
A Trace Analysis Approach to Comprehend

Features in Object-Oriented Effect Systems

Izuru Kume
Nara Institute of Science and Technology
Graduate School of Information Science

8916-5 Takayama, Ikoma,
Nara 630-0192, Japan

kume@is.naist.jp

Etsuya Shibayama
The University of Tokyo

Information Technology Center
2-11-16 Yayoi, Bunnkyo,
Tokyo 113-8658, Japan

etsuya@ecc.u-tokyo.ac.jp

February 27, 2009

Abstract

Many object-oriented systems, such as CASE tools manipulated by
GUIs and Java Servlet applications responding to requests from inter-
net clients, are driven by external inputs. We call such systems object-
oriented effect systems where effects in runtime system states implement
features correctly. Effects comprehension is thus an integral part in fea-
ture comprehension for object-oriented effect systems. However, effects
comprehension in object-oriented effect systems is difficult and requires
maintainers a new analysis method with different viewpoint for ordinary
feature comprehension. In this paper, we propose a trace analysis method
that is based on a trace model, and provides an effect analysis principle
and a deductive object-oriented relational language as an analysis tool.

1 Introduction

An object-oriented interactive system is usually built on a calling framework
[11] that hides low level event processing [7], and invokes application-side event
handlers in response to users’ inputs. Event handlers and the method invoked by
them together implement an observable behavior in such a way that previously
invoked methods produce effects (e.g. by instance variable assignment), and

later invoked methods are influenced by the effects (by using the assigned value
for a conditional branch, etc.) The influence of effects accumulates in a complex
way because influenced methods themselves might influence other methods in a
similar way.

We call such object-oriented systems with the above behavioral characteristic
object-oriented effect systems. We call an observable behavior implemented by
such accumulating influences of effects of an object-oriented effect system a
feature, and we call influences among method invocations by effects a coupling
by effects among the method invocations. Understanding a coupling by effects
as a whole usually requires a time-consuming task to follow a data flow across
method invocations.

We pursue a trace analysis approach in order to reduce maintainers’ efforts to
examine a coupling by effects without being worried by the problem of dynamic
binding [13]. Comprehension of couplings by effects requires changes on trace
analysis concepts with respect to trace models and analysis operations that
affect the design of a trace analysis tool for feature comprehension in object-
oriented effect systems. Figure 1 shows the hierarchy of trace analysis concepts
required for comprehension of couplings by effects.

Trace Model

Common Concepts
Event Chunks

Designated Trace Elements

(Roles of class instances in a coupling by effects)

Events / Triggers / Results

Invocations / Blocks

Coupling by Effects

Attributes and Relationships

Analysis Operations

Defining relations of trace elements

Specifying event chunks from relations

Designating trace elements by a named color

Color-Coding on event chunks

Extract a chunk influenced by a color-coded event chunks

Analysis Tool Design Deductive object-oriented DDL

Framework for interactive trace analysis

Figure 1: Conceptual Hierarchy for Effect Comprehension

In the rest of this report, we first show our motivating example in section 2.
We explain our trace model in section 3, two analysis concepts to ingtegrate

2

our approach to existing ones in section 4, analysis operations to comprehend a
coupling by effects in section 5, and our deductive object-oriented data definition
language in section 6, and an analysis result in section 7.

2 Motivating Example

2.1 Example RPG System

In this section, we explains an RPG (Role Playing Game) system that is im-
plemented in Java and is used as an example object-oriented effect syste in this
report. The the system has about 1,000 lines of the source code. The frame-
work classes of the system are shown in Figure 2. The class diagram at the
left side of the figure shows the associations just after the system initialization.
Class RPGCharacter represents RPG characters in a game. Class RPGCommand
represents applicable actions of RPG characters. All information about a RPG
character is shown as primitive number values and strings that are presented
on the corresponding GUI panel,1 an instance of CharacterBrowser. The GUI
panel also provides the player of the RPG character with the interface to select
actions in a battle with another RPG character. Class BattleField represents
a battle field where two RPG characters attack each other. RPG characters
that share the same BattleField instance can participate in the same battle.

A game player can select an attack action (an instance of RPGCommand) and
an attack target (an instance of RPGCharacter) by operating the GUI panel.
The selected action and target are passed to a shared battle field (a BattleField
instance) as arguments of a method. Bing the method invoked, the battle field
checks if it is the first time for the method to be invoked. If it is the first time,
the battle field creates an instance of BattleProcessor, assigns the created
instance to its instance variable, and sets up object references shown as the
associations at the right side of Figure 2. The assignment of the created instance
into its instance variable indicates that the method has been invoked once. At
the second invocation, the battle field does the same thing, and after the set up
it invokes a method on the two BattleProcessor instances in order to process
the total battle results.

A class BattleProcessor is responsible for processing the result of an attack
by an RPG character to another. It checks the success or failure of the attack
based on the attacker’s skill (obtained from the attack command), and the
defender’s skill, and reduces the defender’s HPs (hit points) if the attack is
successful. The RPGCharacter instances (each passed as a target of the attacks)
reflects the changes of their HPs in the displayed numerical values and string
messages.

A sequence diagram in Figure 3 shows the process where an RPG user makes
two RPG characters attack each other just after the syetem initialization in
terms of objects collaborations. Only the Main class and two attack commands
(command 1 and command 2), and their common battle field (battle field) are

1The system provides no 3D presentation at all.

3

[at Initialization] [at Battle Processing]

BattleField

BattleProcessor

-target1

- processor1

-processor1

-command1

BattleFieldRPGCharacter

RPGCommand

-owner1

- command*

CharacterBrowser

CommandPanel

-character1

-command*

-ui

1

-command

1

-command*

-bf1

-attack

*

-field 1

-ui

1

-char

1

RPGCharacter

RPGCommand

Figure 2: Framework Classes

shown although more objects participate in the process. Balloons in the diagram
contains occurring events in the process such as the creation of class instances, a
conditional branch by the battle field, and the effects produced by assignments
to instance variables which accompany the various system state setups in the
process.

Notice that the method invocations are separated under three mutually in-
dependent invocation trees, which are triggers by the Main method and the two
inputs by the user. Here we say two method invocations are ‘independent’ if
none of them doesn’t invoke another directly nor indirectly. However, several
method invocations in the initialization and the first input handling process
influences the later ones by their effects, that is, the method invocations (and
their containing invocations trees) are coupled by effects. It is important that
the couplings by effects are implemented as the data flows across the method
invocations but along the events in the balloons.

Let’s see several steps that contributes to the data flows. The attack com-
mands at their creation set up a path to their common battle field, and the
attack commands at their later method invocation (triggered by two inputs
select command 1 and select command 2) obtained the battle field by refer-
encing the path. As a result, their later method invocations are affected by
their setups at the creation time, in other words the methods are coupled by

4

command_2

Main

battle_field
create

create(battle_field)

create(battle_field)

add(command_1)

start

select command_1

add(command_2)

select command_2

command_1

Set a path to
[battle_field].

Set a path to

[battle_field].

Display

[command_1].

Display

[command_2].

Set a path to

[command_1].

Battle start.

Check existing

command.

Check existing

command.

Display the
result.

Obtain

[battle_field]

Obtain

[battle_field]

Initialize

the state.

Creation

Figure 3: Object Interactions

the effects of the creation. We can find many such examples couplings by effects
in the whole process of an object-oriented effect system.

2.2 Assumed Trace Analysis Operations

It is inevitable for maintainers to understand the roles of classes and particular
class instances on understanding the implementation of the coupling by effects in
the above battle processing feature. What kind of supports do the maintainers
require for such a program comprehension purpose? A trace analysis approach
is desirable in order to avoid the problem of dynamic bindings[13], which is a
famous obstacle specific to comprehension of object-oriented programs.

The maintainers often need a support for iterative collaboration recovery,
an approach proposed by Richiner and Ducasse [9] for example, because the
examined coupling by effects accompanies the object collaborations in Figure 3.
When the maintainers encounter battle field, which is one of the key in-
stances for the feature comprehension, they likely try to the execution history
related to battle field. In the examination, the maintainers possibly need
to know “Where the value of the instance variable was assigned?”, for which
examination the Omniscient debugger [3] provides the maintainer with a good
support.

5

In addition to the above examination from a fine grained viewpoint, the
maintainers possibly require a coarse grained examination during their compre-
hension process. Assume that the maintainers try to locate where the calculation
of the battle results actually starts in the whole execution. The battle process-
ing actually starts just after the check in the method of battle field whether
it is the first method invocation or not. Thus the maintainers accomplish the
comprehension subtask if they can efficiently locate the second method invoca-
tion on battle field. If the maintainers lack of the implementation knowledge
about BattleField, they must find the trace location that are specified as “A
location in the second input handling processing which are influenced by an
effect of the first input handling process”.

Although several approaches [10, 4, 5] support dependency analysis caused
by effects of object creations and aliases, nothing provides a direct support for
understanding the roles of classes or particular class instances in the imple-
mentation of a coupling by effects, as well as we know. A novel trace analysis
method that allows maintainers to examine a coupling by effects both from a
fine-grained viewpoint and a coarse-grained viewpoint, and provides a direct
support to comprehend the roles of classes and particular class instances in the
implementation of the coupling by effects is desired.

3 Trace Model

Our trace model represents a program execution in terms of events. Modeling
a program execution in terms of events enables the fine-gtained viewpoint in
section 2.2, and suits the bottom-up comprehension stratecy [8].

Each event is triggered by an operation including: (1) constant value in-
troduction, (2) primitive value calculation, (3) instance and array creation, (4)
value duplication (assignment to a local variable), (5) getting a value of a class
variable, an instance variable, and an array element, (6) calling a method, (7)
returning from a method, (8) conditional branch, (9) assignment to a class vari-
able, an instance variable, and an array element. Executing an operation in type
(9), an assignment to an instance variable for example, results in generation of
an effect. Executing an operation in type (6), (7), or (8) results in a change of
control. An operation in the rest of the types results in creating or obtaining
values that are categorized into object reference, array reference, and primitive
values. Notice that the result of such an operation is not the value itself but
the creation of the value. Events together with their triggering operations and
their results are represented as trace elements and thus they are query subjects.

An operation, say opβ depends on another operation, say opα if one of the
following conditions is satisfied: (1) opβ uses the result of opα, (2) opα is a
conditional branch and opβ is executed as a result of the conditional branch, (3)
opα is an assignment of a value to a class variable, an instance variable, or an
array element, and opβ gets the assigned value. An event, say evα, influences
another event, say evβ if and only if the triggering operation of evβ depends
on the triggering operation of evα. Our trace model represents the dependency

6

-material

-producer

Event

Control Effect

Operation

operation
1

1

-controlled

*

-controller

1

Resource

*

-consumer

*

-product 1

*

- result

1

1

Value

-evt
-

-evt

Figure 4: Event and its Constructs

among operations and thus implies the influence among events. The transitive
closure of influences starting from an event e forms the accumulated influences
of e.

Let’s consider the events that occur in the coupling by effects in our ex-
ample system. The main method invocation contains two events evc and evbf

that represent the creation of a battle command, and battleField respectively.
The first event handling process contains an event eva that represents an as-
signment of the battle command to the instance variable of battleField. The
second event handling process contains two events evget and evcond that repre-
sent an operation to get the assigned value and the second conditional branch
by battleField respectively. From the above definition, evc and evbf influence
eva directly, and influence evcond indirectly through eva and evget. Thus the
influence of evc and evbf accumulate. (The concept of accumulation of influ-
ences in a method is similar to program slice [12, 1], although we have no slicing
criterion and take account of runtime concepts including effects.)

Our trace model contains as trace elements method invocation and blocks of
control flows in order to show where events occur.2 A method invocation starts
with a method call event and ends with a return event. A method invocation

2In our current implementation, executed operations has an attribute to show the line
number in a source code.

7

FlowComponent

Event

*

-location 1

1..2

-entrance 1

RunTimeBlockRunTimeMethod

1

-blocks*1

-called

1

-return

11

-from

-to

-method

-flow

-evt

Figure 5: Method Invocation and Block

is decomposed by blocks. A block contains a sequence of events in the order
of execution. A block starts when the current method starts, when a called
method returns, or when a conditional branch starts. A block ends when the
current method returns, a method is called, and a conditional branch ends. A
conditional branch occupies a single block alone.

Trace elements have attributes whose value can be used to express query con-
ditions. For example, an instance variable assignment has the variable name as
its attribute. Some attributes have trace elements as their value. The event eva

in the above example has as its attribute value the result of evc that represents
the creation of the assigned value. (Recall that the result of instance creation
is not the created instance but the creation itself.) Usually the attributes of
trace elements are used for queries to specify areas of concern and to arrange
the method invocations to form a locating result. On the other hand, influences
among events are used to obtain coupling points.

Class diagram 4 illustrates the class of events and their constructs. Class
Event represents events. Two abstract classes Operation and Resource rep-
resent triggering operations of events and their results respectively. Value,
Control, and Effect, the subclasses of Resource, classify the results into
value creation, effect generation, and change of control respectively. Association
producer-product relates an operation with its result, while consumer-material
represents that an operation depends on a result of another operation. The in-
fluence by a conditional branch is distinguished by controlled-controller.

Classes RunTimeMethod and RunTimeBlock in class diagram 5 represent in-
voked methods and blocks respectively. An abstract class FLowComponent ab-

8

stracts them. The association evt-location represents events belonging to
a block, while blocks-method represents decomposing of an invoked method
by blocks. Calling a method and returning to a method is represented by
called-from and return-to respectively. Association flow-entrance repre-
sents an event to start a method invocation or a block.

4 Common Concepts

In section 2.2 we addressed a situation that maintainers try to find a class
instance (battle field), which is a key to understand the role of classes or class
instances in a coupling of effects, using the influence relationship between among
the events in the two event sets each of which represents an input handling
process. Notice the important fact that the maintainers effort is based on a
idea which is completely different from those of existing approaches such as
trace matching [6, 2] and iterative collaboration recovery [9] that rely on known
program elements. Instead of known program elements such as class names
or method names, the maintainers rely on the selection of the two event sets
correspondence to the inputs, and the inherent influence relationship among
events. The combination of events selections and the influence relationship
works well in this case.

Let’s consider a set of trace elements from a difference viewpoint. On the one
hand, our trace model enables maintainers with a view of program execution
in terms of fine-grained trace elements. On the other hand, the fine-grained
trace elements and their relationships increase the amount of information and
the complexity of the whole trace. It is natural for maintainers to divide the
whole trace into several subsets, or to select a set of trace elements in which
they believe to find a key to comprehend the roles of classes and class instances
in a coupling by effects.

We call a set of a single type of trace elements which are selected according to
maintainers’ current concerns and understanding a trace chunk. We call a trace
chunk containing events an event chunk. From our experience, maintainers often
find some trace elements important for program comprehension as we saw in
section 2.2 that the conditional branch derives battle field from which we can
well guess class RPGCommand implements attack commands. We call such trace
elements that are thought important subjectively by maintainers designated
trace elements.

We think finding designated trace elements as one of the important subgoal
in a trace analysis process, and setting trace chunks as a means of finding desig-
nated trace elements. We believe that many analysis operations to comprehend
a coupling by effects can be defined in terms of setting trace chunks and finding
designated trace elements from the chunks. On our definition, we can introduce
reusable patterns for suitable trace chunk settings and automate some processes
to select designated trace elements. An analysis tool that supports the patterns
and the automation can make a trace analysis task efficient. Operations of sev-
eral existing trace analysis approaches can be defined in terms of trace chunks

9

and designated trace elements. In this way, we can integrate our trace analysis
approach to comprehend coupling by effects with existing ones. Such integra-
tion is important to design a trace analysis tool that supports various kinds of
analysis operations as we saw in section 2.2.

5 Analysis Operations to Comprehend Coupling
by Effects

5.1 Relational Operations

Our trace analysis approach adopts an object-relational data model to manages
trace elements. Maintainers can directly access trace elements by displaying
a relation that contains the trace elements as a table. There are two kids of
tables. An attribute relation represents a single type of trace elements with
their attributes. In this case, the attributes of the trace elements coincides with
the attributes of the relation. For example, RunTimeInvocation instance are
contained in a relation with the same name accompanied by their class names,
method names, method signatures, and the Value instances as their method
receivers and arguments.

Attribute relations represent the contents of the whole trace. All attribute
relations except for one can’t be redefined nor be modified by maintainers.
Maintainers can recursively define new relations among trace elements by a
deductive object-oriented data definition language, which we will explain in
section 6.

Any trace chunk can be obtained as the value set of an attribute3 of some
relation. Currently it is the only way to obtain trace chunks.

5.2 Trace Element Designation

In our approach trace elements is interactively designation through a table that
displays the contents of some relation. There are two styles of operation for
trace element designation. In any way, a named element color is created and is
associated with the designated trace element. Each color has a unique name,
and thus maintainers can explicitly specify any designated trace elements by
the name of their associated colors.

Colors have their names and the associated trace elements as their attribute
values. Any color exists if and only if it is created by maintainers, and the
attribute relation for colors increases as a new color is created.

Maintainers can directly select a trace element from a displayed table and
give a name to the created color. As for another way of trace element designa-
tion, several method invocations can be designated as a result of root-selection
operations explained later in section 5.4.

3Not an attribute of trace elements but an attribute of a relation.

10

5.3 Color-Coding

Colors can be used not only for trace element designation but also for making
a set of events as an influence source on later events. Our approach defines
an operation color-coding on an event chunk. All events that are directly or
indirectly influenced by some event in a color-coded event chunk is associated
to the color. Color-coding operations are often used to select an event chunk
that are influenced by another event chunk.

5.4 Invocation Root Selection

Our approach defines root-selection operation on method invocation chunks.
Given a method invocation chunk, the operation first forms the smallest method
invocation trees to cover the chunk, and then selects the root invocations of the
covering trees. The selected root invocations are designated by automatically
created colors with a series of unique names according to some systematic nam-
ing rule.

Root-selection operations are used so that maintainers can locate starting
points in a source code from which all method invocations in the given chunk
can be followed, for example.

6 Data Definition Language

Our approach provides maintainers with a deductive language interface to re-
cursively define a new relation of trace elements by a set of logical clauses in
the following form:

<head> :- <body-1>, ..., <body-n>.

The defined predicate <head> is expressed as p(t1, . . . , tk), where the predicate
symbol p is a sequence of English letters and digits starting with a lower-case
English letter. Predicates <body-i> in the body have the same form of the
defined predicate, or a system predicate. System predicates are categorized
into attribute predicate that expresses trace elements and their attributes, color
predicate that expresses colors, and twisting predicate that expresses coupling
points influenced by color-coded events. Color predicates and twisting predi-
cates reflect the results of color-coding operations in sectino 5.3, while attribute
expresses the trace elements themselves. All predicate arguments must be a
variable, a numerical number, and a string. All trace elements are expressed in
a variable.

An attribute predicate expresses a trace element and its attributes. Below,
we show an attribute predicate to express an operation to get the value of a
class variable or instance variable. The predicate name CC FieldGet represents
the class name of the operation. The variable Op expresses the operation itself.
The predicate arguments express its attributes: the name of the class to declare
the variable, the result of an operation to get the instance to have the variable

11

or null (in the case of class variable), the variable name, the variable signature,
and the result of assignment operation that assigned the current value of the
variable.

CC_FieldGet[Op](class, instance,
field_name, field_type, effect).

Because CC FieldGet is a subclass of Operation (see class diagram 4), any of
its instances inherits the attributes of Operation. The attribute predicate below
expresses the attribute, that is, operation type, byte code number, occurring
block, and the line number in the source code.

Operation[Op](type, opcode, block, line)

The predicate color predicate below (#Color) below expresses that a color
C has a name name and is associated with element. The twisting predicate
below (#ColorTwisted) expresses that a coupling point event is influenced by
an event color-coded by C. A color predicate and a twisting predicate are often
combined to select coupling points.

#Color[C](name, element)
#ColorTwisted[C](event)

7 Query Process in Practice

Now we will see how we actually accomplished the query process addressed in
section 2.2 by applying a prototype analysis tool that implements the anal-
ysis operations in section 5 and the data definition language. As a result,
we finally obtained a method invocation on battle field as a result. We
first input the following clause to define actionMethod to select the methods
invocations from the Swing framework. We use the knowledge about Swing
API that event handlers are named ’actionPerformed’ and have a signature
“(Ljava/awt/event/ActionEvent;)V”4.

actionMethod(Mtd)
:- RunTimeInvocation[Mtd](
_, "actionPerformed",

"(Ljava/awt/event/ActionEvent;)V").

We displayed the relation actionPerformed and saw that two methods were
invoked by the Swing framework. We examined the serial number of the invoca-
tions that represents their invocation order, and associated a color named act 1
to the first invocation, and a color act 2 to the second invocation. Next, we
defined select1 and select2 to select the two sets of events in the processes
started by act 1 and act 2, respectively. The color predicates are used to distin-
guish the processes, and the set of events are selected by mutual visit of method
invocations and blocks. We specified our areas of concern by color-coding the
selected sets by their corresponding colors.

4It is a signature format for Java VM.

12

call(Mtd, ColorCode) :-
#Color[ColorCode](_,Mtd), RunTimeInvocation[Mtd](_, _, _).

call(Mtd, ColorCode) :-
ccBlock(Blk, ColorCode), Event[_](Ctrl, Ivk, Blk),
Invoke[Ivk](_, _, _, _), FlowComponent[Mtd](_, Ctrl, _, _),
RunTimeInvocation[Mtd](_, _, _).

ccBlock(Blk, ColorCode) :- call(Mtd, ColorCode),
FlowComponent[Blk](Mtd, _, _, _), RunTimeBlock[Blk](_, _, _).

colorCoded(Evt, ColorCode) :-
Event[Evt](_, _, Blk), ccBlock(Blk, ColorCode).

select1(Evt) :-
colorCoded(Evt, ColorCode), #Color[ColorCode]("act_1", _).

select2(Evt) :-
colorCoded(Evt, ColorCode), #Color[ColorCode]("act_2", _).

Next, we defined a predicate coupled to select the set of coupling points
that are in act 2 and are color-coded by act 1. Notice that a color twisting
predicate and a color predicate are combined to select the coupling points. We
also defined coupledMethod to select invoked methods that directly execute the
coupling points.

coupled(Evt) :- select2(Evt),
#ColorTwisted[Act1](Evt), #Color[Act1]("act_1", _).

coupledMethod(Mtd) :- coupled(Evt),
Event[Evt](_, _, Blk), RunTimeBlock[Blk](_, _, _),
FlowComponent[Blk](Mtd, _, _, _).

Last, we displayed coupledMethod, and selected the set of invocation roots
from the displayed column. In this case, the selected set only contains the
method invocation on battle field, which is associated with a color named
"Root<selectedMethod@0> 0". We defined printSelection to examine the
class (C), the method name (M), and the method signature (S).

printSelection(C, M, S) :-
#Color[_](

"Root<selectedMethod@0>_0",Mtd),
RunTimeInvocation[Mtd](C, M, S).

References

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In
Conference on Programming language design and implementation, pages

13

246–256. ACM, 1991.

[2] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries
over program traces. In OOPSLA, pages 385–402. ACM, 2005.

[3] Bil Lewis. Debugging backwards in time. In International Workshop on
Automated Debugging (AADEBUG), 2003.

[4] Adrian Lienhard, Tudor Gı̂rba, Orla Greevy, and Oscar Nierstrasz. Expos-
ing side effects in execution traces. In International Workshop on Program
Comprehension through Dynamic Analysis, pages 11–17, 2007.

[5] Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. Tracking objects
to detect feature dependencies. In International Conference on Program
Comprehension, pages 59–68. IEEE, 2007.

[6] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query language. In
OOPSLA, pages 365–383. ACM, 2005.

[7] Brad A. Myers. A new model for handling input. ACM Transactions on
Information Systems, 8(3):289–320, 1990.

[8] Srinivas Neginhal and Suraj Kothari. Event views and graph reductions
for understanding system level C code. In International Conference on
Software Maintenance, pages 279–288. IEEE, 2006.

[9] Tamar Richner and Stéphane Ducasse. Using dynamic information for the
iterative recovery of collaborations and role. In International Conference
on Software Maintenance, pages 34–43. IEEE, 2002.

[10] Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Fil-
ippos I. Vokolos. Scenariographer: A tool for reverse engineering class usage
scenarios from method invocation sequences. In International Conference
on Software Maintenance, pages 155–164. IEEE, 2005.

[11] Steve Sparks, Kevin Benner, and Chris Faris. Managing object-oriented
framework reuse. IEEE Computer, 29(9):52–61, 1996.

[12] Mark Weiser. Program slicing. In International Conference on Software
Engineering, pages 439–449. IEEE, 1981.

[13] Norman Wilde and Ross Huitt. Maintenance support for object-oriented
programs. IEEE Transactions on Software Engineering, 18(12):1038–1044,
December 1992.

14

