
Automatic Generation of History-Based Access
Control from Information Flow Specification

Yoshiaki Takata1 and Hiroyuki Seki2

1 Kochi University of Technology, Tosayamada, Kochi 782-8502, Japan,
takata.yoshiaki@kochi-tech.ac.jp,

2 Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan,
seki@is.naist.jp

Abstract. This paper proposes a method for automatically inserting
check statements for access control into a given recursive program ac-
cording to a given security specification. A history-based access control
(HBAC) is assumed as the access control model. A security specification
is given in terms of information flow. We say that a program π satisfies
a specification Γ if π is type-safe when we consider each security class in
Γ as a type. We first define the problem as the one to insert check state-
ments into a given program π to obtain a program π′ that is type-safe
for a given specification Γ . This type system is sound in the sense that if
a program π is type-safe for a specification Γ , then π has noninterference
property for Γ . Next, the problem is shown to be co-NP-hard and we
propose an algorithm for solving the problem. The paper also reports
experimental results based on our implemented system and shows that
the proposed method can work within reasonable time.

1 Introduction

A language-based access control is a promising approach to preventing untrusted
modules from accessing confidential data. Stack inspection provided by the Java
virtual machine (JVM) and the common language runtime (CLR) is a typical
successful example. In a language-based access control, a statement for runtime
permission check such as checkPermission of JVM (abbreviated as check state-
ment) is placed just before a statement accessing confidential data. Permissions
to be checked at each check statement are usually set manually; however, an
inappropriate setting of permissions causes either security flaw or unnecessary
abortion of execution. Therefore a systematic method for generating appropriate
check statements is desired.

This paper assumes a (shallow) history-based access control (HBAC) [1, 12]
as an access control model and proposes a method for automatically inserting
check statements into a given recursive program according to a given security
specification. In this paper, a security specification is given in terms of informa-
tion flow [8, 9]: a specification is an assignment of a security class (e.g. top secret,
confidential, and unclassified) to each input and output variable (or channel) of
a program. The set of security classes is assumed to be a finite semilattice. Since

2

one of the main purposes of access control (especially, mandatory access control)
is to prevent undesirable information leak by deciding which user (or process)
can have access to which resource, it is natural to give a security specification
using the concept of information flow.

We say that a program π satisfies a specification Γ if π is type-safe when we
consider each security class in Γ as a type. This type system is sound in the sense
that if a program π is type-safe for a specification Γ , then π has noninterference
property for Γ (Theorem 1). Noninterference property is a widely-used seman-
tic (but undecidable in general) criterion for the confidentiality. Intuitively, a
program π has noninterference property for a specification Γ if the content of a
variable v in π is not affected by the content of any variable in π whose security
class specified by Γ is higher than v.

Next, we define the problem as follows: for a given program π including zero
or more check statements with permissions to be checked unspecified and a spec-
ification Γ , specify permissions to be checked at each check statements in π so
that the resultant program is type-safe for Γ . This definition does not lose gener-
ality since check statements are usually placed just before access statements and
it can be easily done automatically. Then, the problem is shown to be co-NP-
hard (Theorem 2) and we propose an algorithm for solving the problem using a
model checking method for pushdown systems (PDS). The idea of the proposed
method is simple. If we find an execution trace that violates a specification by
analyzing the PDS derived from an HBAC program, then we add appropriate
permissions to be checked at a check statement nearest to the undesirable access
to remove this execution trace. However, adding new permissions may introduce
a new violation of the specification (known as a covert channel). This covert
channel can be avoided by carefully designed fixpoint operation given in Sec-
tion 5. The paper also reports experimental results based on our implemented
system and shows that the proposed method can generate check statements
within reasonable time.

Related Work Static analysis of programs using stack inspection (or stack-
based access control, SBAC) has been widely studied, e.g. for safety verifica-
tion [15, 20], LTL model checking [11], analysis of current permission sets [6, 16].
Pottier et al. [23] and Besson et al. [7] proposed type systems such that type
safety implies no violation against runtime access control in an SBAC program.
Also safety verification method and its implementation for HBAC programs were
reported [26]. Information flow analysis has a long history stemming from [8, 9]
and has been extensively studied for recursive programs using Hoare logic [2],
abstract interpretation [21], and type systems [14, 17, 25]. The combination of
static analysis and dynamic control of information flow has also been studied
for usual recursive programs [19, 18, 13]. Information flow analysis has been ex-
tended to SBAC [3, 5] and HBAC [4]. The latter showed interesting phenomena
that check statements themselves may cause implicit information flow. The work
of [22] regarded dynamic permissions as a security class, considered that check
statements represent a security specification, and proposed a dynamic control

3

mechanism of information flow. To the authors’ knowledge, however, this paper
is the first one to deal with the problem of automatic generation of access control
statements from a specification of information flow.

The rest of this paper is organized as follows. In Section 2, the syntax and
operational semantics of an HBAC program is defined. In Section 3, we define a
security specification as well as the notion of type-safety by deriving a pushdown
system (PDS) from a given program π and a specification Γ . This PDS in effect
constitutes a type system for π under Γ . Also it is shown that type-safety implies
noninterference property. In Section 4, the problem is defined and the problem
is shown to be co-NP-hard. In Section 5, an algorithm for solving the problem by
reachability analysis of the PDS is given, followed by the experimental results.

2 Input Program

2.1 Syntax

A program consists of a set Func of functions, a set In of input channels, and
a set Out of output channels. The body of each function is an element of cseq
defined by the following BNF specification.

cseq ::= cmd | cmd;cseq
cmd ::= if exp then cseq fi

| if exp then cseq else cseq fi

| out := x | x := in | x := exp
| x := func(exp,...,exp)
| check[P]

exp ::= c | x | θ(exp,...,exp)

In the above BNF specification, out , in, x, c, P , and θ represent an output
channel, an input channel, a variable, a constant, a subset of permissions, and
a built-in operator, respectively. The statements in the right-hand side of cmd
represent an if statement, an if-else statement, an output statement, an in-
put statement, an assignment statement (without function call), a function call
statement, and a permission-check statement (check statement for short), re-
spectively. For a check statement check[P], P is called the argument of this
check statement. For simplicity, no iteration statement is defined; iteration must
be specified by recursive function call. The return value of a function f is stored
in a special variable named retf .

A program interacts with its environment only through the input and output
channels; the starting function (main function) has no arguments or return value.

2.2 Access Control Mechanism

Below we informally describe the HBAC [1, 26], the access control mechanism
assumed in this paper. (Formal definition is given in Section 2.3.) HBAC is

4

z := g()

check[{p}] check[{q}]

SP(main)={p, q, r}

return

if (y=0)
n1

n0

main()

n3

x := f()

n2

n4 fi

n5

n11

g()

SP(g)={p}

return

SP(f)={p, q}

return

if (w=0)n6

f()

n8n7

n9 fi

n10

z := 1
then else

then else

Fig. 1. Program π0.

proposed to resolve the weakness of the stack inspection such that it ignores the
execution history of functions of which execution is finished [1, 4, 26]. (See [1] for
the design principles of HBAC.)

A subset of permissions is assigned to each function f before runtime. We
call the subset the static permission set of f , denoted as SP(f). The runtime
system controls another subset of permissions called the current permission set.
When a program starts, the current permission set is initialized as the static
permission set of the starting function. The current permission set is updated
when a function is called. The updated current permission set is the intersection
of the old current permission set and the static permission set of the callee
function; that is, every permission not assigned to the callee function is removed
from the current permission set.

When the control reaches a check statement check[P], the execution is
continued if the current permission set includes all permissions in P , and the
execution is aborted otherwise.

Hereafter we assume that a program is represented as a control flow graph
(such as Figure 1) in which conditional branches are well-nested. Each node
of the graph represents a program point, and each directed edge represents a
control flow with in a function.

Example 1. Consider a sample program π0 in Figure 1. The transition of the
call stack and the current permission set of π0 is depicted in Figure 2.

When function g is called at program point n8 in function f , permission q is
removed from the current permission set. After that, when the control reaches
n3 in function main, the execution is aborted because q is not in the current
permission set. Abortion at a check statement does not occur if function g is
never called or the control never reaches n3.

Since the current permission set is uniquely determined by the set of functions
that have invoked so far, we assume that PRM = { pf | f ∈ Func } and SP(f) =

5

n0

n6 n0

n7 n0

n9 n0

n10 n0

n1

n2

n8 n0

n8 n0n11

{p, q, r}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p}

n9 n0

n10 n0

n1

n3

{p}

{p}

{p}

{p}

n4

{p, q}

abort!

current permission set

n3

{p, q}

n2

{p}

n4

{p}

n5

{p, q}

n5

{p}

control stack

Fig. 2. Transition of the call stack and current permission set of π0.

PRM \ {pf} for each f ∈ Func without loss of generality3. That is, pf remains
in the current permission set if and only if f has never been invoked.

2.3 Operational Semantics

For a program π, we define a transition system Mπ that represents the behavior
of π. A configuration of Mπ is a pair (σ, ξ), in which σ is a state of the input
and output channels and ξ is a stack (i.e. a sequence of stack frames). A state
of an output channel is a finite sequence of values that have been output so far.
A state of an input channel is an infinite sequence of values that are going to
be read out. A stack is a finite sequence of stack frames, and a stack frame is
a triple 〈n, µ,C〉 in which n is a program point, µ is a state of local variables
(including formal parameters and the return value variable retf), and C is the
current permission set. The leftmost stack frame of a stack is the stack top.

The transition relation V of Mπ is the smallest relation that satisfies the
following inference rules. As mentioned before, we assume that a program is
represented as a control flow graph, and we write n→n′ if there exists a control
3 In the original definition of HBAC programs [1, 26], one can specify a grant set and

an accept set for each function call statement, which enable more flexible control
of the current permission set. We omit these parameters to simplify the problem.
With grant and accept sets, the current permission set is not necessarily determined
uniquely by the set of already invoked functions.

6

flow from a program point n to n′. The program statement of a program point n
is denoted as λ(n). For the end point n of a function, λ(n) = return. The formal
parameter list of a function f is denoted as param(f), and the initial program
point of f is denoted as IT (f). The concatenation of two sequences ξ1 and ξ2

is denoted as ξ1 : ξ2. The state in which every variable is undefined is denoted
as ⊥. For a state µ, µ[x 7→ v] is the state that maps x to v and y to µ(y) for
every y 6= x. We extend the domain of a state µ to expressions in the usual way,
i.e., µ(θ(e1, . . . , ek)) = θ(µ(e1), . . . , µ(ek)).

λ(n) = out := x, n → n′, σ′ = σ[out 7→ σ(out) : µ(x)]
(σ, 〈n, µ,C〉 : ξ) V (σ′, 〈n′, µ, C〉 : ξ)

(1)

λ(n) = x := in, n → n′, σ(in) = a : ζ,
µ′ = µ[x 7→ a], σ′ = σ[in 7→ ζ]
(σ, 〈n, µ,C〉 : ξ) V (σ′, 〈n′, µ′, C〉 : ξ)

(2)

λ(n) = x := e, n → n′, µ′ = µ[x 7→ µ(e)]
(σ, 〈n, µ,C〉 : ξ) V (σ, 〈n′, µ′, C〉 : ξ)

(3)

λ(n) = x := f(e1, . . . , ek), param(f) = (x1, . . . , xk),
µ′ = ⊥[x1 7→ µ(e1), . . . , xk 7→ µ(ek)],
C ′ = C ∩ SP(f)
(σ, 〈n, µ,C〉 : ξ) V (σ, 〈IT (f), µ′, C ′〉 : 〈n, µ,C〉 : ξ)

(4)

λ(n) = x := f(e1, . . . , ek), λ(m) = return, n → n′,
µ′′ = µ[x 7→ µ′(retf)]
(σ, 〈m,µ′, C ′〉 : 〈n, µ,C〉 : ξ) V (σ, 〈n′, µ′′, C ′〉 : ξ)

(5)

λ(n) = check[P], P ⊆ C, n → n′

(σ, 〈n, µ,C〉 : ξ) V (σ, 〈n′, µ, C〉 : ξ) (6)

λ(n) = if e, n
then→ n′, µ(e) 6= false

(σ, 〈n, µ,C〉 : ξ) V (σ, 〈n′, µ, C〉 : 〈n, µ,C〉 : ξ)
(7)

λ(n) = if e, n
else→ n′, µ(e) = false

(σ, 〈n, µ,C〉 : ξ) V (σ, 〈n′, µ, C〉 : 〈n, µ,C〉 : ξ)
(8)

λ(n) = fi, n → n′

(σ, 〈n, µ,C〉 : 〈m, µ′, C ′〉 : ξ) V (σ, 〈n′, µ, C〉 : ξ)
(9)

Rule (3) means that when the control is at the program point n of an assign-
ment statement x := e and n→n′, the control can move to n′ with updating the
state of variables to µ′ = µ[x 7→ µ(e)]. Rules (1) and (2) are similar to Rule (3).
Rule (4) means that when the control is at the program point n of a function
call statement x := f(e1, . . . , ek), a new stack frame is pushed into the stack, the
control moves to IT (f), and the current values of e1, . . . , ek are assigned to the
formal parameters of f . At the same time, the current permission set is updated

7

to C ∩ SP(f). Rule (5) means that when the control is at the end point m of a
function, the stack top is removed from the stack and the value of retf is returned
to the caller. Rule (6) represents the transition for check statements. Rules (7),
(8), and (9) represent the transition for if statements. Although pushing a stack
frame into the stack at Rules (7) and (8) is unnecessary for Mπ, we defined the
rules so to keep the proof of soundness (Theorem 1) simple.

An initial configuration of a program π is (σ0, 〈IT (f0),⊥,SP(f0)〉) where σ0

is a state that maps every output channel to the empty sequence and f0 is the
main function. A stack frame 〈n, µ,C〉 is said to be reachable if there exists a
transitions cnf 0 V · · · V (σ, 〈n, µ,C〉 : ξ) for some initial configuration cnf 0 and
some σ and ξ. The above sequence is called an execution trace. Similarly, a node
n is reachable if there is a reachable stack frame 〈n, µ,C〉 for some µ and C.

3 Information Flow Specification

An information flow specification is an assignment of security classes to the input
and output channels.

We assume that the set of security classes, denoted as SC, is an arbitrary
finite semilattice partially ordered by a relation v. The least element of SC is
denoted as L (= Low), and the least upper bound of a, b ∈ SC is denoted as atb.
A simple example of SC is {H,L} (High and Low) such that L v H. For this
example, transmitting a value computed using a value from an H input channel
into an L output channel is a violation of the information flow specification.

Absence of the violation of an information flow specification can formally
be defined in terms of noninterference; i.e., no violation exists if values written
to every L output channel do not change even when values read out from an
H input channel change. However, it is well-known that noninterference is an
undecidable property even if access control is absent. Therefore, we define an
abstract system M]

π from a program π and a specification Γ and define the
notion of type safety by regarding each security class as a type. The soundness
of this type system is guaranteed by Theorem 1, which states that type safety
of M]

π implies noninterference of π for Γ .

3.1 Derived Pushdown System and Type Safety

For a given program π and an information flow specification Γ , we define a
transition system M]

π as follows. Intuitively, M]
π represents the behavior of a

program that is the same as π except that each variable x keeps a security class
instead of a value stored in x. Since the set SC of security classes is finite, M]

π

is a pushdown system (PDS), and we can compute the reachable set of stack
frames of M]

π [10].
A configuration of M]

π is a stack. While a stack frame of Mπ is a triple 〈n, µ,C〉,
that of M]

π is 〈n, sc, C〉 in which sc is an assignment of security classes to local
variables and permissions. The transition relation ⇒ of M]

π is the smallest re-
lation that satisfies the following inference rules, in which et is the expression
obtained from an expression e by substituting t for every built-in operator in e.

8

λ(n) = out := x, n → n′

〈n, sc, C〉 : ξ ⇒ 〈n′, sc, C〉 : ξ
(10)

λ(n) = x := in, n → n′, sc′ = sc[x 7→ Γ (in) t sc(νif)]
〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : ξ

(11)

λ(n) = x := e, n → n′, sc′ = sc[x 7→ sc(et t νif)]
〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : ξ

(12)

λ(n) = x := f(e1, . . . , ek), param(f) = (x1, . . . , xk),
C ′ = C ∩ SP(f),
sc′ = ⊥[x1 7→ sc(et1 t νif), . . . , xk 7→ sc(etk t νif), νif 7→ sc(νif)]

[p 7→ sc(p t νif) | p ∈ C \ C ′]
[p 7→ sc(p) | p ∈ C \ C ′]

〈n, sc, C〉 : ξ ⇒ 〈IT (f), sc′, C ′〉 : 〈n, sc, C〉 : ξ

(13)

λ(n) = x := f(e1, . . . , ek), λ(m) = return, n → n′

sc′′ = sc[x 7→ sc′(retf) t sc(νif)][p 7→ sc′(p) | p ∈ PRM]
〈m, sc′, C ′〉 : 〈n, sc, C〉 : ξ ⇒ 〈n′, sc′′, C ′〉 : ξ

(14)

λ(n) = check[P], P ⊆ C, n → n′

〈n, sc, C〉 : ξ ⇒ 〈n′, sc, C〉 : ξ
(15)

λ(n) = if e, (n then→ n′ or n
else→ n′), sc′ = sc[νif 7→ sc(et t νif)]

〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : 〈n, sc, C〉 : ξ
(16)

λ(n) = fi, n → n′, sc′′ = sc[νif 7→ sc′(νif)]
〈n, sc, C〉 : 〈m, sc′, C ′〉 : ξ ⇒ 〈n′, sc′′, C〉 : ξ

(17)

An initial configuration and reachable stack frames of M]
π are defined in the

same way as Mπ.
In the above definition of M]

π, each assignment statement is replaced with a
calculation on security classes. For example, an assignment statement z := x+y
in π is replaced with z := x t y in M]

π, because the security class of z after this
assignment is the maximum of the security classes of x and y.

We also have to consider the implicit flow from the condition of an if state-
ment to each branch of the statement. For example, although variable y does not
appear in the right-hand side of each assignment statement for x in the following
if statement, one can decide whether y = 0 or not if he or she can see the value
of x just after this if statement. That is, information of y implicitly flows to x.

if y = 0 then x := 0 else x := 1 fi

We use a special variable νif in M]
π for representing the security class of infor-

mation that implicitly flows. The security class of νif increases at the beginning
of a conditional branch, and the increase is canceled at the end of the branch

9

(see Rules (16) and (17)). To save the security class of νif before a conditional
branch, a new stack frame is pushed into the stack in Rule (16).

We have to consider another kind of implicit flow caused by a check state-
ment. For example, when the following compound statement is executed and
p /∈ SP (f) for the callee function f , one can know whether y = 0 or not because
if y = 0 then permission p is removed from the current permission set and the
execution is aborted at the check statement.

if y = 0 then x := f() fi; check[{p}]

In this case, the information on whether y = 0 or not flows into the current per-
mission set, and then the information flows outside by the check statement (even
when the execution is not aborted at the check statement). Hence we take the
security class of each permission p into account as well as that of each variable.
The security class of p represents the security class of information on whether
or not p remains in the current permission set. Moreover, we consider that in-
formation on each permission contained in the argument of a check statement
flows into an insecure output channel; that is, a type error exists if a permission
p whose security class is not L is contained in the argument of a check statement
(cf. type error E3 described below).

Type Error We say that there exists a type error in M]
π if there exists a

reachable stack frame 〈n, sc, C〉 that satisfies any of the following conditions E1
to E4. If no type error exists in M]

π, then we say that π is type-safe.

E1) λ(n) = out := x for an output channel out and sc(x t νif) 6v Γ (out).
E2) λ(n) = x := in for an input channel in and sc(νif) 6v Γ (in).
E3) λ(n) = check[P] and sc(p) 6= L for some p ∈ P .
E4) λ(n) = check[P] and P 6⊆ C and sc(νif) 6= L.

E1 represents a situation in which a value of a security class higher than an
output channel out is written to out . E2 represents an information leak through
an input channel. We assume that an attacker can be aware of reading out a
value from an input channel, and thus an implicit flow occurs if the reading out
is performed in a branch of an if-statement. Therefore we consider that a type
error exists if sc(νif) 6v Γ (in) for an input statement x := in. E3 and E4 repre-
sent an information leak through a check statement. E3 represents a situation
in which information on the current permission set flows out. E4 represents a
situation in which an attacker is aware of the current program point because of
the abortion at the check statement.

Another kind of information flow may occur when a program does not ter-
minate. For example, when functions main and f are defined as follows, this
program does not terminate if and only if the value read out from in is zero.

main() { y := in; if y = 0 then x := f() fi }
f() { z := f() }

10

For simplicity, we ignore this kind of information flow in this paper (termination
insensitivity). Although we can modify our type-error detection method as fol-
lows so that it becomes sound even for the above kind of information flow, the
modified method may report more false positives because it considers that every
loop may not terminate.

(1) Find all functions in M]
π that may not terminate. This can be performed by

finding cycles in the call graph.
(2) For a function call statement that calls a function that may not terminate,

if sc(νif) 6= L then we regard it as a type error.

3.2 Soundness

The above type-error detection method using M]
π is sound in the sense that π

satisfies noninterference if M]
π is type-safe (and if π always terminates). This

soundness is guaranteed by Theorem 1 shown below. In the following, sc1 t sc2

is the assignment of security classes such that (sc1 t sc2)(x) = sc1(x) t sc2(x)
for all x. The reflexive transitive closures of V and ⇒ are denoted as V∗ and
⇒∗, respectively.

Lemma 1. Assume that sc′(y) v τ for every sc′ such that 〈n, sci, C〉 ⇒∗ 〈n′, sc′, C ′〉
(i = 1, 2). Then, sc′′(y) v τ holds for every sc′′ such that 〈n, sc1 t sc2, C〉 ⇒∗

〈n′, sc′′, C ′〉.

Proof. Define a subset V of variables as V = {x | The security class of x at
n “affects” the security class of x at n′ }. Because M] performs no calculation
other than t, x ∈ V implies sci(x) v τ (i = 1, 2) by the assumption. Moreover,
sc′′(y) depends only on (sc1 t sc2)(x) for x ∈ V . Thus, again, M] performs no
calculation other than t, sc′′(y) v

⊔
x∈V (sc1 t sc2)(x) holds. By the definition

of sc1 t sc2,
⊔

x∈V (sc1 t sc2)(x) v τ . ut

Lemma 2. If M] is type-safe when the initial configuration is 〈n, sc1, C〉 and
when that is 〈n, sc2, C〉, then M] is type-safe when the initial configuration
is 〈n, sc1 t sc2, C〉.

Proof. By Lemma 1. ut

Below we show the soundness theorem (Theorem 1). Intuitive meaning of
each item stated in the theorem is as follows. Item (1) states that M]

π is type-
safe. Items (2) and (3) state an assumption such that for two execution traces
of π, the value of every variable whose security class is less than or equal to τ
at the beginning of those traces is the same. Items (4) and (5) state that if the
security class of a variable y at the end of every trace is less than or equal to
τ , then the value of y at the end of every trace in π is the same; i.e. π satisfies
noninterference. Item (6) is the same property for input and output channels.

Theorem 1 (Soundness). Let π be an HBAC program, Γ be a specification
with SC as the set of security classes, n be a program point in π, sc ∈ SC, and
C1 and C2 be subsets of permissions in π such that

11

(1) there exists no type error in M]
π if the initial configuration of M]

π is either
〈n, sc, C1〉 or 〈n, sc, C2〉.

Assume the folloing three conditions hold.

(2) (σi, 〈n, µi, Ci〉) V∗ (σ′
i, 〈n′, µ′

i, C
′
i〉) (i = 1, 2).

(3) For every variable x, sc(x) v τ implies µ1(x) = µ2(x). For every io ∈ In ∪
Out, Γ (io) v τ implies σ1(io) = σ2(io). For every permission p, sc(p) v τ
implies p ∈ C1 ⇔ p ∈ C2.

(4) For any sc′ such that 〈n, sc, Ci〉 ⇒∗ 〈n′, sc′, C ′
i〉 (i = 1 or 2), sc′(y) v τ .

Then, the following two conditions hold.

(5) µ′
1(y) = µ′

2(y) if y is a variable. y ∈ C ′
1 ⇔ y ∈ C ′

2 if y is a permission.
(6) For every io ∈ In ∪ Out, Γ (io) v τ implies σ′

1(io) = σ′
2(io).

Proof. Let αi = ((σi, 〈n, µi, Ci〉) V · · · V (σ′
i, 〈n′, µ′

i, C
′
i〉)) (i = 1, 2). This theo-

rem can be proved by induction on the length of α1.

(Basis) Assume that the length of α is zero. This implies n = n′. Since no
iteration statement exists, the length of α2 is also zero, and thus σi = σ′

i, µi = µ′
i,

and Ci = C ′
i (i = 1, 2). Moreover, n = n′ and C1 = C ′

1 imply 〈n, sc, C1〉 ⇒∗

〈n, sc, C1〉 = 〈n′, sc, C ′
1〉, and thus sc(y) v τ by Assumption (4). Therefore (5)

and (6) hold by Assumption (3).

(Induction step) Let the length of α1 be ` > 0 and assume that this theorem
holds whenever the length of α1 is less than `.

(A) If λ(n) is a function call statement and α1 ends in the return from the
callee function, or λ(n) is an if statement and α1 ends in the end of the if
statement, or λ(n) is another statement and α1 is just the execution of the
statement, then we can show (5) and (6) by the definition of Mπ and M]

π.
Note that since the stack of the last configuration of α1 contains only one

stack frame, if λ(n) is a function call statement then the end of α1 never be in
the middle of the callee function. In the same way, if λ(n) is an if statement
then the end of α1 never be in the middle of that statement.

(B) Execution traces αi (i = 1, 2) can be decomposed into (σi, 〈n, µi, Ci〉) V
· · · V (σ′′

i , 〈n′′, µ′′
i , C ′′

i 〉) V · · · V (σ′
i, 〈n′, µ′

i, C
′
i〉) and we can show that this

theorem holds for the first part of αi to (σ′′
i , 〈n′′, µ′′

i , C ′′
i 〉) by Case (A).

Let S be the set that consists of every sc′′ such that 〈n, sc, Ci〉 ⇒∗ 〈n′′, sc′′, C ′′
i 〉

(i = 1 or 2). Since this theorem holds for the first part of αi (i = 1, 2),
(tS)(x) v τ implies µ′′

1(x) = µ′′
2(x) for every variable x and (tS)(p) v τ implies

p ∈ C ′′
1 ⇔ p ∈ C ′′

2 for every permission p.
For every sc′′ ∈ S, 〈n′′, sc′′, C ′′

i 〉 ⇒∗ 〈n′, sc′, C ′
i〉 (i = 1 or 2) implies 〈n, sc, Ci〉 ⇒∗

〈n′, sc′, C ′
i〉 and thus sc′(y) v τ by Assumption (4). Thus 〈n′′,tS,C ′′

i 〉 ⇒∗

〈n′, sc′, C ′
i〉 implies sc′(y) v τ by Lemma 1. Moreover, by Lemma 2, M] is

type-safe when the initial configuration is 〈n′′,tS,C ′′
i 〉.

Therefore we can show (5) and (6) by applying the induction hypothesis
to the second part (from n′′ to n′) of αi (i = 1, 2) and the execution trace
〈n′′,tS,C ′′

i 〉 ⇒∗ 〈n′, sc′, C ′
i〉 of M]. ut

12

SP(main)={pf , pg}

out1 := y

n0

main()

x := select

y := f() y := g()

n13

f()

SP(f)={pg}

g()

SP(g)={pf}

input_channel in1:L,
 select:L,
 in2:H;
output_channel out1:L,
 out2:H;
local_variable x, y;

if (x=0)
n1

n3n2

n4 fi

n5

then else

x := select

check[Ø] check[Ø]

return

if (x≠0)
n6

n9n7

n11 fi

n12

then else

n10n8 out2 := y

n14 return

retf := in1

n15

n16 return

retg := in2

add pg

Fig. 3. Program π1.

4 Permission-Check Statement Insertion Problem

4.1 Problem Statement

The permission-check statement insertion problem is defined as follows.

Input A program π and an information flow specification Γ . All check state-
ments in π must be check[∅].

Output A type-safe program π′ that is obtained from π by modifying the ar-
guments of arbitrary number of check statements.

Example 2. Consider the program π1 and the information flow specification (i.e.
assignment of security classes to input and output channels) in Figure 3. If
input channel select always gives a non-zero value at program points n0 and n5,
then the execution trace of the program is (a prefix of) the following transition
sequence of stacks, where the three components of each stack frame represent a
program point, a state of variables and permissions, and the current permission
set, respectively. The state of variables and permissions is a tuple of the security
classes of variables x, y, νif , retf , and retg, and permissions pf and pg.

〈n0, (⊥,⊥,⊥,⊥,⊥,⊥,⊥), {pf , pg}〉
⇒ 〈n1, (L,⊥,⊥,⊥,⊥,⊥,⊥), {pf , pg}〉
⇒ 〈n3, (L,⊥, L,⊥,⊥,⊥,⊥), {pf , pg}〉 : 〈n1, (. . .), {. . .}〉

13

n2

SP(main)={pf , pg}

x := g()
n9

n13

return

out := y

if (x=0)

n10

n7

n1

n0

main()

y := high

x := low

n8 if (y=0)

fi

n11 x := f()

x := f()

n4

n5

n3if (y=0)

fi

n6x := g()

check[Ø]
n12 fi

check[Ø]

n14

n15

n16

f()

SP(f)={pg , pmain}

return

n17

g()

SP(g)={pf , pmain}

return

input_channel low:L,
 high:H;
output_channel out:L;
local_variable x, y;

Fig. 4. Program π2.

⇒ 〈n15, (⊥,⊥, L,⊥,⊥,⊥, L), {pf}〉 : 〈n3, (. . .), {. . .}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n16, (⊥,⊥, L,⊥,H,⊥, L), {pf}〉 : 〈n3, (. . .), {. . .}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n4, (L, H,L,⊥,⊥,⊥, L), {pf}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n5, (L, H,L,⊥,⊥,⊥, L), {pf}〉
⇒ 〈n6, (L, H,L,⊥,⊥,⊥, L), {pf}〉
⇒ 〈n7, (L, H,L,⊥,⊥,⊥, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n8, (L, H,L,⊥,⊥,⊥, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n11, (L,H,L,⊥,⊥,⊥, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n12, (L,H,L,⊥,⊥,⊥, L), {pf}〉

In the above trace, a type error of E1 occurs in the statement out1 := y
at n8. To remove this error, we can add permission pg to the argument of the
check statement at n7. After this addition, the execution along the above trace
is aborted at n7 since the current permission set {pf} at n7 in that trace does
not contain pg, and the above error is removed. Moreover, this addition does not
bring any other type errors of E3 or E4 because the security classes of pg and
νif at n7 are L in every trace from n0 to n7.

Example 3. Consider the program π2 and the information flow specification in
Figure 4. When the control reaches n14, a type error of E1 occurs since the

14

security class of variable y is H. We thus have to modify the arguments of the
check statements at n7 and n13 to make n14 unreachable. When the control
reaches n7, the stack top is fr1 or fr2 shown below according to the execution
trace from n0 to n7. When the control reaches n13, the stack top is one of
fr3, . . . , fr6. In the following stack frames, the second component is the same as
Example 2; that represents the security classes of x, y, νif , retf , retg, pf , and pg.

fr1 = 〈n7, (⊥, H, L,⊥,⊥,H, L), ∅〉
fr2 = 〈n7, (⊥, H, L,⊥,⊥,⊥, L), {pf}〉
fr3 = 〈n13, (⊥,H,⊥,⊥,⊥,H, L), ∅〉
fr4 = 〈n13, (⊥,H,⊥,⊥,⊥,⊥, L), {pf}〉
fr5 = 〈n13, (⊥,H,⊥,⊥,⊥, L,H), ∅〉
fr6 = 〈n13, (⊥,H,⊥,⊥,⊥, L,⊥), {pg}〉

Stack frames fr1 and fr3 correspond to traces going through both n4 and n6,
while fr2 and fr4 correspond to traces going through n6 and not through n4.
Similarly, fr5 corresponds to a trace going through both n9 and n11, while fr6

corresponds to a trace going through n11 and not through n9.
If we add pf to the argument of n13, then a type error of E3 occurs at fr3.

On the other hand, if we add pg to the argument of n13, then a type error of E3
occurs at fr5. However, we can add pg to the argument of n7 without type errors
of E3 or E4, and this addition makes fr3 and fr4 unreachable. Therefore we can
make n14 unreachable without type errors of E3 or E4 by letting the argument
of n7 be {pg} and the argument of n13 be {pf}.

4.2 Complexity

Theorem 2. The permission-check statement insertion problem is co-NP-hard.

Proof. Let ChkIns be the decision problem corresponding to the permission-
check statement insertion problem; i.e., ChkIns is the problem that answers
whether or not a solution of the permission-check statement insertion problem
exists for a given program π and a given information flow specification Γ . We
show a reduction from the complement of 3SAT to ChkIns.

Let 〈U,C〉 be an instance of 3SAT where U = {x1, . . . , xn} is the set of
variables and C = {c1, . . . , cm} is the set of clauses. We write each positive
literal xi as xi1 and each negative literal xi as xi0. We also write the three
literals of each clause cj as xcj1 , xcj2 , and xcj3 , respectively.

By the reduction, an instance 〈U,C〉 of 3SAT is transformed into an instance
〈π3, Γ 〉 of ChkIns shown in Figure 5. Program π3 consists of three parts A, B,
and C, and a type error occurs whenever the control reaches part C because a
value read out from h is written to out .

Just after the control pass through part A, the following properties hold.

15

if low >0

x11:= f10()x10:= f11()

fi
if low >0

x21:= f20()x20:= f21()

fi

...

if low >0

xn1:= fn0()xn0:= fn1()

fi

main()

if low >0

checkcheck

fi

if xc12 >0
checkcheck

fi

if xc13 >0

checkcheck

fi

if xc11 >0

if low <10

fi

fi

...
if low >0

checkcheck

fi

if xcm2 >0
checkcheck

fi

if xcm3 >0

checkcheck

fi

if xcm1 >0

if low <10

fi

fi
y:= h

out:= y

return

input_channel h:H;
output_channel out:L;
local_variable

 x10,x20,...,xn0,

 x11,x21,...,xn1,
 low,y;

ret:= h

return

fik()
A

B

C

Fig. 5. Program π3.

(1) For every possible truth assignment S of U , there exists an execution trace
of π3 such that if S(xi) is true then the security classes of xi1 and xi0 are H
and L, respectively, and if S(xi) is not true then the security classes of xi1

and xi0 are L and H, respectively.
(2) The security class of xik is H if and only if function fik has never been

called.

Firstly, assume that the set C of clauses is satisfiable. In this case, there
exists the execution trace corresponding to a truth assignment that satisfies C.
When the control has passed through part A along the trace, there exists some
`j ∈ {1, 2, 3} for each clause cj such that the security class of xcj`j

is H. Hence
there exists an the execution trace in part B that passes the node “if xcj`j

> 0”
for every j, and every check statement on this trace cannot abort the execution
without a type error of E4. Therefore no solution exists for 〈π3, Γ 〉.

Secondly, assume that C is not satisfiable. In this case, we can obtain a type-
safe program π′ from π by letting the argument of every check statement be
{pfcj`

} if the check statement is in a branch of if xcj`
> 0. The type-safeness is

shown as follows. Since C is unsatisfiable, after any execution of part A, there
exists some j such that the security classes of xcj1 , xcj2 , and xcj3 are L. Thus
fcj1 , fcj2 , and fcj3 have been called by the above (2), and the execution is going

16

to be aborted at any of six check statements corresponding to cj ; i.e., the control
never reaches part C. Moreover, a type error of E4 never occurs in any check
statement because if the execution is aborted at a check statement in a branch
of if xcj`

> 0, then permission pfcj`
is not in the current permission set and

thus fcj`
has been called. By the above (2), the security class of xcj`

, which is
the same as sc(νif), is L. ut

5 Automatic Generation

5.1 Algorithm

We call a program point n a check node if λ(n) = check[P] for some P . On the
permission-check statement insertion problem, all we can do is to add permissions
to the argument of check statements. When a program π′ is obtained from π by
adding permissions to the arguments of check statements, the transition relation
of M]

π′ is a subset of that of M]
π, since the precondition of the inference rule (15)

in Section 3.1 holds for M]
π if it holds for M]

π′ and the other rules do not depend
on check statements. Hence, we can design an algorithm for solving the problem
as follows. For each reachable stack frame fr of M]

π that causes a type error of
E1 or E2, make fr unreachable by adding a permission to the argument of some
check statement in each execution trace α from an initial configuration to fr .
Let α = cnf 0 ⇒ · · · ⇒ 〈n, sc, C〉 : ξ ⇒ · · · ⇒ fr : ξ′ be such a trace where n is the
check node whose argument is to be modified. If a permission p /∈ C is added
to the argument of n, the execution will be aborted at n in α. So if we perform
this modification for every α, then fr becomes unreachable. However, the above
modification may introduce another type error of E3 or E4. Let us fix the node
n for a while. The necessary and sufficient condition to avoid such a type error
as a side effect is: sc(p) = L, sc(νif) = L, and any other stack frame 〈n, sc′, C ′〉
for the same n for which p brings a type error (i.e. sc′(p) 6= L or (p /∈ C ′ and
sc′(νif) 6= L)) is unreachable (by possibly modifying the argument of another
check statement).

Based on the above observation, the algorithm consists of two phases:
(1) For each check node n, compute SafeP(n), which is the set of all permissions

that can be added to the argument of n without type error or with type
error that can be removed by other check statements; (SafeP(n) is formally
defined in Phase (1) below.)

(2) For every type-error stack frame fr and a trace α = cnf 0 ⇒ · · · ⇒ fr :ξ′, find
a configuration 〈n, sc, C〉 :ξ in α and a permission p such that n and p satisfy
the condition mentioned in the previous paragraph, by using SafeP(n). If
the addition of p introduces a type error, then repeat Phase (2).

In the following, let cnf 0 be an initial configuration of M]
π, top(fr : ξ) = fr

be the function that answers the stack top, and LP (sc) = { p | sc(p) = L } be
the subset of permissions whose security class is L for a given sc.

17

Phase (1): Computation of SafeP(n) We define the following two inference
rules (18) and (19).

λ(n) 6= check[P] or sc(νif) 6= L or (SafeP(n) ∩ LP (sc)) \ C = ∅
¬Stoppable(〈n, sc, C〉) (18)

cnf 0 ⇒ . . . ⇒ cnf ` ⇒ 〈n, sc, C〉 : ξ, (sc(p) 6= L or
(p /∈ C, sc(νif) 6= L)), ¬Stoppable(top(cnf i)) for 0 ≤ i ≤ `
p 6∈ SafeP(n)

(19)

Since every occurence of Stoppable(·) and SafeP(·) is negative, these two rules
have the greatest fixpoints for these two predicates, which can be computed as
follows. We say that a stack frame fr is stoppable if Stoppable(fr) holds during
the computation.

(i) Let SafeP(n) = PRM for each check node n (see Section 2.2 for PRM)
and M]′

π be M]
π without any transitions.

(ii) Compute Stoppable(fr) for each stack frame fr of M]
π by (18) according to

the current SafeP(·), and add transitions to M]′
π from each non-stoppable

frame.
(iii) Compute SafeP(n) for each check node n by (19) according to the current

Stoppable(·). To do this, compute all reachable stack frames of M]′
π based on

a model checking method for pushdown systems. If a stack frame 〈n, sc, C〉
for a check node n is reachable, then remove every permission p satisfying
the second precondition of (19) from SafeP(n).

(iv) Repeat Steps (ii) and (iii) until no more change occurs.

Phase (2): Changing the arguments of check statements Let M]
ex be the

pushdown system obtained from M]
π by extending the stack frames to 4-tuples

and substituting the following inference rules (20) and (21) for Rule (15) for check
statements. The fourth component of a stack frame is a pair 〈n,Q〉 of a program
point and a subset of permissions. This pair represents that top(cnf) = 〈n, sc, C〉
for some sc and C such that cnf is the last stoppable configuration on the
execution trace to the current configuration and the execution will be actually
aborted by adding an arbitrary element of Q to the argument of n.

λ(n) = check[P], P ⊆ C, n → n′, sc(νif) = L,
Q = (SafeP(n) ∩ LP (sc)) \ C 6= ∅
〈n, sc, C,X〉 : ξ ⇒ 〈n′, sc, C, 〈n,Q〉〉 : ξ

(20)

λ(n) = check[P], P ⊆ C, n → n′, (sc(νif) 6= L or
(SafeP(n) ∩ LP (sc)) \ C = ∅)
〈n, sc, C,X〉 : ξ ⇒ 〈n′, sc, C,X〉 : ξ

(21)

By the following algorithm, the arguments of check statements are modified
to remove type errors.

18

SP(main)={p1, ..., pk}

out1 := y

main()

x := select

y := f1() y := fk()

f1()

SP(f1)=PRM \ {p1}

security_class L<M1,...,Mk<H;
input_channel select:L,
 in1:M1, ..., ink:Mk;

output_channel out1:M1, ..., outk:Mk;
local_variable x, y;

if (x)

fi

check[Ø] check[Ø]

return

outk := y

return

ret1 := in1

...

x := select

if (x)

fi

...

fk()

SP(fk)=PRM \ {pk}

return

retk := ink

...

Fig. 6. Program πa(k).

(i) Let the fourth component of the initial configuration of M]
ex be ⊥, and

compute all reachable stack frames of M]
ex.

(ii) If a type-error stack frame 〈n, sc, C,X〉 is reachable and X = 〈n′, Q〉, then
add an arbitrary element of Q to the argument of the check statement
at n′. If X = ⊥, then notify a user that the given problem instance has no
solution, and halt.

(iii) Repeat Steps (i) and (ii) until no more change occurs.

5.2 Experiment

We describe the results of an experiment in which a prototype implementation of
the above algorithm is applied to the following two kinds of problem instances.
Each input program is an extension of program π1 in Figure 3.

(1) The input program πa(k) in Figure 6 has k functions fi for 1 ≤ i ≤ k,
and the security class of the return value of function fi is Mi. Security class
Mi (1 ≤ i ≤ k) satisfies L v Mi v H and Mi 6v Mj and Mj 6v Mi for every
j 6= i. Program πa(k) also has k check statements and k output channels, and
the security class of each output channel out i is Mi. Thus we have to modify
the argument of each check statement so that the return value of fi is written
only to out i.

(2) Program πb(k) in Figure 7 is a program obtained from πa(k) by split-
ting the lower part of the main function into a separate function, which can be
arbitrarily repeated by a tail call to itself.

19

SP(main)={p1, ..., pk}

main()

x := select

y := f1() y := fk()

f1()

SP(f1)=PRM \ {p1}

security_class L<M1,...,Mk<H;
input_channel select:L,
 in1:M1, ..., ink:Mk;

output_channel out1:M1, ..., outk:Mk;
local_variable x, y;

if (x)

fi

return

return

ret1 := in1

...

y := fout(y)
fk()

SP(fk)=PRM \ {pk}

return

retk := ink

...

SP(fout)={p1, ..., pk}

out1 := y

check[Ø] check[Ø]

outk := y

x := select

if (x)

fi

...

fout(y)

retfout := fout(y)

if (x)

fi

return

x := select

retfout := y

Fig. 7. Program πb(k).

Figure 8 shows the computation time for πa(k) and πb(k)4. The computa-
tion time for πa(k) is approximately O(k2), and the time for πb(k) is approx-
imately O(k3). Computation of reachable stack frames of M]

ex is dominant in
the proposed algorithm. We adopt an efficient method for computing the set of
reachable stack frames described in [24, Section 4.4], whose computation time
is proportional to the number of reachable stack frames. The number of reach-
able stack frames for πa(k) and πb(k) is shown in Figure 9, which plots the same
curves as Figure 8. This result suggests that the time complexity of the proposed
algorithm is the order of the number of reachable stack frames.

Comparison between the proposed implementation and Moped The
main part of the proposed algorithm is the computation of the set of reachable
stack frames, and it can be performed using existing model checking tools for
PDS. However, those are not optimized for analysis of HBAC programs and their
suitability for the permission-check statement insertion problem is unknown.
Hence we measured the computation time required by PDS model checking tool
Moped (version 1.0.14)5 for computing the set of reachable stack frames of πa(k)
(Figure 10).

While our implementation required at most two seconds when k ≤ 100, the
computation time of Moped rapidly increases, and it becomes more than several
hours when k ≥ 17. From this results, our implementation is more suitable for
the permission-check statement insertion problem than Moped.
4 The prototype implementation is written in C (GCC 4.1.2). We use a computer with

Intel Core 2 Duo 1.06GHz, 2GB RAM, and CentOS 5.3.
5 http://www.fmi.uni-stuttgart.de/szs/tools/moped/

20

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 20 40 60 80 100 120 140 160 180 200

co
m

pu
ta

tio
n

tim
e

(s
ec

)

k

computation time for pi_a(k) and pi_b(k)

pi_a(k)
pi_b(k)

Fig. 8. Computation time for πa(k) and πb(k).

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120 140 160 180 200

k

number of reachable stack frames

pi_a(k)
pi_b(k)

Fig. 9. The number of reachable stack frames for πa(k) and πb(k).

6 Conclusion

In this paper we studied on a problem to automatically insert permission-check
statements for making a given program satisfy a given information flow specifica-
tion. We showed that the problem is co-NP-hard. We also proposed an algorithm
based on a model checking method of pushdown systems. Applying a prototype
implementation to problem instances, we found that the complexity of the pro-
posed algorithm is proposional to the number of reachable stack frames.

Future work includes the followings.

(1) A method for finding the optimal solution: Some problem instances have
more than one solution, and the proposed algorithm does not necessarily
answer an optimal one. We would like to investigate an algorithm to find
the solution that minimize the total size of the argument of check statements.

21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80

co
m

pu
ta

tio
n

tim
e

(s
ec

)

k

computation time for pi_a(k)

proposed
moped

Fig. 10. Comparison between the proposed implementation and Moped.

(2) An algorithm for the original definition of HBAC programs: We would like to
extend the proposed algorithm to the original definition of HBAC programs,
where freedom of the static permission set of each function and the grant
and accept set of each function call statement is imposed.

References

1. Abadi, M., Fournet, C.: Access control based on execution history. In: Network &
Distributed System Security Symp. pp. 107–121 (2003)

2. Banâtre, J., Bryce, C., Le Métayer, D.: Compile-time detection of information flow
in sequential programs. In: 3rd ESORICS, LNCS 875. pp. 55–73 (1994)

3. Banerjee, A., Naumann, D.A.: Using access control for secure information flow in
a Java-like language. In: IEEE 16th CSFW. pp. 155–169 (2003)

4. Banerjee, A., Naumann, D.A.: History-based access control and secure information
flow. In: CASSIS 04, LNCS 3362. pp. 27–48 (2004)

5. Banerjee, A., Naumann, D.A.: Stack-based access control and secure information
flow. Journal of Functional Programming 5(2), 131–177 (2005)

6. Bartoletti, M., Degano, P., Ferrari, G.L.: Static analysis for stack inspection. Con-
Coord, Electric Notes in Theoretical Computer Science 54 (2001)

7. Besson, F., Blanc, T., Fournet, C., Gordon, A.D.: From stack inspection to access
control: A security analysis for libraries. In: IEEE 17th CSFW. pp. 61–75 (2004)

8. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

9. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

10. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model-checking pushdown systems. In: CAV 2000, LNCS 1855. pp. 232–247 (2000)

11. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular variations
for pushdown systems. In: TACS 01, LNCS 2215. pp. 316–339 (2001)

12. Fong, P.W.: Access control by tracking shallow execution history. In: IEEE Security
& Privacy. pp. 43–55 (2004)

22

13. Guernic, G.L., Banerjee, A., Jensen, T., Schimidt, D.A.: Automata-based confi-
dentiality monitoring. In: ASIAN 2006 (2006)

14. Heintze, N., Riecke, J.G.: The Slam calculus: programming with secrecy and in-
tegrity. In: 25th ACM POPL. pp. 365–377 (1998)

15. Jensen, T., le Métayer, D., Thorn, T.: Verification of control flow based security
properties. In: IEEE Security & Privacy. pp. 89–103 (1999)

16. Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for Java. In: ACM
17th OOPSLA. pp. 359–372 (2002)

17. Leroy, X., Rouaix, F.: Security properties of typed applets. In: 25th ACM POPL.
pp. 391–403 (1998)

18. Myers, A.C.: JFLOW: Practical mostly-static information flow control. In: 26th
ACM POPL. pp. 228–241 (1999)

19. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized labels.
In: IEEE Security & Privacy. pp. 186–197 (1998)

20. Nitta, N., Takata, Y., Seki, H.: An efficient security verification method for pro-
grams with stack inspection. In: 8th ACM CCS. pp. 68–77 (2001)

21. Ørbæk, P.: Can you trust your data? In: TAPSOFT ’95, LNCS 915. pp. 575–589
(1995)

22. Pistoia, M., Banerjee, A., Naumann, D.A.: Beyond stack insepction: A unified
acess-control and information-flow security model. In: IEEE Security & Privacy.
pp. 149–163 (2007)

23. Pottier, F., Skalka, C., Smith, S.: A systematic approach to access control. In:
ESOP 2001, LNCS 2028. pp. 30–45 (2001)

24. Takata, Y., Wang, J., Seki, H.: A formal model and its verification of history-based
access control. IEICE Trans. on Information and Systems (Japanese Edition) J91-
D(4), 847–858 (2008)

25. Volpano, D., Smith, G.: A type-based approach to program security. In: TAPSOFT
’97, LNCS 1214. pp. 607–621 (1997)

26. Wang, J., Takata, Y., Seki, H.: HBAC: A model for history-based access control
and its model checking. In: 11th ESORICS, LNCS 4189. pp. 263–278 (2006)

