2 prod-
uct, the whole derivation must be distributed under the
GPLv2 and, changed file should have notices of the mod-
ification.

2.1 OSS License and Reuse
Software reuse is recognized as a practical method for devel-
oping high quality software with low cost. A developer can

2http://www.opensource.org/licenses (accessed Oct
2010)

���� ���

	�
 ��� ����

	�

Figure 1: Reusing source code in a different license

product

reuse source code of OSS products since the source code is
easily available.

Copy-and-paste (CnP) is one of the most frequently per-
formed methods of reuse. In CnP reuse, source code is
copied, modified if needed, and finally, used as a part of
new product.[11, 14]

When reusing existing software, both the license of the prod-
uct being reused and of the developing product must be
satisfied. In case the two licenses are incompatible, both
cannot be satisfied simultaneously. For example, Apachev2
products cannot be incorporated into the GPLv2 products,
since several requirements in the Apachev2 conflict with a
clause in GPLv2.3

Furthermore, even if the licenses do not conflict, an OSS
product cannot be reused if license of the developing prod-
uct cannot be changed. For example, GPLv2 source code
cannot be incorporated into a BSD3 product. In contrast,
BSD3 source code can be incorporated into a GPLv2 prod-
uct because the restrictions of the BSD3 are included in the
GPLv2. (Figure 1)

2.2 Impact of Software License on Copy and
Paste Reuse

As described above, the license of the reused product is the
main concern to software reuse. If a license of source code
doesn’t match a developing product, the source code cannot
be reused in the developing product unless the license of the
developing product is changed. Therefore, it is clear that the
reusability of software depends on not only functionality or
quality, but also license of the software.

Whether reusing source code by CnP is allowed or not de-
pends on its license. As previously explained, when a de-
veloper reuses source code, the developer must observe the
source codes license. Licenses with very restrictive terms
(i.e. GPL) might make it difficult to satisfy their condition,
while licenses with more relaxed conditions have easier to
meet requirements.

We make the following assumptions:

• source code with a relaxed license is reused under var-
ious licenses.

3http://www.gnu.org/licenses/license-list.html (ac-
cessed Oct 2010)

48

Table 1: kept packages and excluded packages

kept packages excluded packages

antlr3 antlr
asm3 asm, asm2
db4.6 db4.2, db4.3
junit4 junit
tomcat6 tomcat5.5

• source code with a relaxed license is reused more fre-
quently than source code under a strict license.

3. EXPERIMENT
The goal of this study is an investigation of the impact of li-
censes on CnP reuse in OSS. To achieve the goal, we need to
analyze actual OSS to identify the relationship between li-
censes and CnP reuse. In this paper, we analyzed the source
files of OSS in order to validate our method.

This study focused only source code reuse across applica-
tions. We believe that the impact of license on source code
reuse within an application is small. Because, even though
there are CnP between files under different license, a license
problem occurred by these files must be resolved.

3.1 Analysed Code
We selected a part of the source files of Debian/GNU Linux
as our analysis target for the following reasons:

• Various licenses are used by it.

• It includes different type of software.

First, we downloaded the packages contained in the main
section of Debian/GNU Linux; second, we extracted the con-
tent of the “.tar.gz” files; finally, we selected the source code
written in Java(.java) the target of our analysis. Conse-
quently, the analysis target consisted of 77452 files (8530896
LOC) from 452 packages.

Note that we kept one of several packages having different
versions respectively and excluded the others in the analysis
target. For example, between asm, asm2 and asm3, we kept
asm3 and excluded asm and asm2 from the analysis target.
Table 1 shows the kept packages and the excluded packages.

3.2 Experiment Method
Figure 2 shows an overview of the method of this experi-
ment.

Step 1 We identified the licenses of each file by analyz-
ing the description specifying its licenses in the file.
We used Ninka[7] to identify the licenses. Ninka is a
tool which analyzes descriptions specifying licenses in
a source file and identifies specified licenses. The rea-
son why Ninka was used in this step is that Ninka is a
state-of-art license identification tool and more precise
than other existing license identification tools such as
FOSSology[8]. Note that not only a source file but also

Table 2: Distribution of licenses in all files of the

analysis target

License Name #File

Apachev2 16350 �

GPLv2+ 8160 �

LesserGPLv2.1+ 6534
GPLnoVersion,GPLv2+,LinkException 5887
GPLv2 3222
BSD3 2181 �

GPLv2,ClassPathException 1498
No description specifying license in the file 15813
Fail to analyze the description 6862
SeeFile 2786

a package can have a license. According to the Debian
Policy[4], Each package has a ’copyright’ file specifying
the license of the package. However, this step didn’t
use this ’copyright’ file because the license of source
files in the package does not always correspond to the
license of the package[6, 8].

Step 2 We extracted the clone sets[10] created by copy-
and-paste. A clone set is an equivalence class of the
clone-relation. The clone-relation is defined as an equiv-
alence relation. The clone-relation holds between two
code portions if (and only if) they are the same se-
quence. A code fragment which is similar to another
is called code-clone. We give a detailed description of
the method for extracting clone sets in Section 3.3.

Step 3 We extracted clone sets including a code fragment
under specific license A, and we classified and counted
the code fragments in these clone set based on their
license. Since the source of the CnP cannot be re-
trieved from code clones, the direction of CnP was not
considered in this experiment.

Due to time limitation, we investigated only some licenses
that are widely used and differ from each other in the con-
dition on CnP reuse. Table 2 shows the abbreviated names
of the licenses ranked in descending order by the number of
files under it in the analysis target. Licenses marked with a
check are the ones we investigated. Table 3 shows the full
names of the licenses in Table 2. When we show a version
of license, “v<number>” follows. In addition, if users can
choose this version or any later, “+” follows. Furthermore, if
user can choose several licenses, usable license names follow
after “,”.

We analyzed Apachev2, GPLv2+ and BSD3 as Table 2 shows.
Apachev2 is used by the largest number of files in the anal-
ysis target; GPLv2+ and GPL derivatives are counted in
the second. BSD3 is used by the largest number of files
except files under Apachev2 or licenses which conditions
like GPLv2+ such as “LesserGPLv2.1+”, “GPLnoVersion,
GPLv2+, LinkException”, “GPLv2+”.

3.3 CnP Detection
We used CCFinder[10] for detecting code fragments created
by CnP. CCFinder is a code-clone detection tool. We can

49

�������	��
�

������

�������
�

���

�������	��
�

���������

������

�������	
������

������������

��������

�������

�	
�

�����

����

� ��

� �

�� ��

��������

��������

Figure 2: Overview of evaluation method

Table 3: License name abbreviations
Abbreviation Name

Apache Apache Public License
BSD3 Original BSD minus advertisement clause
ClassPathException GNU Classpath License
CPL Common Public License
GPL General Public License
LesserGPL Lesser General Public License
LibraryGPL Library General Public License
LinkException GPL linking exception
MITX11noNotice MIT License/X11License
MPL Mozilla Public License
MX4jLicense MX4J License
publicDomain Public Domain
SeeFile File Points to another where the its license is
subversion Subversion License

extract code fragments copied and pasted by detecting code-
clones.

In this experiment, when we detect CnP from the analysis
target, we detected code-clone ignoring the identifier names,
because we wanted to detect code fragments in which iden-
tifier names changed after the CnP.

Additionally, we used LNR to filter clone set involving code
fragment created by CnP from extracted clone set. LNR is
the number of tokens of non repeated elements in a code
fragment. A code fragment which LNR is small might in-
cludes only variable declarations, assignments or getter/setter
declarations. These code fragments are called language spe-
cific clones. By contrast, if the LNR of a code fragment
is large, the code fragment has higher classes to be created
by CnP. Therefore, in this experiment, we presumed that a
clone set is created by CnP if the average of LNR of code
fragments is over some specific value. This value was set at
50, because our experience shown that 50 is an appropriate
value to exclude language specific clones.

3.4 Results
Table 4 shows the number of code fragments under each
license; Table 5 shows the case of Apachev2; Table 6 shows
the case of GPLv2+.

Table 7 shows the number of code fragments, files and the
ratio of code fragments to files of BSD3, Apachev2 and
GPLv2+. We can see from Table 7 that the order arranged
in descending order of number of code fragments compared
to number of files is BSD3, Apachev2, GPLv2+.

Table 4: Distribution of code fragments having

clone-relation to files under BSD3
License Name #Fragments

BSD3 613
GPLv2+ 20
Apachev2 16
LibraryGPLv2+ 14
GPLv2,ClassPathException 1
LesserGPLv2.1+ 1

Table 5: Distribution of code fragments having

clone-relation to files under Apachev2

License Name #Fragments

Apachev2 1533
Apachev1.1 316
LesserGPLv2.1+ 42
MPLv1 1 33
BSD3 29
MX4JLicensev1 16
GPLv2+ 4
LibraryGPLv2+ 3
MPLv1 0 2
MITX11noNotice 2
publicDomain 1
subversion+ 1
EPLv1 1

We found that CnP fragments tend to have the same li-
cense. In the case of BSD3, code fragments under BSD3
account for 92% of all code fragments. Similarly, in the case
of Apachev2, code fragments under Apachev2 account for
77% of all. In the case of GPLv2+, code fragments under
GPLv2+ account for 48% of all.

In the case of Apachev2, code fragments under Apachev1.1
account for 16% of all. Similarly, in the result of GPLv2+,
“GPLnoVersion, GPLv2+, LinkException” account for 41%
of all.

If we evaluate the results from the point of view of the num-
ber of licenses, Apachev2 has CnP relationship to the largest
number of licenses. Apachev2 has CnP relationship to 13 li-
censes. BSD3 and also GPLv2+ have CnP relationship to 6
licenses.

50

Table 6: Distribution of code fragments having

clone-relation to files under GPLv2+

License Name #Fragments

GPLv2+ 268
GPLnoVersion,GPLv2+,LinkException 225
BSD3 28
LibraryGPLv2+ 20
Apachev2 4
LesserGPLv2.1+ 4

Table 7: Number of code fragments and files

#Fragments #File #Fragments/#File

BSD3 665 2181 0.304906
Apachev2 1983 16350 0.121284
GPLv2+ 549 8160 0.067279

4. DISCUSSION
In the result of Apachev2, there is large number of code
fragments having CnP relationship to code fragments under
Apachev1.1. We believe that Apachev1.1 has been changing
to Apachev2 currently because Apachev1.1 is an old version
of Apachev2.

GPLv2+ has the smallest number of #Fragments/#File in
table 7. This result shows that GPLv2+ is reused less fre-
quently than BSD3 and Apachev2. We believe that code
fragments under other licenses are copied into code under
GPLv2+, however, there is little case that a code fragment
under GPLv2+ is copied into code under another license not
in the GPL family. We believe the reasons are:

• Copy-and-Pasting a code fragment under GPLv2+ to
code under another license except GPLv2+ and GPLv3
violates the condition of GPLv2+.

• Copy-and-Pasting a code fragment under Apachev2 or
BSD3 in code under GPLv2+ is permitted.

• Copy-and-Pasting a code fragment under GPL fam-
ily such as LesserGPL or “GPLnoVersion, GPLv2+,
LinkException” and changing their license to GPL is
permitted.

Code fragments under BSD3 or Apachev2 are reused more
frequently than code fragments under GPLv2+. We believe
that it is easier to satisfy the conditions of the BSD3 or the
Apachev2 than these of the GPLv2+. In fact, code frag-
ments under the Apachev2 have CnP relationship to code
fragments under more licenses than code fragments under
the GPLv2+. Therefore, we suggest that code fragments
under Apachev2 are copy-and-pasted frequently into code
under another license.

In section 3.4, we shown that all licenses share the common
characteristic that code fragments under each of the own
license have the highest proportion in each result of inves-
tigations. We suggest that there are many cases that code
fragments are copy-and-pasted to code fragments created by
a developer in same development organization.

There are many open source licenses as described in Section
2, the developers of the OSS have to select a license from
the many available. The result of the investigation may be
contributory to license selection.

This experiment is a preliminary study. Therefore, we plan
to perform an experiment on a larger analysis target. It is
possible to detect CnP in larger source code because we can
split a set of source code to decrease their size as possible
as to analyze by CCFinder, and merge these results. On
the other hand, identifying license of code fragment in large
object is also possible. Because Ninka analyzes files one by
one.

5. THREAT TO VALIDITY
It is possible that the result of the experiment depends
on the CnP detection capability of code clone detection
tool CCFinder[10]. We are motivated to use CCFinder in
the experiment because one of main application of code
clone detection tool is CnP detection, and the usefulness
of CCFinder is shown in Bellon’s benchmark[2]. As future
work, comparative experiments with other available code
clone detection tools (e.g., CP-Miner[12]) should be per-
formed.

The result of the experiment also depends on the charac-
teristic of metric LNR and its threshold value. We use the
metric LNR to exclude language-dependent clones (e.g., re-
peated setter/getter invocations in Java programs). As fu-
ture work, we should perform the experiments to show the
effect of threshold values of metric LNR. RNR[9] is another
metric to exclude language-dependent clones. Currently, we
are planning to perform the comparative experiment with
LNR and RNR.

Ninka is employed to identify the licenses of source files. We
believe that using Ninka is valid because the accuracy of
Ninka is good; In [7], recall was 82% and the precision was
96%.

However, Ninka cannot detect a license if a source file con-
tains no description about license. In addition, Ninka also
cannot detect a license if the license is not registered in
the database. In this experiment, source files that Ninka
couldn’t detect their license are removed from the target of
detecting CnP. Hence, source files which were not detected
their license didn’t influence results.

The analysis target is a small portion of source files in De-
bian GNU/Linux. Therefore, this result may include a lot
of sampling error. For this reason, we believe that applying
this result to general OSS is not acceptable.

6. CONCLUSION AND FUTURE WORK
This paper performed a preliminary study on impact of soft-
ware licenses on CnP reuse. Open-source Java source code
in Debian/GNU Linux was analyzed and classified based
on their license. In particular, copied code fragments that
relate to the source files distributed under 3-clause BSD li-
cense, Apache License version 2.0 or GPL version2 or lator
were analyzed.

The result of the experiment shows that most of the code

51

fragments are copied to files distributed under same license
or relative licenses that is designed by same organization.
On the other hand, comparing to BSD3 and GPLv2+, Apachev2
code fragments are copied into files that are distributed un-
der a various licenses. By contrast, almost all GPLv2+ code
are copied between the files distributed under the GPL fam-
ily licenses.

We are planning a large scale experiment. Especially, the all
source code and licenses in OSS products in Debian GNU/Linux
is a target of the experiment.

This paper focused on clone sets created by CnP. Thus, the
direction of copying is not identified. To clarify the true
impact of the license to copy-and-pasting, origin analysis is
required to know the direction.

To identify the developing organization or the developer who
copied a fragment is also important to clarify the impact.

In this experiment, we didn’t discriminate between code
clone generated by copy-and-pasted and code clone gener-
ated by including library in source form. Discriminating
these code clone, it will be clear that difference of an impact
of license on their cases. Therefore, we plan to retrieve code
clone generated by including library’s source code using with
FCFinder[15].

7. ACKNOWLEDGMENTS
This work has been supported by Ministry of Education, Sci-
ence, Sports and Culture, Grant-in-Aid for Young Scientists
(B) (No.21700031), and Grant-in-Aid for Research Activity
start-up (No.22800040).

8. REFERENCES
[1] Apache Software Foundation. Apache license, version

2.0. http://www.apache.org/licenses/LICENSE-2.0
Accessed Oct 2010.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. Softw. Eng., 33(9):577
–591, Sept. 2007.

[3] Debian Project. Debian gnu/linux.
http://www.debian.org/ Accessed Oct 2010.

[4] Debian Project. Debian policy manual.
http://www.debian.org/doc/debian-policy/

Accessed Oct 2010.

[5] Free Software Foundation. GNU general public license.
http://www.gnu.org/licenses/gpl.html Accessed
Oct 2010.

[6] D. M. German, M. Di Penta, and J. Davies.
Understanding and auditing the licensing of open
source software distributions. ICPC ’10, pages 84–93,
2010.

[7] D. M. German, Y. Manabe, and K. Inoue. A
sentence-matching method for automatic license
identification of source code files. In ASE 2010, pages
437–446, 2010.

[8] R. Gobeille. The fossology project. In Proceedings of
the 2008 international working conference on Mining
software repositories, MSR ’08, pages 47–50, New
York, NY, USA, 2008. ACM.

[9] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Method and implementation for investigating code
clones in a software system. Information & Software
Technology, 49(9-10):985–998, 2007.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28:654–670, 2002.

[11] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N.
Slyngstad, and M. Morisio. Development with
off-the-shelf components: 10 facts. IEEE Software,
26:80–87, 2009.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Soft. Eng., 32(3):176 –
192, March 2006.

[13] Open Source Initiative. The BSD license. http:
//www.opensource.org/licenses/bsd-license.php

Accessed Oct 2010.

[14] M. Ruffin and C. Ebert. Using open source software in
product development: A primer. IEEE Software,
21(1):82–86, 2004.

[15] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue.
Finding file clones in freebsd ports collection. In
Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, pages 102 –105, 2010.

[16] W. Scacchi. Free/open source software development:
recent research results and emerging opportunities. In
ESEC/FSE 2007, pages 459–468, 2007.

52

Using Program Slicing Metrics for the

 Analysis of Code Change Processes
Raula Gaikovina Kula, Kyohei Fushida, Norihiro Yoshida, and Hajimu Iida

Graduate School of Information Science, Nara Institute of Science and Technology
Takayamacho 8916-5, Ikoma, Nara 630-0101, JAPAN

{raula-k,kyohei-f,yoshida}@is.naist.jp, iida@itc.naist.jp

ABSTRACT
Software Process Improvement is increasingly becoming a major
activity for most software development organizations due to the
benefits seen in the cost and business value. Software process
assessments, however, can be tedious, complicated and costly.
This research explores alternative assessments by analysis of fine-
grained processes with its related source code characteristics.

This approach attempts to propose program slicing metrics for
code changes in a software project. Using the wxWidgets
software project as the case study, through project artifacts such
as issue tracking system and change logs, this research explored
relationships between code characteristics and its fined grained
processes.

This research contributes to the development of assessment tools
to assist with Software Process Improvement. It opens
possibilities for assessment tools for fine-grained software
processes.

Categories and Subject Descriptors
D.2.8 [Software Engineering]

General Terms
Experimentation

Keywords
Program Slicing, Code Change Process, Micro Process Analysis

1. INTRODUCTION
1.1 Background and Related Works

The related works are divided into two parts 1) Software Process
Assessment and 2) Program Slicing.

Improvement of software processes in software development is
seen as a major activity for larger software organizations as
benefits are seen in the cost and business value of improvement
efforts, as well as the yearly improvement in productivity of
development, early defect detection and maintenance, and faster
time to market [1].

A number of studies have outlined issues relating common
software process improvement assessment methodologies such as
CMMI[2] and ISO 9000 [3] [4] [5] [6]. Much of the issues relate
to cost of assessment and implementation, especially for small
software organizations [7]. In addition, these generic processes
assessments are sometimes tedious and not specifically tailored.
Other demotivators are higher management support, training,
awareness, allocation of resources, staff involvement, experienced
staff and defined software improvement process implementation
methodology is critical for software process improvement [8].
There has been several related work into trying to make the
models easier and better to use. Yoo [9] suggests a model that
combines CMMI and ISO methods. Amburst [10] takes a
different approach by treating software as manufacturing product
lines, therefore making the processes systematic and generic.
An alternative measure of software processes can be done through
the inspection of process execution histories. Performed at the
developer’s level, these measures are referred to as fine-grained
processes ‘micro processes’. Related research has been done by
Morisaki el al [11]. This approach analyzes the quality of fine
grained processes by studying the process execution histories
such as change logs. This is called Micro Process Analysis (MPA).
Quality of the process is measured by the execution sequence and
occurrences of missing or invalid sequences.

Program Slicing is a concept first described by Weiser [12] as a
method to study the behavior of source code through the flow
dependency and control dependency relationship among
statements. Program slicing metrics can be utilized various
applications such as software inspection, which can be used to
reduce defects at a fine-grained level [13]. Other related works
have used program slicing metrics to classify bugs. Pan et. al. [14]
showed that program slicing metrics work as well as conventional
bug classification methodologies. This research proposes
program slicing based metrics to describe code changes.

Combining both fields, our research aims better understand fine-
grained software process by studying MPA and their code change
characteristics using program slicing techniques. Our previous
research with MPA and program slicing techniques [15] had
focused particularly on the bug fixing process and analyses of the
program slicing metrics were performed at file level. The research
indicated that there is indeed a relationship between how the
micro processes are executed and code-based characteristics such
as McCabe’s Cyclomatic Complexity (CC) [16] and lines of code
(LoC).

53

1.2 Research Objective
Our motivation is to present a simple alternative model for
software process improvement at the micro level. Current models
of process assessment are at the software life cycle level and
require complicated assessments with highly trained assessors.
More specifically, this research is part of a proof of concept
towards a prediction model based on source code properties.

Building from our previous works [16][18], this paper explores
program slicing metrics specifically at function level, with the aim
to improve from our work by only including functions edited
during a code change. Also previous works focused on bug fixes
and the bug fixing process, however, it was found that bug fixes,
enhancements and patches are not clearly categorized. Therefore
this research we broadened our scope to all code changes and the
micro processes that they follow.

Based on our objective and considering code characteristics are
the properties of a program slice, we formulated and tested the
following research questions:

� RQ1: Do Code changes with similar micro process execution
have similar code characteristics?

� RQ2: Are Program slicing metrics useful when finding a
relationship between code change processes and code
characteristics?

Section 2 presents the methodology as well as the proposed
approach. Section 3 then explains the experiment using the
approach and tools to carry out the experiments. Section 3 also
presents the results of the experiments. Section 4 is a discussion
and analysis of the results as well as future work. Finally, section
5 outlines the conclusion.

2. METHODOLOGY
2.1 Code Change Processes
This research focuses on the day to day processes performed in
the development of software. This paper limits its data collection
of code change information from the following two repositories:

1) Issue Tracking Repository
Typically a software development team uses a system to manage
bugs and patches in a medium to large scale project. Trac is a
wiki and issue tracking system Trac is used to track progress of
any type of changes to the source code. This research utilized the
Trac Management System1 to help track all the code changes in a
software project.

2)Source Code Repository
The source code repository refers the system manages changes to
source code in a software project. The two main system used is
the Subversion (SVN) and Concurrent Versioning System (CVS).
For this research, both SVN and CVS repositories were used to
gather data on bug characteristics.

To understand the micro processes behind code fixes we
inspected the workflows of how fixes and changes are
implemented in a software project. Inspecting the workflow of the
bugs and patches in the tracking system we can be able to group
and categorize code changes. Since each project has its own
tailored workflow, we used workflows tailored to the project.

2.2 Characterization of Code Changes using
Program Slicing Metrics.
To assess the bug characteristics, program slicing metrics are used
in this approach to describe code change characteristics. This
research looks to use program slicing as measure of the code
changes.

In this research we refer to editedfunction as functions that are
edited during a code change. This is the criterion of the program
slice. Back slice functions of a program slice as functions that the
edited function is dependent on. For forward slice functions we
refer to functions that the edited function has an effect on. This is
illustrated in Figure 1 below.

Edited+Function

Function Function

Function

Function Function

Function

Code�Change�Analysis

Edited+functions+
during+a+Code+Change

Source+Code

BackSlice

ForwardSlice

Figure 1. Example of BackSlice and ForwardSlice for a
program slice

2.3 Code Change Extraction and Analysis
The analysis of the code change process includes 3 steps: 1) micro
process extraction and analysis and 2) code based metrics
extraction and analysis, and 3) grouping and comparing data.
Details of each step are described as follows:

1) Micro process extraction and analysis:
This step involves data mining and extraction of code chance
related attributes from both the source code repository and the
issue tracking system. From the source code repository for each
fix, the functions that were edited were extracted along with the
date of edit. During the extraction, the exact affected functions are
retrieved by comparing the fixed change set revision against the
previous revision.

2) Code Based Metrics:
 This step involves analysis of the code using the program slicing
metrics. The following explains in detail how each metric was
used to for bug classification. Our previous work [17] used

1 http://trac.edgewall.org/

54

Cyclomatic Complexity (CC) and Lines of code (LoC) as bug
characteristic metrics. These two metrics were originally chosen
as CC would be an attempt to measure the complexity of the
function and LoC to measure the size of the change. In this
research we use CC, however, we replaced LoC with counting the
number of functions as a similar measure of size. Also we have
some non-program slicing metrics to compare effectiveness.

The follow metrics were proposed and used:

� Edited Function CC:
This is a non-program slicing metric.If editedfunction is defined
as a set of functions that were edited during a code change and
CC(f) is the Cyclomatice Complexity (CC) of a function,
EditedFuncCC metric is defined as:

(1)

� Back and Forward CC slice functions:

Equations 2 and 3 show the calculation of how a backSliceCC and
fwdSlice is calculated. As explained in Figure 1, BackSlice and
forwardSlice results of when each editedfunction is sliced to find
its depending and dependant functions. The CC for all associated
functions for all editedfunctions are combined to give the resultant
CC for the code change.

(2)

(3)
� Number of Edited Functions:

(4)

Equation 4 states that NumEditFunc is the total number of edited
functions. This metric is used to count how many functions are
edited in a code change. This is non program slicing metric.

� Number of Back and Forward Slice functions:

(5)

(6)

Equations 5 and 6 illustrate that by taking the cardinality of the
backSlice and forwardSlice in relation to the editedfunction, we
can count how many functions were associated with the code
change. This metric is used to count the functions that are either
depend and are dependent on a code change.

3) Groupings and comparing data:
After grouping the code changes based on their micro process
execution we applied the metrics formulated in the previous step.
We then analyze to find trends and relationships between micro
process execution and the metrics.

3. CASE STUDY: WXWIDGETS

Figure 2. The micro process workflow of code change in wxWidgets (http://trac.wxWidgets.org/wiki/wxTracWorkflow).

�
backslicef

fountBackSliceC
�

�

�
ceforwardSlif

ficeCountFunctionSl
�

�

CCEditedFunc �
tioneditedfuncf

fCC
�

�)(

To test the methodology we conducted our case study using the
Open Source Software wxWidgets2 WxWidgets is a C++ library
that lets developers create applications for Windows, OS X, Linux
and UNIX on 32-bit and 64-bit architectures, as well as several
mobile phones platforms including Windows Mobile, iPhone
SDK and embedded GTK+.

�
backSlicef

fCCCBackSliceC
�

� ()

)�
ceforwardSlif

fCCFwdSliceCC
�

� (

The program slicing tool CodeSurfer [18] was used to generate
the program slices. Our java based extraction tool acted as a web
spider searching and parsing the online data repositories. Data

tioneditedfunccNumEditFun �
2 http://www.wxWidgets.org/

55

was extracted from the wxWidgets Trac system and source code
repository.3

follow the trend as code changes with more than three changes
have lower BackSliceCC edited. As seen, there is a trend that as
the number of status changes increases with CC.

3.1 Findings

3.1.1 Data Extraction and Selection
 04/16/2010) which

ts

3.1.2 Micro Processes of Code Changes

 Figure 2 illustrates the workflow used by wxWidget developers

3.1.3 Grouping and comparing Code Changes
e 3, we

Figure 4 shows the proposed metrics used to compare and

We analyzed wxWidgets version 2.8.11 (as of
had a size of 620389 lines of code containing 23203 functions.

Using our data extraction tool we analyzed 660662 change se
(Revision changesets 1 – 64005). The criteria for change set
selection was based on the following factors 1)The code fix was
linked to the wxWidgets Trac, therefore having a issue
identification number and 2).The code fix contained functions that
existed in the wxWidgets version that was sliced. 507 change sets
passed this criteria and therefore used for analysis.

when dealing with a code change, this is regardless of being a bug
or a patch or an enhancement model. Using this model we can see
the states of the process of implementing a new code change. The
change states are: new, confirmed, closed, reopened, info_needed,
port needed and new info_needed new. As shown in Figure 3
using our extraction tool we were able to for each fix, find the
number of status changes.

Using the grouping of the status counts as outlined in Figur
then applied our proposed program slicing metrics. The results are
illustrated in both Figures 4 and 5.

measure the sum of the CC of the functions affected. Starting
from the left, the first graph shows the sum of the CC of the
functions. However, when looking at the other two graphs, the
program slice metrics for BackSliceCC in particular does not

Figure 5 also suggests the correlation between the change status

 would be the accuracy of the

Another threat is that the data analyzed are related to the software

Finally code changing workflows are tailored specific therefore

workflow of wxWidgets in Figure 2, the

Another interesting discussion point is the determination of the

When applying the proposed metrics to the code changes based

investigate

count and the number of functions edited. Similar to the CC
metrics, it seems the number of functions increase as the number
of times a status changes increase. Furthermore, with the program
slicing based metrics BackSliceCount and ForwardSliceCount
also support the trend.

4. DISCUSSION

4.1 Threats to Validity
Firstly the main threats to validity
data extracted as well as statistical analysis of the groupings. Still
as a proof of concept, we are more interested in a correlation
between program slicing metrics and micro processes. It is
envisioned that once a reliable set of metrics is found, further
methods of statistical tests can be applied to prove the validity of
the data. We also hope to test across more different software
projects.

3 http://trac.wxWidgets.org/ and
http://svn.wxWidgets.org/viewvc/wx/wxWidgets/

release version analyzed. In addition, CodeSurfer does not handle
interface related code. When performing the data extraction, we
only realized that out 660662 change sets, only 500 code sets
were related to the version that we are analyzing. This is probably
due to disappearance of functions or files or interface related code
changes.

the status counts and complexity of micro processes will differ
from organization to organization.

4.2 Evaluation
When looking at the

4%

50%
22%

11%

13%

Code�Change�Status�Count
no+changes One Two Three Four+or+More

Figure 3. Status change for code change

workflow seems to be tedious it can be assumed that since 50%
just use one state change, it does contradict the need for such a
complex workflow.

complexity of a code change based on its code changes.
According to normal micro process analysis (MPA) [11] a normal
change entails the following sequence: 1) reporting and
confirmation of an issue, 2) assignment to developers, 3) Testing
and applying code changes 4) closing of the issue. Findings
however, suggest maybe the steps maybe be skipped. Causes
could be single developer assignment and working on code
change, being a simple fix or such events are not reported into the
system. Further work will involve further investigation of the
exact type of status change and to identify what are the ‘normal’
state change for a typical code change.

on their status counts we found an interesting correlation.
Although not statistically proven, the number of functions
increases as the change status increases. This was even evident in
non-program slicing metrics of sum CC of edited functions and
number of edited functions. Again further work is proposed to

56

0
10
20
30
40
50
60
70
80

no
changes

one two three four and
more

C
C

number of status change

Code Change editedfunction CC

0

5

10

15

20

25

30

no
changes

one two three four and
more

C
C

Number of change status

Code Change BackSlice

0
50

100
150
200
250
300

no
changes

one two three four and
more

C
C

number of status change

Code Change FowardSlice

Figure 4. Graphs showing the CC of edited and program sliced functions grouped by status count of code change

0
10
20
30
40
50
60
70
80
90

100

no
changes

one two three four and
more

fu
n

c
ti
o

n
s

number of change status

Code Change editedfunction Count

0
10
20
30
40
50
60
70
80
90

100

no
changes

one two three four and
more

fu
n

c
ti
o

n
s

number of change status

Code Change BackSlice Count

0

50

100

150

200

250

no
changes

one two three four and
more

fu
nc

tio
ns

number of status change

Code Change ForwardSlice Count

Figure 5. Graphs showing the number of edited and program sliced functions grouped by status count of code change

is further. However this correlation is not consistent with the

rrect

gards to the objective, this research contributes to the

 showing promise as it agrees with previous work that
there is a correlation between code-based characteristics and
MPA.

Further investigation will be performed to find out the exact state

 projects can be used as case studies.

een a code change
d processes are executed. The results
ation between how much of the

es at the micro level.

part of the
StagE project, The Development of Next-Generation IT
Infrastructure, supported by the Ministry of Education, Culture,

th
CC metrics as seen with ForwardSliceCC. Again further case
studies and other metrics may be proposed to better evaluate these
trends.

changes. Moreover, formulating and testing additional program
slicing metrics. Once usable metrics are established, other
software

4.3 Testing Hypothesis and Future Work
When referring to the research questions RQ1 was proven co

5. CONCLUSION
The main objective of the research is to provide a proof of
concept that there is indeed a relationship betwas we see a relationship between the complexity of the micro

processes and the program slicing metrics of the affected code.
Results showed that for RQ2, more current results have mixed
results as BackSliceCC did not follow a relationship. However it
may be due to being a bad metric as other program slicing metrics
showed the trend. Therefore RQ2 still is not fully proven to be
true.

In re

attributes and how its relate
suggest there is a correl
complexity of the micro process and its program slicing metrics.
Further work is proposed to refine the metrics as well as test on
other similar software projects.
It is envisioned that the research will contribute to a better
understanding and classification of code changes based on the
nature of code, therefore using the nature of the code to suggest
improvement of software process

feasibility of the relationship of micro processes of code changes
and their code based characteristics. This can be implemented by
a framework that will help assist developers identify code changes
that have a high likelyhood of having complicated micro
processes.
This work is

ACKNOWLEDGMENTS
Special thanks to Shinji Kawaguchi for his contribution to this
research in MPA. This work is being conducted as a

57

Sports, Science and Technology.
supported by Japan Society for the Pr

This research was also
omotion of Science, Grant-

Pa.:
Software Engineering Institute, Carnegie Mellon University,

[3]. C. H. Schmauch, "ISO 9000 for Software Developers", 2nd.

[4].
software companies: an empirical

analysis", Empirical Software Engineering, v.8, pp. 7-42,

[5]. N. Baddoo and T. Hall, "De-Motivators of software process

[6]. azi, M. A. Babar, "De-motivators for software process
improvement: an analysis of Vietnamese practitioners' views",

[7]. J.G. Brodman and D.L. Johnson, "What small businesses and

[8]. A. Rainer and T. Hall, "Key success factors for implementing

[9]. C. Wu,
"A unified model for the implementation of both ISO

[10 .
Nakao, and A. O. Campo, "Scoping software process lines",

[11] e Process
Analysis to Ongoing Distributed Software Development", 1st

[12] eedings of the 5th
International Conference on Software Engineering. (ICSE).

[13]
Support for Fine-Grained Software Inspection," IEEE

[14] , "Bug Classification
Using Program Slicing Metrics", Source Code Analysis and

[15
�Analysis of Bug Fixing Processes Using Program Slicing

[16] ing
methodology using the cyclomatic complexity metric",

[17] for the
Analysis of Bug Fixing Processes,'' Master thesis, Institute of

[18] urfer Software
Understanding Platform", Proceedings of the 13th

in-Aid for Scientific Research (No.22500027), and Grant-in-Aid
for Research Activity start-up (No.22800040 and 22800043).

REFERENCES
[1]. J. Herbsleb, A. Carleton, J. Rozum, J. Siegel and D. Zubrow,

"Benefits of CMM-Based Software Process Improvement:
Initial Results", (CMU/SEI-94-TR-13). Pittsburgh,

1994.

[2]. K. K. Margaret and J. A. Kent, "Interpreting the CMMI: A
Process Improvement Approach", Auerbach Publications,
(CSUE Body of Knowledge area: Software Quality
Management), 2003.

ASQ Quality Press, 1995.

 S. Beecham, T. Hall and A. Rainer, "Software process
problems in twelve

2003.

improvement: an analysis of practitioner's views", Journal of
Systems and Software, v.66, n.1, pp. 23-33, 2003.

 M. Ni

in Product Focused Software Process Improvement PROFES
2007, LNCS, v.4589, pp. 118-131, 2007.

small organizations say about the CMMI", In Proceedings of
the 16th International Conference on Software Engineering
(ICSE), IEEE Computer Society, pp. 331 – 340, 1994

software process improvement: a maturity-based analysis",
Journal of Systems and Software v.62, n.2, pp.71-84, 2002.

 C. Yoo, J. Yoon, B. Lee, C. Lee, J. Lee, S. Hyun and

9001:2000 and CMMI by ISO-certified organizations", The
Journal of Systems and Software 79, n.7, pp. 954-961, 2006.

]. O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch, H

Softw. Process , v.14, n.3, pp.181-197, May, 2009.

. S. Morisaki and H. Iida, "Fine-Grained Softwar

Workshop on Measurement-based Cockpits for Distributed
Software and Systems Engineering Projects (SOFTPIT 2007),
pp.26-30, Munich, Germany, Aug., 2007.

 M. Weiser, "Program slicing", In Proc

IEEE Press, Piscataway, NJ, pp.439-449, Mar. 09 - 12, 1981

. P. Anderson, T. Reps, T. Teitelbaum, M. Zarins, "Tool

Software, pp. 42-50, July/August, 2003

. K. Pan, S. Kim, E. J. Whitehead, Jr.

Manipulation, IEEE International Workshop, pp.31-42, 2006

]. R. G. Kula, K. Fushida, S. Kawaguchi, and H. Iida,

Metrics,'' in Product-Focused Software Process Improvement
PROFES 2010, vol. LNCS 6156, pp. 032-046, June 2010.

. A. Watson and T. McCabe, "Structured testing: A test

National Institute of Standards and Technology, Gaithersburg,
MD, (NIST) Special Publication, pp.500-235, 1996.

. R. G. Kula, ``Using Program Slicing Metrics

Science and Technology, Nara, Japan, 2010.

. P. Anderson , M. Zarins, "The CodeS

International Workshop on Program Comprehension, pp.147-
148, May 15-16, 2005

58

Flexibly Highlighting in Replaying Operation History
Takayuki Omori

Dept. of Computer Science
Ritsumeikan University
Kusatsu, Shiga, Japan

takayuki@fse.cs.ritsumei.ac.jp

Katsuhisa Maruyama
Dept. of Computer Science

Ritsumeikan University
Kusatsu, Shiga, Japan

maru@cs.ritsumei.ac.jp

ABSTRACT
In empirical software engineering, historical information of
software development is one of significant facets since knowledge
derived from such information can improve quality of software
product and development process. In these years, several tools
recording actual operations on integrated development
environments have been proposed. They are promising for
improving correctness of examining operation history. However,
it is necessary to narrow a range of targets to be examined
because of variety and massiveness of recorded operations. We
proposed OperationReplayer which supports examining operation
history by enabling to replay past operations as if they are been
performing right now. This paper proposes a highlight plug-in,
which extends OperationReplayer. Users can rapidly identify
target operations of their examinations by using their own
highlight plug-ins. This paper also describes a case study to show
usefulness of the proposed flexible highlighting.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments.

General Terms
Experimentation, Management, Human Factors.

Keywords
Software evolution, Integrated development environment, Fine-
grained changes, Software process analysis.

1. INTRODUCTION
In empirical software engineering field, analyzing history of
software development is an essential approach to improve
software quality and productivity. Several methods for recording
actual operations on integrated development environments (IDEs)
have been proposed[1-3]. Since the methods enable replaying
recorded operations, we can examine them and attain precise
historical information. However, such examination is fault-prone
and time-consuming because of variety and massiveness of
recorded operations. To address this problem, this paper proposes
flexible visual abstraction in addition to simply replaying past
operations. This work promotes our previous work of
OperationReplayer[1] and introduces plug-in mechanism to it for
constructing a flexible time-series visual summary called a
highlight. A user (who replays past edits) can easily identify
noteworthy operations by seeing highlights on time-line bars, if
the prepared highlights are appropriate for his/her purpose. The
original OperationReplayer provides static drawing of highlights.
On the other hand, its extended version allows the user to

determine how highlights are drawn by switching existing
highlight plug-ins or creating new ones. Accordingly, the
extended version of OperationReplayer facilitates his/her
examination of operation history.

2. OperationReplayer
This section describes an examination task of operation history by
using OperationReplayer. The highlight plug-in mechanism is
also described.

restored+source+code

operation
history

control+
buttons

time&line+bars

Figure 1. Screenshot of extended OperationReplayer

2.1 Examination of Operation History
Figure 1 shows a screenshot of the extended version of
OperationReplayer. Appearance of the window is similar between
the original and extended one.
A user can replay past operations in a single source file on a
single replayer window. He/she can change the focal time by
pushing control buttons, selecting an operation from the operation
history, or specifying the time on the time-line bars. The content
of source code is restored in conjunction with the focal time. For
the two time-line bars, the upper one denotes a project life-time,
and the lower one shows detailed information within a specified
time-period of the project life-time. In the extended
OperationReplayer, these time-line bars are drawn based on a
highlight plug-in the user constructs.
We assume that an operation-history examination is iteratively
performed with different views. This is because operation history
is versatile. Determining a suitable highlight is difficult and needs
a number of trials-and-errors. Therefore, the user repeats
installing (switching and creating) his/her highlight plug-in and
replaying operations to examine them. After doing iterative
processes, he/she attains visual abstraction (highlights) more

59

suitable for his/her purpose. Thus, flexible highlighting is
essential for the examination of the operation history.

2.2 Highlight Plug-in
A highlight plug-in is implemented as an extension for
highlightPoint extension point of OperationReplayer. Using
APIs provided by OperationReplayer, the plug-in can access
various kinds of information on recorded operations, such as the
time when the operation was performed, the name of the
developer who performed the operation, the deleted/inserted
string, and the offset where the operation was performed.
Moreover, OperationReplayer provides APIs for accessing any
snapshot of source code in the past and its syntactical information.
To display highlights on the time-line bars, the plug-in
instantiates SpotHighlight and/or RangeHighlight.
These instances are responsible for drawing lines and rectangles
corresponding to times and time-periods specified on the time-line
bars.

3. Case Study
To show usefulness of flexible highlighting proposed here, we
have created a highlight plug-in and used it to examine actual
operation history. In this case study, the purpose of this
examination is to distinguish periods for intensive refactoring
from ones for other modifications. We checked if the created
highlight plug-in has been improved in three trials.
1st trial: In the operation history, all refactoring operations
invoked by Eclipse's menu items are held as instances of
TriggeredOperations. The initial plug-in simply creates
SpotHighlight instances corresponding to the operations,
which are colored with blue (blue highlights). In addition, all
operations that delete any character (the length of the deleted text
is not zero) are colored with cyan (cyan highlights). The highlight
plug-in has 49 lines of source code. We applied this highlight
plug-in to all operations recorded in real software development.
As a result, the plug-in created a large number of highlights
including noises shown on the window. The noises obscured true
refactorings. Figure 2(a) shows a part of the time-line bar
resulting from this trial.
2nd trial: To reduce the noise, we removed the cyan highlights (a
single line of source code was deleted). Instead, to detect move
operations of fields and methods which are frequently done in
refactorings, cut and paste operations are colored with red and
orange, respectively (six lines of source code were inserted). We
applied this new version of the plug-in to the same recorded
operations. The result was better than one in the 1st trial; however
it still includes many noises. By replaying operations around
several blue highlights, we found some of the highlights involve
"organize/add imports" operations that do not seem to
be refactorings.

3rd trial: To further reduce noisy highlights, we improved the
algorithm related to blue highlights. Finally, the plug-in detects
operations of which labels are same as Eclipse's "Refactor"
submenu items and colors them with blue (ten lines of source
code were inserted). Applying this plug-in, we detected a possible
refactoring period with intensive blue (deeply colored) lines
shown in Figure 2(b). Each of these lines indicates a "rename"
refactoring operation.

too+many+highlights+(in+40+min.)

(a) Highlights including many noises (1st trial)

six+refactorings (blue+highlights)

(b) Detecting intensive refactoring operations (3rd trial)
Figure 2. Case study

To assess that the highlight plug-in is truly improved through this
experiment, we manually examined operations around intensive
highlights reported by the highlight plug-ins in 2nd and 3rd trials.
Actually, we intuitively extracted several time-periods based on
our understanding for the reported highlights, and then checked if
each period involves true refactorings. We did not examine
highlights reported in the 1st trial since it created too many
worthless highlights.
As a result, in the 2nd and 3rd trials, the highlight plug-in totally
detected 66 and 47 refactoring periods, respectively. In both the
trials, 16 true refactoring periods were detected among them.
Besides, 50 and 31 faulty periods were respectively reported. The
precision rates are 24% (16/66) and 34% (16/47), respectively.
From these experimental results, the precision was improved with
little effort (inserting and deleting source code) although the
experiment is quite limited. Here, we were supposed to count the
total number of periods for real refactorings within the
development and show recall rates in this experiment. However,
we could not precisely count it due to vast numbers of recorded
operations.

4. Conclusion
This paper proposed an operation replayer with a mechanism
supporting flexible highlighting. It allows users to flexibly change
visual abstraction of operation history on a window of
OperationReplayer. We are planning to extend it to effectively
treat histories of multiple source files and developers. Enhancing
flexibility and scalability of visualization is also future work.

5. REFERENCES
[1] Omori, T. and Maruyama, K. 2009. Identifying Stagnation

Periods in Software Evolution by Replaying Editing
Operations. In Proceedings of 16th Asia-Pacific Software
Engineering Conference, 389-396.

[2] Robbes, R. and Lanza, M. 2007. A Change-based Approach
to Software Evolution. Electronic Notes in Theoretical
Computer Science (ENTCS), 166:93-109.

[3] Hattori, L., Lungu, M., and Lanza, M. 2010. Replaying Past
Changes in Multi-developer Projects. In Proceedings of
IWPSE-EVOL 2010, 13-22.

60

