
Efficient Mutual Exclusion Algorithm
for High System Congestion

Tsuyoshi SUZUKI † Michiko INOUE † Hideo FUJIWARA †

† Graduate School of Information Science, Nara Institute of Science and Technology　

Abstract We propose an efficient mutual exclusion algorithm with respect to remote memory
reference(RMR) complexity that measures remote accesses to shared memory. The worst-case RMR
complexity for one access to a critical section with N processes has been proven to be θ(log N).
Though our algorithm has the same worst case RMR complexity, the algorithm becomes efficient
with increasing the number of processes executing concurrently. We show the efficiency using
queueing theory and simulation. Furthermore, we improve the algorithm so that the elapsed time
from some process exits its critical section to the next wanting process enters its critical section is
reduced.

1 Introduction

The mutual exclusion problem is a fundamental
problem in distributed synchronization problems
and solves conflicting access to shared resources.
In a mutual exclusion algorithm, each process re-
peatedly executes four sections idle, entry, critical,
and exit in this order. Entry and exit sections have
roles to ensure that critical sections are executed
exclusively.

Remote memory reference (RMR) complexity
is a meaningful measure for algorithms for dis-
tributed systems with a shared memory hierarchy.
The RMR complexity counts remote memory ac-
cesses that involve the interconnect traffic among
processes, and represents communication and com-
putation costs of the algorithms.

In the worst-case RMR complexity for N pro-
cess mutual exclusion algorithms using read and
write operations has been investigated. Many al-
gorithms [4, 5, 3] use an N/2 leaf binary tree called
an arbitration tree whose nodes resolve two pro-
cess mutual exclusion to solve N process mutual
exclusion problem. Yang et al. [5] proposed an
algorithm with RMR complexity of O(log N) and
space complexity of O(N log N). Kim et al. [3]
optimized the space complexity to O(N) with pre-
serving RMR complexity of O(log N). Anderson et
al. [1] proposed an adaptive mutual exclusion al-
gorithm whose RMR complexity depends on point
contention k that is the maximum number of active
processes at the same time. Its RMR complexity
is O(min(k, log N)), that is, it is efficient when the
point contention is low. Attiya et al. [2] proved the
lower bound of Ω(log N). Therefore Yang’s algo-
rithm [5] is optimal with respect to the worst-case
RMR complexity.

In this paper, we propose a mutual exclu-

sion algorithm that is efficient in the case where
many processes concurrently execute the algo-
rithm. Though our algorithm still has the worst-
case RMR complexity of O(log N), we show the
expected RMR complexity is reduced in some high
congested situations. We demonstrate the effi-
ciency of the proposed algorithm using queueing
theory and simulation.

The rest of this paper is organized as follows.
Section 2 defines the model, and Section 3 briefly
introduces Yang’s algorithm [5]. Section 4 de-
scribes the proposed algorithm Tree Skip (TS) and
we improve TS to Fast Tree Skip (FTS) in Section
5. Finally we concludes the paper in Section 6.

2 Model

2.1 Shared Memory System

Shared memory system consists of multiple pro-
cesses and shared memories. The processes exe-
cute asynchronously and communicate with each
other via the shared memories. The shared mem-
ories can be accessed by read and write operations.
We consider two types of system with memory hi-
erarchy.

A distributed shared memory model (DSM) con-
sists of distributed local shared memories for pro-
cesses. Each process locally accesses the variables
on its local memory and remotely accesses the vari-
ables on other processes’s local memory.

In a cache coherent model (CC), each process
has copies of shared variables whose consistency is
guaranteed by a coherence protocol. If the cache
has the latest value of a shared variable, the ac-
cess to the variable is local. Otherwise, the remote
access is induced.

1

2.2 Mutual Exclusion Algorithm

Each process that executes a mutual exclusion
(ME) algorithm repeatedly executes four sections,
idle, entry, critical and exit in this order. Each pro-
cess executes its entry and exit sections to ensure
that critical sections are executed exclusively. We
assume that the execution time of a CS is finite.
Each process does nothing in its idle section (IS),
and a process in its IS can start its entry section
at any time.

In ME algorithms, entry and exit sections are
designed to satisfy the following conditions.
Exclusion: At most one process executes its CS
at any time.
Starvation-freedom: Each process that executes
its entry section eventually executes its CS.
Termination of exit section: Each process that
executes its exit section eventually terminates this
section.

We evaluate ME algorithms with RMR complex-
ity. The RMR complexity for ME algorithms is the
number of remote memory references for each pro-
cess during its entry and exit sections before and
after each execution of its critical section respec-
tively.

3 Previous Work

3.1 Yang’s algorithm

Yang et al. [5] proposed an N process ME algo-
rithm YA with RMR complexity of O(log N). YA
uses a two process ME algorithm (2PME-YA) with
constant RMR complexity as a building block.

In YA, the N process ME problem is solved by
applying 2PME-YA in a binary tree called an ar-
bitration tree with N/2 leaves. Every process is
assigned to some leaf of the arbitration tree accord-
ing to its process ID (Fig. 1(a)), and the process
traverses a path from its leaf to the root while exe-
cuting an entry section of 2PME-YA at each node.
Each node has entries from two sides (0 and 1) to
distinguish two processes that visit the node. The
process can execute its CS when it completes the
entry section of 2PME-YA at the root. After exe-
cution of the CS, the process then traverses a path
from the root to its leaf while executing an exit
section of 2PME-YA at the each node. Therefore,
the N process ME problem is solved with O(log N)
RMR complexity.

4 Algorithm TS

4.1 Basic Ideas

In ME algorithms using an arbitration tree [4, 5, 3],
a process that requires to visit all the nodes in the

…

…

N/2+1

h

logN

logN-1

2

1

…

0

process

1

side 0

2 3 N-1

CS

N-1N/2

N/4

1

2 3

N/2-1

1

side 0 1

…

…

arbitration

tree

(a) Algorithm YA

arbitration
tree

…

…

h

logN

logN-1

2

1

…

0 N-1

CS

1

…

…

0 logN+1

waiting array

…

(b) Algorithm TS

Fig. 1 Algorithm YA and TS

path from its leaf to the root.
We propose an algorithm using an arbitration

tree, where some processes can skip to visit nodes
in the path to the root. The proposed algorithm
TS (Tree Skip) consists of an arbitration tree with
N/2 leaves and a waiting array with size of N ∗.
We add a node consists of 2PME-YA at the top
to satisfy Exclusion. Let the top node denote the
node. Each process checks if it was added to the
array at each node in the path. In that case, it
waits without traversing the path and then if it
was retrieved from the array, it executes two pro-
cess ME of the top node (Fig. 1(b)). Meanwhile,
each process that checked it was not added the
array continues to traverse the path. Finally, pro-
cesses come from the arbitration tree and the wait-
ing array visit this node before entering their CS,
and the top node guarantees Exclusion. We call
our two process ME algorithm 2PME.

In TS, a process that completed its CS traverses
the same path in its entry section in the opposite
direction to add other processes that wait at the
nodes in the path to the waiting array. Processes
are added to and retrieved from the waiting array
in FIFO (First In, First Out) order. This guar-
antees a process added to the array is eventually
retrieved from the array, so that the algorithm sat-
isfies Starvation-freedom. We show the code of TS
in Fig. 3.

4.2 Algorithm

4.2.1 Shared Variables

Figure 2 describes the shared variables in TS. We
use array T , C and P for the same purpose as YA.
An array W is the waiting array and Add and Call
indicate the head and tail of the array. Added[p]
is used to inform p that p is added to the waiting
array, where value 1 means that p is added to the
array. Value 2 means that p is allowed to leave
the waiting array. In DSM, P [p] and Added[p] are
local variables of the process p.

∗ We assume N is power of two for simplicity, but the
algorithm can be easily adjusted to the general N case.

2

ID : process identifier
const

L : logN
shared variables

T [0..N − 1] : integer
C[0..N − 1][0, 1] : integer initially − 1
P [1..logN + 1][0..N − 1] : (0, 1, 2) initially 0
W [0..N − 1] : integer initially − 1
Added[0..N − 1] : (0, 1, 2) initially 0
Add : integer initially N − 1
Call : integer initially N − 1

Fig. 2 Shared Variables in TS

4.2.2 Entry Section

Entry section is from line 3 to 20 in the Fig. 3. In
lines 3 to 12, each process executes its entry section
of 2PME from its leaf (level 1) to the root (level
log N). If the process notices that it is added to
the waiting array (line 7) on the way to the root,
it skips the remaining nodes and waits until it is
allowed to proceed to the top node (line 18). The
process completes its entry section after complet-
ing its entry section of 2PME-YA at the top node.
Let 2PME(n) and 2PME(n, s) denote 2PMEs at a
node n and at a node n with a side s, respectively.

4.2.3 Exit Section

Exit section is from line 22 to 39. In this sec-
tion, each process executes the operations for the
waiting array before executing its exit section of
2PME-YA at the top node. Therefore, these op-
erations are executed exclusively, and the waiting
array is maintained properly.

In AddtoArray (Fig. 5), each process p adds
other processes to the waiting array. Process p
checks nodes through the path traversed at its en-
try section in the reverse order. If there are waiting
processes at some nodes, p adds the processes to
the waiting array.

In DecisionCall (Fig. 6), a process p determines
if there is a process that can proceed to the top
node by checking a value of W . Process p decides
to allow a process q to proceed to the top node,
if other processes that was allowed to proceed to
the top node through the waiting array executed
their exit section of 2PME-YA at the top node
(value −1). DecisionCall just checks the existence
of such a node, and it is allowed to proceed later.

Finally, a process p executes its exit sections at
the nodes through the path traversed by p in the
reverse order.

4.3 Correctness

We prove the correctness of TS. In the proof,
l@p(Func) means a line l for a process p in a func-
tion Func and l@(Func) means a line l in a function
Func. [l1@p(Func), l2@p(Func)] means lines from

Algorithm 1 TS

private variable
h, node, side, tmpcall, rival : integer
skip : integer initially − 1
callflg : boolean

1: while true do
2: idle section;

/*entry section*/
3: for h := 1 to L do
4: node := ⌊ (N+ID)

2h ⌋;
5: side := ⌊ (N+ID)

2h−1 ⌋ mod 2;
6: Entry2PME(node, side, h)
7: if Added[ID] > 0 then
8: await Added[ID] > 1
9: skip := h;

10: break;
11: end if
12: end for
13: if skip = −1 then
14: skip := L;
15: Entry2PME(0, 1, L + 1)
16: side := 1;
17: else
18: Entry2PME(0, 0, L + 1)
19: side := 0;
20: end if
21: critical section;

/*exit section*/
22: AddtoArray(skip)
23: callflg := DecisionCall(side)
24: if callflg = true then
25: tmpcall := Call
26: rival := W [tmpcall];
27: W [tmpcall] := −2;
28: end if
29: Exit2PME(0, side, L + 1)
30: if callflg = true ∧ Added[rival] = 1 then
31: Added[rival] := 2; /*call rival*/
32: end if
33: for h := skip down to 1 do
34: node := ⌊ (N+ID)

2h ⌋;
35: side := ⌊ (N+ID)

2h−1 ⌋ mod 2;
36: Exit2PME(node, side, h)
37: end for
38: skip := −1;
39: Added[ID] := 0;
40: end while

Fig. 3 Algorithm 1 TS

3

Algorithm 2 Entry2PME(node,side,h:integer)

private variable
rival : integer

1: C[node][side] := ID;
2: T [node] := ID;
3: P [h][ID] := 0;
4: rival := C[node][1 − side];
5: if rival ̸= −1 then
6: if T [node] = ID then
7: if P [h][rival] = 0 then
8: P [h][rival] := 1;
9: end if

10: await P [h][ID] > 0
11: if T [node] = ID then
12: await P [h][ID] > 1
13: end if
14: end if
15: end if

Fig. 4 Algorithm 2 Entry2PME

Algorithm 3 AddtoArray(skip: integer)

private variable
h, node, rival, tmpadd : integer

1: tmpadd := Add;
2: for h := skip down to 1 do

3: node := ⌊ (N+ID)
2h ⌋;

4: rival := T [node];
5: if rival ̸= ID then
6: tmpadd := (tmpadd + 1) mod N ;
7: if Added[rival] = 0 then
8: Added[rival] := 1;
9: W [tmpadd] := rival;

10: end if
11: end if
12: end for
13: Add := tmpadd;

Fig. 5 Algorithm 3 AddtoArray

Algorithm 4 DecisionCall(side: integer)

private variable
tmpcall, precall, rival : integer
callflg : boolean initially false

1: precall := Call;
2: tmpcall := (precall + 1) mod N ;
3: rival := W [tmpcall];
4: if rival ≥ 0 then
5: if side = 0 ∨ W [precall] = −1 then
6: Call := tmpcall;
7: callflg := true;
8: end if
9: end if

10: if side = 0 then
11: W [precall] := −1;
12: end if
13: return(callflg);

Fig. 6 Algorithm 4 DecisionCall

Algorithm 5 Exit2PME (node,side,h :integer)

private variable
rival : integer

1: C[node][side] := −1;
2: rival := T [node];
3: if rival ̸= ID then
4: P [h][rival] := 2;
5: end if

Fig. 7 Algorithm 5 Exit2PME

l1@p(Func) to l2@p(Func). In this section, “call”
means that to execute 31@(TS) and let n be any
natural number.

Termination of exit section obviously holds since
there is no waiting loop in the exit sections of TS.
Thus, we show the other two properties in TS.

4.3.1 Exclusion

The following condition holds for all the nodes
from both sides in YA [5].

Condition 1 ([5]). At most one process
concurrently executes [1@(Entry2PME(v, s)),
1@(Exit2PME(v, s))] for a pair of node v and side
s.

If Condition 1 holds for all the nodes from both
sides, Exclusion is satisfied. The arbitration tree
in TS includes YA. Thus, Condition 1 holds for
nodes except 2PME(0). Furthermore, a process
that executes its entry section of 2PME(0, 1) cor-
responds to a process that executes its CS in YA.
Since YA ensures Exclusion, this condition holds
for 2PME(0, 1). Thus, Exclusion is satisfied if we
just prove that Condition 1 holds for 2PME(0, 0).

First, we prove the following lemma.

Lemma 1. For any process p, other processes are
not called in an interval between calling p and
29@p(TS).

Proof. We prove the lemma by induction with re-
spect to the number n of called processes.

For n = 1, let p1 and q1 be the first called process
and a process that calls p1, respectively. Assume
that some processes call in the interval between
calling p1 and 29@p1(TS). Let r1 be a process that
calls first among these processes. Since r1 is the
second process that calls some process and p1 is
called by the first process q1 before r1’s call, r1

executes 2PME(0) with side = 1.
Before r1’s call, Condition 1 holds for both sides

of 2PME(0), and therefore, [21@(TS),28@(TS)] is
executed exclusively. That is, r1 is the first pro-
cess that increments Call and turns its callf lg into
true in DecisionCall after p1 is called. That is, r1

executes the interval before p1 executes the same
interval. No process with side = 0 initializes W at
11@(DecisionCall) before r1’s call. When r1 reads
W [precall] at 5@(DecisionCall), W [precall] = −2
holds and r1 becomes false. This contradicts our
assumption. Thus other processes are not called
in an interval between calling p1 and 29@p1(TS).

Next for n = k, let ph be the hth called process
(h = 1, 2, · · · , k). We assume other processes are
not called in an interval between calling ph and
29@ph(TS). We call this Assumption 1.

4

For n = k + 1, let pk+1 be the (k + 1)th called
process. By Assumption 1, Condition 1 holds for
2PME(0, 0) before pk+1 is called. Thus, processes
exclusively execute [21@(TS), 28@(TS)] until pk+1

is called. When pk+1 is called, W [jk+1] = −2
and Call = jk+1 hold, where jk+1 is an index of
W to which pk+1 was added. We assume there
are processes that call in an interval between call-
ing pk+1 and 29@pk+1(TS). Let rk+1 be a pro-
cess that calls first among the processes. side
of rk+1 is 1 because of Assumption 1. Call is
only changed by processes that call. Thus, when
rk+1 executes 5@rk+1(DecisionCall), rk+1 reads
W [jk+1] since precall = jk+1 holds. 11@(Deci-
sionCall) is executed to change a value of W [jk+1]
into −1. But, there is no process that executes
the line in an interval between calling pk+1 and
5@rk+1(DecisionCall). So the value of W [jk+1]
is not changed into −1. Thus, this contradicts
our assumption and any other processes are not
called in an interval between calling pk+1 and
29@pk+1(TS).

Lemma 2. For 2PME(0, 0) at most one process
concurrently executes [18@(TS), 29@(TS)].

Processes that execute 2PME(0, 0) are called at
31@(TS), and then execute [18@(TS), 29@(TS)].
Lemma 1 implies no other process starts [18@(TS),
29@(TS)] while other process is executing this in-
terval with side of 0. This means the lemma holds.

Thus, 2PME(0, 0) satisfies Condition 1.

Theorem 1. TS ensures Exclusion.

4.3.2 Starvation-freedom

We prove Starvation-freedom of TS. All waiting
loops in entry sections of TS are eventually com-
pleted iff TS ensures this property. We already
prove Exclusion property, so we use the following
property.

Property 1. At most one process executes
[21@(TS)，28@(TS)] concurrently.

For any process p, waiting loops in its entry sec-
tion are as follows.

Wait 1. 10@p(Entry2PME) (await P [h][p] > 0)

Wait 2. 8@p(TS) (await Added[p] > 1)

Wait 3. 12@p(Entry2PME) (await P [h][p] > 1)

Entry2PME is the same as 2PME-YA. We add
skip mechanism outside the code of 2PME-YA.
The skip mechanism just stops process’s proceed-
ing to the next 2PME in the arbitration tree, and

the skipped process will return the Exit2PME,
where the process stopped the proceeding.

Since Wait 1 and 3 are in Entry2PME and
only Wait 2 is a waiting loop outside Entry2PME,
if Wait 2 is eventually completed, TS ensures
Starvation-freedom.

We prove Wait 2 is eventually completed. First,
we show the updating rule of Added[p]. There are
three operations that update Added[p].

Update 0 at 39@p(TS) (p initializes it)

Update 1 at 8@(AddtoArray) (p is added to the
array)

Update 2 at 31@(TS) (p is called)

We prove the following lemma to prove Wait 2
is eventually completed.

Lemma 3. If Update 2 is executed after any pro-
cess p writes p to T at 2@(Entry2PME), Added[p]
is not updated until 8@p(TS) is completed.

Proof. Since [30@(TS), 31@(TS)] implies that Up-
date 2 is executed if Added[p] = 1, Update 1 is
executed before Update 2. Let q be a process that
executes the Update 1. The process q executes
Update 1 in its AddtoArray, if q finds T [n] = p for
some node n. In TS, q first executes Entry2PME
at some nodes, and then visits these nodes again
in AddtoArray, and finally executes Exit2PME at
these nodes.

Therefore, q finds T [n] = p after q completes
Entry2PME(n) and before starts Exit2PME(n).
In Entry2PME(n), q writes q to T [n], and there-
fore p writes p to T [n] in Entry2PME(n) after
q writes q to T [n]. Since Condition 1 holds for
2PME(n) after p writes p to T [n], no process ex-
ecutes 2PME(n) with the same side with q before
q executes Exit2PME(n), and no process executes
2PME(n) with the same side with p before p com-
pletes Entry2PME(n). Therefore, no process up-
dates T [n] before q starts Exit2PME(n) or p com-
pletes Entry2PME(n).

We next show that p does not complete
Entry2PME(n) before q starts Exit2PME(n). For
p to complete Entry2PME(n) before q starts
Exit2PME(n), p completes the waiting loops
at 10@(Entry2PME(n)) and 12@(Entry2PME(n))
since p always finds T [n] = p. To complete
12@(Entry2PME(n)), P [h][p] ≥ 2 holds. However,
P [h][p] is updated to 2 only at 4@(Exit2PME(n))
executed by q. Therefore, p does not complete
Entry2PME(n) before q starts Exit2PME(n), and
therefore, q executes Update 1 in AddtoArray be-
fore p completes Entry2PME(n). This implies that
p finds Added[p] > 0 at 7@(TS) after p completes
Entry2PME(n). Then p waits until Added[p] = 2

5

holds at 8@(TS). Since Update 0 is executed only
by p itself at 39@(TS), Update 0 is not executed
after Update 2 before p completes 8@(TS). More-
over, Update 1 is executed only when Added[p] = 0
at 8@(AddtoArray), since AddtoArray is executed
exclusively by Property 1. Therefore, after Up-
date 2, Added[p] is not updated until 8@(TS) is
completed.

Corollary 1. After Update 1, p does not execute
Update 0 until 8@p(TS) is completed.

This corollary is used in the next subsection.
Furthermore, we prove the following lemma for

Wait 2.

Lemma 4. Any process p that is added to the
waiting array W eventually completes Wait 2.

Proof. Lemma 3 means that any called process
eventually complete Wait 2. Therefore, Lemma
4 holds if process p that is added to the waiting
array is eventually called. We prove this by in-
duction with the respect to the number n of called
processes.

For n = 1, let p1 be a process that is added to
W first. There is no process that execute their
entry section of 2PME(0, 0) before p1 executes
its entry section of 2PME(0, 0). Thus, a pro-
cess q that adds p1 to W visits 2PME(0, 1). q
writes p1 to W [0] at 9@q(AddtoArray). There is
no process that changes a value of W or Call be-
fore q executes 28@q(TS) by Property 1. Thus,
the condition is true at 5@q(DecisionCall) and
callflg = true holds since W [N − 1] = −1 (ini-
tial value) holds. Process q reads p1 from W [0]
and sets rival = p1 at 26@q(TS) and writes 2 to
Added[p1] at 31@q(TS). Therefore, p1 eventually
completes Wait 2 (by Lemma 3).

Next, for n = k let pk be the kth process that
is added to W and we assume pk eventually com-
pletes Wait 2.

For n = k + 1, let pk+1 be the (k + 1)th process
that is added to W . Let j be an index of W to
which pk+1 is added and jpre = (j − 1) mod N .
AddtoArray is exclusively executed by Property
1, so pk is written to W [jpre].

When pk+1 is written to W [j], a value of W [jpre]
is −1, −2 or pk+1.

(i) Case W [jpre] = −1 (it is initialized.)

In the case, pk writes −1 to W [jpre] at
11@pk(DecisionCall) before pk+1 is added to W .
Thus, another process r adds pk+1 to W . After r
executes this operation, no other process updates
W or Call before r executes 28@r(TsS) by Prop-
erty 1. Thus, r reads W [jpre] = −1 at 5@(Deci-
sionCall), and therefore, the condition is true at

5@r(DecisionCall) and callflg = true holds. Pro-
cess r reads pk+1 from W [j] at 26@r(TS). Then, r
writes 2 to Added[pk+1] at 31@r(TS). pk+1 even-
tually completes Wait 2 by Lemma 3.

(ii) Case W [jpre] = −2 or pk+1

In this case, pk has not executed 11@(Decision-
Call) when pk+1 is added to W , since W [jpre]
is initialized to −1 by pk at 11@(DecisionCall).
The interval [21@(TS)，28@(TS)] is executed ex-
clusively by Property 1, and the interval includes
AddtoArray and DecisionCall. Therefore, pk is
added before pk reads W [j] at 3@(DecisionCall).
While W [jpre] ̸= −1, no process calls pk+1 and up-
dates W [j], Therefore, pk reads pk+1 from W [j].
The condition 5@pk(DecisionCall) is true since
pk’s side = 0. Therefore, pk eventually calls pk+1.
pk+1 eventually completes Wait 2 by Lemma 3.

Next, we prove the following lemma using
Lemma 4.

Lemma 5. Wait 2 is eventually completed.

Proof. If process p executes 8@p(TS), p was added
to the waiting array before then. Therefore, by
Lemma 4, p eventually completes Wait 2.

TS satisfies Starvation-freedom.

Theorem 2. TS ensures Starvation-freedom.

4.4 Evaluation of TS

We evaluate RMR complexity for the proposed al-
gorithm. We show the worst case complexity, and
then give two kinds of analysis using queueing the-
ory and simulation.

4.4.1 Evaluation by the number of nodes

We first show the relation between RMR complex-
ity and the number of nodes that a process visits
in its entry section.

Lemma 6. RMR complexity of TS for N pro-
cesses is proportional to the number of nodes that
a process visits in its entry section.

Proof. In TS, a process executes its entry section
of 2PME, one iteration of AddtoArray and its exit
section of 2PME at each node. These are able to be
executed with constant remote memory accesses.
Process p executes other operations while it is in
the waiting array in [7@(TS), 8@(TS)]. In the case
of DSM, p executes no remote memory access since
Added[p] is local to p. In the case of CC, Corollary

6

1 means that once Added[p] is set to 1, it is stable
to 1 until it is set to 2. This implies that p executes
constant remote memory accesses in the waiting
array. Therefore, other procedures (waiting the
array (8@(TS)), allowing another process to skip
nodes ([30@(TS), 32@(TS)]) and DecisionCall) are
executed with constant remote memory accesses
too. Thus, TS’s RMR complexity is proportional
to able to the number of nodes that a process visits
in its entry section.

4.4.2 Worst Case Complexity

Each process traverses the path from its leaf to the
root. Therefore the process visits at most log N +1
nodes.

Theorem 3. RMR complexity of TS for N pro-
cesses is O(log N)

4.4.3 Analysis by Queueing Theory

In TS, the more processes concurrently execute
their entry and exit sections, the more frequently
they skip the nodes of the tree. We evaluate this
using queueing theory.

We evaluate the average case RMR complexity
in the case where all the processes behave uni-
formly. We use M/M/1(1) queueing system that
has negative exponential interarrival times and ser-
vice times with a single server and no waiting
queue. Let λ and µ are an average arrival rate and
average service rate, respectively. In M/M/1(1)
system, probability Pocpy that the system is in ser-
vice and probability Pempty that the system is not
in service are given as follows.

Pocpy =
λ

λ + µ
(1)

Pempty =
µ

λ + µ
(2)

Service Model We consider a service for each
side at each node, where a service at level l starts
at 2@(Entry2PME) and ends at 4@(AddtoArray)
with h = l (Fig. 8). We consider the case where the
average interarrival rate and the average service
rate are the same for the same level. That is, a
service for a process p at level l includes services
for p at level l′(l′ > l). Let λk and µk denote the
average interarrival rate and the average service
rate for a service at level k, respectively.

We analyze the case where the interarrival and
service times for at level 1 (leaf level) are negative
exponentially distributed. We apply M/M/1(1)
system to the services.

First, we calculate λk (k = 2, · · · log N) (Fig.
9). We consider a process p starts the service at

level k−1 at some node. If no process is in service
at the same node, p is not added to the waiting
array and will start the service at level k. Since
each node has entries from two sides, λk is derived
as follows.

λk = 2λk−1Pempty,k−1 (3)

Next, we calculate µk. Assume that a process
starts a service at level k. In this case, when the
process executes 2@(Entry2PME) at level k− 1, if
no process is in service at the same node, the pro-
cess completes Entry2PME at level k − 1 without
waiting other processes’s operations at 10@(En-
try2PME) or 12@(Entry2PME), since waiting pro-
cess u is eventually added to the waiting array and
never proceeds to a node at level k. Therefore, the
difference of service time between levels k − 1 and
k is one iteration of the loop at [3@(TS), 3@(TS)]
and one iteration of the loop at [2@(AddtoArray),
12@(AddtoArray)]. Therefore, the time difference
is considered to be independent of levels. Let m
denote this time difference. Thus, µk is derived as
follows.

1
µk

=
1

µk−1
− m (4)

We can obtain Pocpy,k and Pempty,k from the
equations (3) and (4) and obtain the expected
number E of nodes that a process visit in its entry
and exit sections as follows.

E =
log N−1∑

k=1

{
Pstop,k·(k+1)

}
+Ppass,log N ·(log N+1)

(5)

where

Ppass,k = Pempty,1 · Pempty,2 · ... · Pempty,k (6)

and

Pstop,k = Pocpy,k · Ppass,k−1 (7)

level 1

AddtoArray

ma mb

ba
mmm +=

m−
1

1

µ

1

1

µ

mN ⋅−−)1log(
1

1µ

…

level 2

exitcriticalentry exitcriticalentry

level logN

Fig. 8 The service at each level

7

arbitration

tree

…

waiting

array

m

λ1 λ1
λ1 λ1

CS

1/µ1

sub tree

waiting

array

m

λ1 λ1

CS

λ2 λ2
λ2…

…

m

The service at level 1 The service at level 2

1/µ1−m

Fig. 9 The recursive calculus of λk and 1
µk

Table 1 Case Study Prameters

Parameter Value

Number of Processes 65536
Average Interarrival Time 1000
Average Service Time 1000
m 0.001

Case Study We use values of parameter shown
in Table 1 as default, and consider cases by varying
parameters.

Figure 10(a) shows the case where the average
service time is varied. The number of visited nodes
is reducing with increasing the service time. We
consider this is because the longer the service time
is, the more frequently processes skip.

Figure 10(b) shows the case where the average
interarrival time and the number of processes N
are varied. When the interarrival time is long, the
numbers of visited nodes close to log N + 1 and
the numbers are reducing and converge to 2 with
reducing the interarrival time. We consider this
is because the shorter this time is, the more con-
gested the system is and the more frequently pro-
cesses skip. Furthermore, this result shows when
the system is much congested, the expected num-
ber of visited nodes does not depend on the num-
ber of processes.

 0

 5

 10

 15

 20

10
-2

10
0

10
2

10
4

10
6

ex
p

ec
te

d
 n

u
m

b
er

 o
f

n
o

d
es

average service time

(a) Service Time

 0

 5

 10

 15

 20

 25

 30

10
-3

10
2

10
7

10
12

ex
p

ec
te

d
 n

u
m

b
er

 o
f

n
o

d
es

average interarrival time

2
10

2
16

2
25

(b) Interarrival Time

Fig. 10 Expected Number of Visited Nodes

4.4.4 Analysis by Simulation

Simulation Setup We evaluate the perfor-
mance of TS by simulation. In the simulation,

execution times of IS, CS, one remote memory ac-
cess, one local memory access and one local op-
eration are different for every processes and their
average times among processes are varied in the
range of ±100% of the values in Table (2). These
execution times for each process is varied in the
range of ±50% of the averages. We set a band-
width that is the maximum number of processes
accessing shared memories concurrently as in Ta-
ble (2).

We measure RMR complexity and the execution
time that is taken in entry and exit sections for one
CS. We simulate TS until each process executes its
CS 1,000 times. Since the performance only after
the system is in equilibrium is meaningful, we get
the data after every process enters its CS 10 times.

Table 2 Simulation Setup Prameters

parameter value

number of processes 16384

IS 1010

CS 5000
avg. remote memory access 500
of avg. time local memory access 5

local operation 1
bandwidth 16384

Results We show the results for only DSM, since
the results for CC are similar to the case of DSM.
Figure 11 (a) shows the RMR complexity when
the avg. of avg. IS time is varied. It is observed
that the shorter IS time is, the fewer RMR com-
plexity is. Also, Fig 11 (b) shows the result when
the avg. of avg. CS time is varied. It is observed
that the longer CS time is, the fewer RMR com-
plexity is. We consider the more congested system
(the sorter IS time or the longer CS time) is, the
more processes try to execute their CS and less
RMR complexity is. However, when the system
is not congested (long IS execution time or short
CS execution time), TS has more RMR complexity
than YA. This is because TS always has overhead
to maintain the waiting array even if there are no
process to be added to the array.

We further examine the performance at high sys-
tem congestion. We change the avg. of avg. times
of IS and CS into 0 and 50, 000, respectively. Fig-
ure 12 shows the RMR complexity when the num-
ber of processes is varied. We find that TS’s RMR
complexity does not depend on the number of pro-
cesses while YA’s RMR complexity depends on it.

Finally, we evaluate an actual execution time for
the entry and exit sections. Figure 13 shows the
execution time of entry and exit sections before
and after each execution of CS. In the case where

8

the bandwidth is narrow, the execution time of TS
is shorter than YA, but it is longer than YA when
the bandwidth is wide. We consider this is because
each process executes AddtoArray and Decision-
Call exclusively in TS, and no process can start its
CS until the process completes these procedures.
We consider such waiting time has a significant in-
fluence for the execution time.

 0

 30

 60

 90

 120

 150

10
2

10
6

10
10

10
14

R
M

R
 c

o
m

p
le

x
it

y

avg. of avg. IS time

YA
TS

(a) IS Time

 0

 30

 60

 90

 120

 150

10
2

10
4

10
6

10
8

10
10

R
M

R
 c

o
m

p
le

x
it

y

avg. of avg. CS time

YA
TS

(b) CS Time

Fig. 11 RMR complexities and IS/CS execution
time

 0

 30

 60

 90

 120

 150

 1 100 10000

R
M

R
 c

o
m

p
le

x
it

y

number of processes

YA
TS

Fig. 12 RMR complexity and the number of pro-
cesses

8.0⋅10
8

1.0⋅10
9

1.2⋅10
9

 1 100 10000

e
x
e
c
u
ti

o
n
 t

im
e

bandwidth

YA

TS

Fig. 13 Execution time and the bandwidth

5 Improving TS to FTS

In TS, each process has at least 20 remote memory
accesses at the beginning of its exit section before
the next process starts its CS. That is a main rea-
son why TS has longer execution time. We modify
TS to FTS(Fast TS) to resolve this problem.

5.1 Basic Ideas

FTS has two key ideas. First, we separate the
privilege to maintain the waiting array from the

privilege to execute CS. A process that completes
its CS first releases the privilege for CS, and then
starts to aquire the privilege to maintain the wait-
ing array. Second, we divide the waiting array into
two for skipping process to execute CS before the
waiting array is maintained.

Figure 14 shows the overview of FTS. To ex-
ecute CS, processes from two waiting arrays and
an arbitration tree compete in three process ME
3PME(0). A process leaves 3PME(0) at the begin-
ning of its exit section so that the next process can
start CS soon. Then, the process starts to aquire
the privilege to maintain the waiting arrays. At
that time, the next process from the same waiting
array might catch up on the process, therefore at
most 5 processes only join the competition. This
modification enable each process to have only at
least 4 remote memory accesses at the beginning
of its exit section before the next process starts its
CS.

maintenance of

waiting arrays

critical section

N+5

N+4

lside 0

lside -1

lside 1

3PME(1)

critical section

N+1

N

lside 0

lside 1
lside -1

3PME(0)

arbitration

tree
waiting arrays

N+2 N+3

Fig. 14 Algorithm FTS

5.2 Algorithm

5.2.1 Shared Variables

The shared variables in FTS are shown in Fig. 15.
These variables are almost the same as TS. The
differences between FTS and TS are lengths of T ,
C and P . Theses arrays are longer to add five
nodes (N + 1, N + 2, · · · , N + 5). Furthermore
the waiting array W is changed into the two di-
mensional array and Call and Add also double to
divide the waiting array into two.

5.2.2 Entry Section

An additional modification of each entry section
is putting an additional node at the highest level.
In TS, two processes, one from the waiting array
and the other from the root, finally contend to en-
ter their CS. Meanwhile, three processes, two from
the two waiting arrays and one from the root, con-
tend in FTS. Thus, each process executes three
process mutual exclusion (3PME(0)) on the root
with lside (line 20@(FTS)). 3PME(0) is consist of

9

ID : process identifier
const

L : logN
shared variables

T [1..N + 5] : integer
C[1..N + 5][0, 1] : integer initially − 1
P [1..logN + 5][0..N − 1] : (0, 1, 2) initially 0
W [0.. N

2 − 1][0, 1] : integer initially − 1
Added[0..N − 1] : integer initially − 2
Add[0, 1] : integer initially N

2 − 1
Call[0, 1] : integer initially N

2 − 1
Preside[0, 1] : integer initially 0

Fig. 15 Shared Variables in FTS

two 2PMEs (Fig. 14). A process from the root ex-
ecutes 3PME(0) with lside = −1. Processes that
executes [9@(FTS), 10@(FTS)] get value lside (0
or 1) to identify two processes that skip nodes from
each waiting array.

5.2.3 Exit Section

First, each process releases 3PME(0) in its exit sec-
tion to allow other processes to execute CS imme-
diately (line 22@(FTS)). 3PME(0) is constructed
as shown in Fig. 14. Thus, in the case where a
process q that skips nodes from an array is wait-
ing at 2PME(N + 1), q can immediately enter CS
after another process p that terminates its CS re-
leases the node. In this case, only at least 4 remote
memory accesses are taken after p executes its exit
section before q enters its CS.

Next, the process executes another three process
mutual exclusion (3PME(1)) to acquire the privi-
lege to maintain the arrays (line 31@(FTS)). The
procedures to maintain the arrays are [32@(FTS),
39@(FTS)]. A side of 3PME(1) is corresponding to
a side of 3PME(0) (lside). However, once a pro-
cess calls the next process from the waiting arrays,
the called processes might catch up on the pro-
cess while contending 3PME(1). To avoid that two
processes concurrently execute 3PME(1) with the
same lside, we add two nodes (N + 2 and N + 3).
Processes decide a side of these additional nodes
in [26@(FTS), 28@(FTS)]. The procedures invert
the value of side if the procedure are executed ex-
clusively. The process that acquired this privilege
executes AddtoArray2 and CallProcess.

AddtoArray2 (Fig. 17) is a modification of Ad-
dtoArray to add processes to the two waiting ar-
rays alternately. Processes from a waiting array
W1 set rside to side of another array W2, and add
some process to W2 first. Then the processes are
added to the two waiting arrays alternately to in-
vert a value of addside at line 11@(AddtoArray2).

CallProcess (Fig. 18) is executed to check if
some process skips nodes from an array and to
allow the process to skip nodes. CallProcess is
executed two times since there are the two wait-
ing arrays. Finally, the process executes its exit

section of 3PME(1) (and 2PME(N+2 or N+3), if
necessary) to release this privilege. Then, the pro-
cess executes its exit section of 2PME at the nodes
in the arbitration tree ([44@(FTS), 48@(FTS)]).

5.3 Correctness

We prove the correctness of FTS. In this section,
“call” means that to execute 8@(CallProcess) and
let n is any natural number.

5.3.1 Exclusion

We show Exclusion property of FTS. Let pk+1 is
the (k + 1)th called process. First, we prove the
following lemmas.

Condition 2. At most one process concurrently
executes [32@(FTS), 39@(FTS)] before pk+1 is
called if the following conditions hold.

ME1. At most one process concurrently executes
[26@(FTS), 28@(FTS)] from each lside i(i =
0, 1) before pk+1 is called.

ME2. At most one process concurrently executes
[29@(FTS), 42@(FTS)] for each pair of lside
i(i = 0, 1) and side j(j = 0, 1) before pk+1 is
called.

ME3. Any other processes are not called with
callside of i between calling ph with callside
of i and 28@ph(FTS), where let ph be the hth
called process (h = 1, 2 · · · , k).

Proof. The lemma holds if Condition 1 holds for
the node N + 5 (Fig. 14). First, we show the con-
dition for the left side (lside = −1) at the node.
Condition 1 holds for every node in the arbitration
tree and holds for the left side at the nodes N and
N +1 by ME3. Thus, Condition 1 holds for the left
side at the node N +5. Next, we show Condition 1
for the right side at the node N+5. The conditions
ME1 and ME2 imply that Condition 1 holds for
the nodes N + 2 and N + 3. Thus, any other pro-
cess that executes [32@(FTS), 39@(FTS)] before
pk+1 is called exclusively execute this interval.

Lemma 7. ME1 holds if ME3 holds.

This obviously holds.

Lemma 8. ME2 holds if ME1 and ME3 holds.

Proof. We assume the contrary that two or
more processes concurrently execute [29@(FTS),
42@(FTS)] with lside i and side j. Let s1 and
s2 be processes that are called first and second
among the processes, respectively. By ME1, since
[26@(FTS), 28@(FTS)] inverts the value of side,

10

Algorithm 6 FTS

private variable
h, node, side, lside, precall, rside : integer
skip : integer initially − 1
callflg : boolean

1: while true do
2: idle section;

/*entry section*/
3: for h := 1 to L do
4: node := ⌊ (N+ID)

2h ⌋;
5: side := ⌊ (N+ID)

2h−1 ⌋ mod 2;
6: Entry2PME(node, side, h)
7: lside := Added[ID];
8: if lside > −2 then
9: while lside = −1 do

10: lside := Added[ID];
11: end while
12: skip := h;
13: break;
14: end if
15: end for
16: if skip = −1 then
17: skip := L;
18: lside := −1;
19: end if
20: Entry3PME(0, lside)
21: critical section;

/*exit section*/
22: Exit3PME(0, lside)
23: if lside = −1 then
24: rside := 0;
25: else
26: rside := 1 − lside;
27: side := 1 − Preside[lside];
28: Preside[lside] := side;
29: Entry2PME(N + 2 + lside, side, L + 3)
30: end if
31: Entry3PME(1, lside)
32: AddtoArray2(skip, rside)
33: precall := Call[rside];
34: CallProcess(precall, lside, rside)
35: precall := Call[1 − rside];
36: CallProcess(precall, lside, 1 − rside)
37: if lside ≥ 0 then
38: W [precall][lside] := −1;
39: end if
40: Exit3PME(1, lside)
41: if lside ≥ 0 then
42: Exit2PME(N + 2 + lside, side, L + 3)
43: end if
44: for h := skip down to 1 do
45: node := ⌊ (N+ID)

2h ⌋;
46: side := ⌊ (N+ID)

2h−1 ⌋ mod 2;
47: Exit2PME(node, side, h)
48: end for
49: skip := −1;
50: Added[ID] := −2;
51: end while

Fig. 16 Algorithm 6 FTS

Algorithm 7 AddtoArray2
(skip, addside: integer)

private variable
h, node, rival, tmpadd[0, 1] : integer

1: tmpadd[0] := Add[0];
2: tmpadd[1] := Add[1];
3: for h := skip down to 1 do

4: node := ⌊ (N+ID)
2h ⌋;

5: rival := T [node];
6: if rival ̸= ID then
7: if Added[rival] = −2 then
8: tmpadd[addside] := (tmpadd[addside] + 1) mod

N
2 ;

9: Added[rival] := −1;
10: W [tmpadd[addside]][addside] := rival;
11: addside = 1 − addside;
12: end if
13: end if
14: end for
15: Add[0] := tmpadd[0];
16: Add[1] := tmpadd[1];

Fig. 17 Algorithm 7 AddtoArray2

Algorithm 8 CallProcess
(precall, lside, callside :integer)

private variable
tmpcall, callside : integer
rival : integer initially − 1

1: if W [precall][callside] = −1 ∨ (lside = callside) then
2: tmpcall := (precall + 1) mod N

2 ;
3: rival := W [tmpcall][callside];
4: if rival ≥ 0 then
5: if Added[rival] = −1 then
6: Call[callside] := tmpcall;
7: W [tmpcall][callside] := −2;
8: Added[rival] := callside; /*call rival*/
9: end if

10: end if
11: end if

Fig. 18 Algorithm 8 CallProcess

11

in order to execute 29@(FTS) with the same lside
and side, these should be executed by another pro-
cess t between s1 and s2. Since process s2 vio-
lates ME2, Condition 2 holds before s2 is called.
Thus, processes exclusively execute [32@(FTS),
39@(FTS)] before s2 is called. Call[i] = js1 and
W [js1][i] = −2 hold in the interval between call-
ing s1 and 38@s1(FTS), where js1 is an index at
which s1 is added to W . Thus, t is called by s1 at
36@s1(FTS) or another process after s1 executes
38@s1(FTS). t executes its entry section of 2PME-
YA at the node N + 2 or N + 3. t does not ter-
minate this section before s1 releases the node at
42@s1(FTS). Then, s2 is called also. In the same
way of calling t, s2 is called by t at 36@t(FTS) or
another process after t executes 38@t(FTS). But
t does not complete to execute 29@t(FTS) before
s1 executes 38@s1(FTS). This contradicts our as-
sumption.

Lemma 9. There is no process that is called with
callside i between calling p and 28@p(FTS).

Proof. We prove the lemma by induction with re-
spect to the number n of called processes.

For n = 1, let p1, ip and q1 be the first called
process, callside of p1 and a process that calls p1,
respectively. Processes only with lside = −1 ex-
ecute 20@(FTS) (Entry3PME(0)) and 31@(FTS)
(Entry3PME(1)) before q1 calls p1. That is,
the processes do not execute Entry2PME(0) from
lside = 0 or 1. Condition 1 holds for the nodes in
the tree. Thus, processes that execute [32@(FTS),
39@(FTS)] before q1 calls p1 exclusively execute
this interval.

Thus, when q1 calls p1, Call[ip] = 0 and
W [0][ip] = −2 hold. We assume the contrary
there are processes that calls with callside of ip
between calling p1 and 28@p1(FTS). Let r1 be a
process that calls first with lside of −1 among the
processes. Call[ip] is updated only at 6@(Call-
Process) and each process updates it if the pro-
cess calls some process. Thus, when r1 executes
CallProcess, Call[ip] = 0 holds and r1 reads
W [0][ip] at 1@r1(CallProcess). Each process ex-
ecutes 38@(FTS) with lside of ip to write −1 to
W [0][ip]. But, no process executes 38@(FTS) with
lside of ip before r1 executes 1@r1(CallProcess).
Thus, A value of W [0][ip] is not changed into
−1 before then, and the condition is false at
1@r1(CallProcess). Thus, this contradicts our as-
sumption.

For n = k, we assume ME3.
For n = k + 1, let pk+1 be the (k + 1)th called

process. By Condition 2 and Lemma 7 and 8, when
pk+1 is called, W [jk+1][i] = −2 and Call[i] = jk+1

hold. We assume the contrary there are processes

which calls with callside of i between calling pk+1

and 28@pk+1(FTS). Let rk+1 be a process that
calls first among the processes.

When rk+1 executes CallProcess, Call[i] =
jk+1 holds and rk+1 reads W [jk+1][i] at
1@rk+1(CallProcess). No process executes
38@(FTS) with lside of i before rk+1 executes
1@rk+1(CallProcess). Thus, A value of W [0][jk+1]
is not changed into −1 before then, and the
condition is false at 1@rk+1(CallProcess). This
contradicts our assumption.

Thus, between calling any process p with
callside of i and 28@p(FTS), any other processes
are not called with callside of i.

Corollary 2. At most one process concurrently
executes [32@(FTS), 39@(FTS)].

Condition 1 holds for all the nodes in the tree.
Thus, Exclusion is satisfied if Condition 1 holds for
3PME(0). The topology of 3PME(0) is shown in
Fig. 14. Processes that execute their entry sections
of 2PME-YA at 2PME(N + 5) from lside of −1
correspond to processes that pass the node of the
root in the arbitration tree. Thus, the condition
holds for 3PME(0, −1).

Lemma 10. For 3PME(0) at most one process
concurrently executes from each lside i (i = 0, 1)
[20@(FTS), 22@(FTS)].

Processes that execute 3PME(0, i) are called
at 8@(CallProcess), and then execute [20@(FTS),
22@(FTS)]. Lemma 9 implies no other process
starts [20@(FTS), 22@(FTS)] while other process
is executing this interval with lside = i. This
means the lemma holds.

Thus, Condition 1 holds for all the nodes and
FTS satisfies Exclusion.

Theorem 4. FTS ensures Exclusion.

5.3.2 Starvation-freedom

We prove Starvation-freedom of FTS. For that pur-
pose, we show all waiting operations in each entry
section of FTS eventually are completed.

For any process p, waiting operations in its entry
section are as follows.

Wait 1. 10@p(Entry2PME) (await P [h][p] > 0)

Wait 2. [9@p(FTS), 10@p(FTS)] (await
Added[p] ̸= −1)

Wait 3. 12@p(Entry2PME) (await P [h][p] > 1)

If Wait 2 is eventually completed, FTS satisfies
Starvation-freedom by the same reason as the rea-
son of TS.

12

Lemma 11. Wait 2 is eventually completed.

Wait 2 is executed when processes are added
to the waiting arrays and is completed when the
processes are called by some process. FTS has
the two waiting arrays. A process checks if the
process calls some process from each of the arrays
at 34@(FTS) and 36@(FTS). Since the mechanism
to add and call processes for each of the arrays
in FTS is the same as TS’s, the lemma holds by
almost the same proof in Lemma 5.

Theorem 5. FTS ensures Starvation-freedom.

5.3.3 Termination of exit section

There are waiting operations in each exit section
of FTS. The operations is executed at the nodes of
N +2, N +3, N +4 and N +5 in Entry2PME. Each
process visits the nodes to acquire the privilege to
maintain the waiting arrays. Since there is no wait-
ing loop in the procedures to maintain the arrays,
the operations are eventually completed obviously.

Theorem 6. FTS ensures Termination of exit sec-
tion.

5.4 Evaluation of FTS

We evaluate the RMR complexity and the execu-
tion time of FTS by simulation. We basically use
the parameter in Table 2 and vary the avg. of avg.
times of IS and CS into 0 and 50, 000, respectively
in Fig.20 and 21.

Figure 19 and 20 show the RMR complexities.
These have the same tendency as TS. FTS has
more RMR complexities than TS in all cases. This
is because FTS has more overhead than TS to
maintain the two waiting arrays. But we consider
that its overhead is constant for number of pro-
cesses as shown in Fig. 20.

Figure 21 shows the execution times for the cases
when (a) average CS time are different among pro-
cesses, and (b) average CS time are common to
processes. These results show the execution time
is reduced than TS. Furthermore, we find that the
execution time is improved to almost the same
value as YA in Fig. 21 (b). We consider this is
because each process has enough CS time corre-
sponding to maintain the arrays and therefore the
elapsed time from a process terminates its CS to
another process enters its CS is almost the same
time as YA.

6 Conclusion

We proposed the mutual exclusion algorithm for
distributed system with shared memory hierar-
chy. The algorithm TS allows processes to skip

 0

 30

 60

 90

 120

 150

10
2

10
6

10
10

10
14

R
M

R
 c

o
m

p
le

x
it

y

avg. of avg. IS time

YA
TS

FTS

(a) IS Time

 0

 30

 60

 90

 120

 150

10
2

10
4

10
6

10
8

10
10

R
M

R
 c

o
m

p
le

x
it

y

avg. of avg. CS time

YA
TS

FTS

(b) CS Time

Fig. 19 RMR complexity and IS/CS execution
time

 0

 30

 60

 90

 120

 150

 1 100 10000

R
M

R
 c

o
m

p
le

x
it

y

number of processes

YA
TS

FTS

Fig. 20 RMR complexity and the number of pro-
cesses

the node in the arbitration tree. Its worst-case
RMR complexity of O(log N) is optimal. The pro-
posed algorithm is efficient with respect to RMR
complexity when many processes execute the al-
gorithm concurrently. We demonstrated the effi-
ciency by queueing theory and simulation. These
results show its RMR complexity is close to O(1)
in the case of high system congestion.

Furthermore we improved the algorithm to re-
duce the actual execution time, In the improved
algorithm FTS, for the purpose of reducing the
number of remote memory accesses between some
process completes its CS and some process exe-
cutes its CS, we separate the privilege to maintain
the waiting array from the privilege for CS and di-
vide the waiting array into two. We demonstrated
the efficiency by simulation and the result showed
its execution time is almost the same time as YA
when each process has enough CS time with main-
taining the characteristic of TS.

Though the proposed algorithms have the space

8.0⋅10
8

1.0⋅10
9

1.2⋅10
9

 1 100 10000

e
x

e
c
u

ti
o

n
 t

im
e

bandwidth

YA

TS

FTS

(a) Different avg. CS

time

8.0⋅10
8

1.0⋅10
9

1.2⋅10
9

 1 100 10000

e
x

e
c
u

ti
o

n
 t

im
e

bandwidth

YA

TS

FTS

(b) Constant avg. CS

time

Fig. 21 Execution time and the bandwidth

13

complexity of O(N log N), the idea [3] to reduce
the complexity is applicable, and it can be im-
proved to O(N).

The future work is to propose algorithms that
are efficient in the both cases of low and high con-
gestions.

References

[1] J.H. Anderson and Y.J. Kim. Adaptive Mu-
tual Exclusion with Local Spinning. Dis-
tributed Computing: 14th International Con-
ference, DISC 2000, Toledo, Spain, October
2000: Proceedings, 2000.

[2] H. Attiya, D. Hendler, and P. Woelfel. Tight
RMR Lower Bounds for Mutual Exclusion and
Other Problems. Proceedings of the fourtieth
annual ACM symposium on Theory of comput-
ing, pages 217–226, 2008.

[3] Y.J. Kim and J.H. Anderson. A space-and
time-efficient local-spin spin lock. Information
Processing Letters, 84(1):47–55, 2002.

[4] G.L. Peterson and M.J. Fischer. Economical
solutions for the critical section problem in a
distributed system. In Proceedings of the ninth
annual ACM symposium on Theory of comput-
ing, pages 91–97. ACM New York, NY, USA,
1977.

[5] J.H. Yang and J.H. Anderson. A fast, scalable
mutual exclusion algorithm. Distributed Com-
puting, 9(1):51–60, 1995.

14

