
Comparison of the Expressive Power of Language-based
Access Control Models

Yoshiaki Takata

Dept. of Information Systems Engineering
Kochi University of Technology

Hiroyuki Seki

Graduate School of Information Science
Nara Institute of Science and Technology

Abstract

This paper compares the expressive power of five language-
based access control models. We show that the expressive
powers are incomparable between any pair of history-based
access control, regular stack inspection and shallow history
automata. Based on these results, we introduce an extension
of HBAC, of which expressive power exceeds that of regular
stack inspection.
Keywords history-based access control, stack inspection,
shallow history automaton, expressive power

1 Introduction

To protect secure information against malicious access, it
is desirable to incorporate a runtime access control mecha-
nism in a host language. This approach is calledlanguage-
based access control, and a few models have been pro-
posed [1, 5, 6, 9]. A common feature of these models is
that the history of execution such as method invocation and
resource access is used for access control.Stack inspection
provided in the Java virtual machine [6] is one of the best-
known such control mechanisms. In stack inspection, a set of
permissions is assigned statically to each method and when
the control reaches a statement for checking permissions, it is
examined whether or not every method on the runtime stack
has the permissions specified by the statement. Stack inspec-
tion has been extended in several ways. For example, stack
pattern can be specified by LTL formula in [7] and regular
language in [4, 8]. Automatic verification methods for a pro-
gram with stack inspection are also discussed in [4, 7, 8].
Abadi and Fournet [1] pointed out the problem of stack in-
spection, which completely cancels the effect of the finished
method execution. They proposed a new control mechanism
calledhistory-based access control(HBAC). In HBAC, cur-
rent permissions are modified each time a method is invoked,
and they may depend on all the methods executed so far. Ver-
ification of HBAC programs is also discussed in [2, 3, 10].
Meanwhile, Schneider [9] definessecurity automata, and
later Fong [5] definesshallow history automataas a sub-
class of finite-state security automata. Fong showed that the
expressive powers of shallow history automata and regular

stack inspection are incomparable. However, the relations
among the control models mentioned so far have not been
fully clarified.

In this paper, we first define five of the existing control
mechanisms in a simple and uniform framework based on
control flow graph. Next, we introduce a trace equivalence
relation among programs, and compare the expressive power
of the five subclasses of programs. In particular, the expres-
sive powers are incomparable between any pair of history-
based access control, regular stack inspection and shallow
history automata. Based on these results, we introduce an
extension of HBAC, of which expressive power exceeds that
of regular stack inspection.

2 Definitions

2.1 HBAC program

An HBAC program is a tupleπ = (Mhd, f0, {G f | f ∈ Mhd},
PRM) whereMhd is a finite set of method names,f0 ∈ Mhd is
the main method name,G f (f ∈ Mhd) is acontrol flow graph
of f defined below andPRM is a finite set ofpermissions. G f

is a directed graph (NOf ,TGf , ISf , IT f ,SPf) whereNOf is a
finite set of nodes,TGf ⊆ NOf × NOf is a set oftransfer
edges, ISf : NOf → {callg[PG,PA] | g ∈ Mhd, PG ⊆ SPf ,
PA ⊆ SPf } ∪ {check[P] | P ⊆ PRM} ∪ {return,nop} is a
labeling function for nodes,IT f ⊆ NOf is a set ofinitial
nodes, which represents the set of entry points of methodf ,
and SPf ⊆ PRM is a subset of permissions assigned tof
before runtime (static permissions). NOf is divided into four
subsets byISf as follows.

• ISf (n) = callg[PG,PA]. Noden is acall nodethat rep-
resents a call to methodg. ParametersPG andPA are
called grant permissionsand accept permissions, re-
spectively.

• ISf (n) = return. Noden is areturn nodethat represents
a return to the caller method.

• ISf (n) = check[P] whereP ⊆ PRM. Noden is acheck
nodethat represents a test for the current permissions.
For p ∈ PRM, check[{p}] is abbreviated ascheck[p].

1

• ISf (n) = nop. Noden is anop nodewith no effect.

We writen→ n′ for n,n′ ∈ NOf if 〈n, n′〉 ∈ TGf . Let NO =∪
f∈Mhd NOf and IS =

∪
f∈Mhd ISf . For n ∈ NO, also let

in(n) = {n′ | n′→ n } andout(n) = {n′ | n→ n′ }.
In the figures in this paper, a dotted arrow denotes a trans-

fer edge and a solid arrow connects between a call node and
the initial node(s) of the callee method. Also, a method is
surrounded by a rectangle and a set beside the rectangle de-
notes the static permissions of the method.

A state ofπ is a pair〈n,C〉 of a noden ∈ NO and a subset
of permissionsC ⊆ PRM. A configurationof π is a finite
sequence of states, which is also called astack. The concate-
nation of state sequencesξ1 andξ2 is denoted asξ1 : ξ2. The
semantics of an HBAC program is defined by the transition
relation⇒ over the set of configurations, which is the least
relation satisfying the following rules.

IS(n) = callg[PG,PA], n′ ∈ ITg
ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, (C ∪ PG) ∩ SPg〉
IS(m) = return, IS(n) = callg[PG,PA], n→ n′

ξ : 〈n,C〉 : 〈m,C′〉 ⇒ ξ : 〈n′,C ∩ (C′ ∪ PA)〉
IS(n) = check[P], P ⊆ C, n→ n′

ξ : 〈n,C〉 ⇒ ξ : 〈n′,C〉
IS(n) = nop, n→ n′

ξ : 〈n,C〉 ⇒ ξ : 〈n′,C〉

The rule ofnop for the other program subclasses in the fol-
lowing subsections is the same as above and will be omit-
ted below. For a configuration〈n1,C1〉 : . . . : 〈n`,C`〉,
the stack top is〈n`,C`〉 wheren` andC` are called thecur-
rent program pointand thecurrent permissionsof the con-
figuration, respectively. Thetrace setof π is defined as
[[π]] = {n0n1 . . . nk | n0 ∈ IT f0, ∃C1, . . . ,Ck ⊆ PRM,
∃ξ1, . . . , ξk ∈ (NO×2PRM)∗, ξi : 〈ni ,Ci〉 ⇒ ξi+1 : 〈ni+1,Ci+1〉
for 0 ≤ i < k, C0 = SPf0, ξ0 = ε }, whereε denotes the
empty sequence. For a setS of sequences, let prefix(S) de-
note the set of all nonempty prefixes of sequences inS.

Example 1. Chinese wall policy is a policy such that a user
has access permission to any resources, but once the user has
accessed one of the resources, (s)he loses access permission
to the resources belonging to competing parties. A simpli-
fied Chinese wall policy can be represented by programπ in
Fig. 1. If the control reachesn1A andn1A calls A, then the
current permissions lose permissionpB. Thus, ifn2B calls B
afterward, the check atm0B fails. The same situation occurs
whenB andA are called in this order. In fact, [[π]] = prefix(

n0n1Am0Am1A(n2Am0Am1An3 + n2Bm0B)

+ n0n1Bm0Bm1B(n2Bm0Bm1Bn3 + n2Am0A)),

where the argument of ‘prefix’ is specified by a regular ex-
pression and+ denotes the union operator.

main {pA, pB}

B {pB}A { pA}

n2A n2B

n1A n1B

n3

n0

return

nop

return

check[pB]

m1B

m0B

return

check[pA]

m1A

m0A

callA[Ø,Ø] callB[Ø,Ø]

callA[Ø,Ø] callB[Ø,Ø]

Figure 1 An HBAC program

2.2 JVM and R-SI programs

A program withJava stack inspection(abbreviated as JVM
program) has a formπ = (Mhd, f0, {G f | f ∈ Mhd},PRM,
PRV) similar to an HBAC program such thatG f = (NOf ,
TGf , ISf , IT f ,SPf) where each component ofG f is the same
as that of an HBAC program, except that the labelISf (n) of
each call noden is simplycallg (g ∈ Mhd) without PG or PA,
and a set of privileged nodesPRV ⊆ NO is specified. The
semantics ofπ is defined as follows. (The rule forcheckis
the same as HBAC programs.)

IS(n) = callg, n < PRV, n′ ∈ ITg
ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′,C ∩ SPg〉
IS(n) = callg, n ∈ PRV∩ NOf , n′ ∈ ITg
ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′,SPf ∩ SPg〉
IS(m) = return, n→ n′

ξ : 〈n,C〉 : 〈m,C′〉 ⇒ ξ : 〈n′,C〉

A regular stack inspection(R-SI) programπ = (Mhd, f0,
{G f | f ∈ Mhd}) is introduced in [4, 8] as an extension of a
JVM program whereG f = (NOf ,TGf , ISf , IT f). Its seman-
tics is given by the following rules.

IS(n) = callg, n′ ∈ ITg
ξ : n⇒ ξ : n : n′

IS(m) = return, n→ n′

ξ : n : m⇒ ξ : n′

IS(n) = check[R], ξ : n ∈ R, n→ n′

ξ : n⇒ ξ : n′

whereR ⊆ (NO)∗ is a regular language overNO. The trace
set of a JVM or R-SI program is defined in the same way as
that of an HBAC program except that current permissions are
missing in R-SI.

2.3 F-SA and SHA Programs

A finite security automaton(F-SA) [9] is just a deterministic
finite automaton (DFA)M = (Σ,Q,q0, δ) without final states
whereΣ is a finite set of input symbols,Q is a finite set of
states,q0 ∈ Q is the initial state andδ is a state transition

2

function, which is a partial function fromQ × Σ to Q. We
write δ(q,a) = ⊥ if δ(q,a) is undefined. Ashallow history
automaton(SHA) [5] is an F-SAM = (Σ,Q,q0, δ) such that
Q = 2Σ andq0 = ∅ and ifδ(q,a) , ⊥ thenδ(q,a) = q∪ {a}.

An F-SA program is a tuple (Mhd, f0, {G f | f ∈ Mhd},
M) without permissions or check nodes whereG f = (NOf ,
TGf , ISf , IT f) (f ∈ Mhd) and M = (Σ,Q, q0, δ) is an F-SA
such thatΣ = { f , f | f ∈ Mhd}. The semantics of an F-SA
program is defined as follows.

IS(n) = callg, n′ ∈ ITg, δ(q, g) , ⊥
〈ξ : n, q〉 ⇒ 〈ξ : n : n′, δ(q, g)〉
IS(m) = return, m ∈ NOg, n→ n′, δ(q, g) , ⊥
〈ξ : n : m,q〉 ⇒ 〈ξ : n′, δ(q, g)〉

The trace set of an F-SA programπ is defined as [[π]] =
{n0n1 . . . nk | n0 ∈ IT f0, ∃q1, . . . , qk ⊆ Q, ∃ξ1, . . . , ξk ∈ NO∗,
〈ξi : ni , qi〉 ⇒ 〈ξi+1 : ni+1,qi+1〉 for 0 ≤ i < k, ξ0 = ε }.

3 Expressive Power

A program without check nodes, permissions or privileged
nodes is called abasic program. Letα ∈ {HBAC,R-SI, JVM,
F-SA,SHA}. An α programπ is anextensionof a basic pro-
gramπ0 if π0 is obtained fromπ by the following operations.

(S1) Delete each check noden (if α = HBAC, R-SI or JVM).
At the same time, for any pair ofn1 ∈ in(n) andn2 ∈
out(n), add a transfer edgen1→n2. Moreover, ifn ∈ IT f

for somef ∈ Mhd, then add everyn2 ∈ out(n) into IT f .

(S2) Delete grant permissions and accept permissions from
each call node (ifα = HBAC).

(S3) Delete the designation of privileged nodes (ifα =
JVM).

(S4) (Optional) For a pair of call nodesn1 andn2 in methodf
such thatIS(n1) = IS(n2) = callg, in(n1) = in(n2),
out(n1) = out(n2) and eithern1,n2 ∈ IT f or n1,n2 < IT f ,
delete one noden2 and leave the other noden1 as it
is. We call the deleted noden2 a satelliteof n1. This
step can be repeated an arbitrary finite number of times;
however, we constrain a node that has a satellite from
being a satellite of another node, for consistency with
later definitions.

Let sat(n) = {n′ | n′ = n or n′ is a satellite ofn }.
Satellite nodes can be used with check nodes for making

grant permissions and accept permissions (resp. designation
as a privileged node) depend on the current permissions in
an HBAC (resp. JVM) program, as shown in Fig. 2. An
R-SI program can contain the same structure as Fig. 2 ex-
cept that the label of each check nodemi (1 ≤ m ≤ 3) is
IS(mi) = check[Ri] for some regular languageRi . In this
case, ifni ∈ sat(n1) is in the stack, then the prefix of the stack

n1 n3n2callg[{ p′ callg[{ p′

check[p1] check[p3]
check[p2]

1},Ø] 3},Ø]

m1 m3m2

callg[{ p′2},Ø]

Figure 2 A call noden1 and its satellitesn2 andn3

from the stack bottom toni matchesRi . However, the fact
that a prefix of the stack matchesRi can be checked in other
check nodes without using satellite nodes, and thus satel-
lite nodes are useless in R-SI programs. On the other hand,
without check nodes, satellite nodes are meaningless because
in(n1) = in(n2) and out(n1) = out(n2) for a call noden1

and its satelliten2, i.e., wherevern1 appears in an execution
sequence,n2 can also appear regardless of context. Hence
satellite nodes are meaningless in program models without
check nodes, such as F-SA and SHA.

Let nc be a homomorphism over the set of nodes defined
by nc(n) = n′ for a satellite noden of n′, nc(n) = n for a
return or call noden that is not a satellite of another node,
andnc(n) = ε for a check or nop noden. For two programs
π1 andπ2, we say thatπ1 is trace equivalentto π2 if they
are extensions of a single basic programπ0 andnc([[π1]]) =
nc([[π2]]).

Let us denote the class ofα programs byα. For classes
of programsα andβ, we writeα � β if for an arbitraryα
programπ1 there is aβ programπ2 trace equivalent toπ1

(we say thatπ1 can be simulated byπ2). If α � β, we also
say thatα can be simulated byβ. � is reflexive and tran-
sitive. We writeα 6� β if α � β does not hold. By def-
inition, SHA � F-SA. It is known that JVM� R-SI [8],
R-SI 6� SHA, SHA 6� R-SI [5] and JVM� HBAC [10].

In the following theorems, we show thatα 6� β for any
pair of program classesα, β other than SHA� F-SA, JVM�
R-SI, and JVM� HBAC. Intuitively, R-SI (and JVM) can-
not simulate HBAC (Theorem 1) because an R-SI program
completely cancels the effect of the finished method execu-
tion. R-SI cannot simulate F-SA and SHA for the same rea-
son. F-SA (and SHA) cannot simulate JVM (and R-SI and
HBAC) (Theorem 2) because an F-SA does not consider the
stack and cannot decide whether the number of calls equals
the number of returns. HBAC cannot simulate SHA (and
F-SA) (Theorem 5) because an HBAC program cannot sim-
ulate a program where a call to some methodg enables a call
to another methodh.

Theorem 1. HBAC 6� R-SI.

Proof. Consider the HBAC programπ1 in Fig. 3. When
the control reachess0, the current permissions containp if

3

f {p}

m1

m2

m0

return

nop

callg[Ø,Ø]

m3

callh[Ø,Ø]

g {}

return
n0

h {p}

return

check[p]

s1

s0

Figure 3 HBAC6� R-SI

and only if n0 has never been visited. Thus the trace set of
π1 is [[π1]] = prefix(m0m1n0m2s0 + m0m2s0s1m3). Suppose
that there is an R-SI programπ′1 that simulatesπ1. Since
nc([[π′1]]) = prefix(m1n0m2 + m2s1m3), π′1 necessarily has a
check nodesc betweenm2 and s1, andsc has to abort exe-
cutions that have calledg. Sincem2 is a call node, we can
assumesc = s0 without loss of generality. The stack ats0

after callingg has to be different from the stack ats0 wheng
has never been called. However, the stack ats0 must bem2s0,
and thus the above-mentioned check nodes0 (andπ′1) cannot
exist. �

Theorem 2. JVM 6� F-SA.

Proof. The JVM programπ2 in Fig. 4 cannot be simulated
by any F-SA program. At the beginning of the program,
the current permissions equalSPf = ∅. However, when the
privileged call noden1 ∈ PRV calls n0, the current permis-
sions becomeSPg = {p}. Hence whenn2 calls s0, the cur-
rent permissions do not includep if and only if n1 is not in
the stack, i.e.,n1 has never been visited or every call atn1

has returned. Therefore the trace set ofπ2 is [[π2]] =
∪

i≥1

prefix(m0n0(n1n0)i−1 [(ε + n2s0s1)n3] i−1 (n2s0 + n3m1)).
Suppose that there exists an F-SA programπ′2 that sim-

ulatesπ2. The F-SA ofπ′2 must have a run (i.e. path from
the initial state) for sequencegi(hhg)i−1g for i ≥ 11 but must
not have any run forgi(hhg)i−1h. However, such a finite au-
tomaton never exists by the pumping lemma of regular lan-
guages. �

Theorem 3. F-SA 6� SHA.

Proof. In the programπ3 shown in Fig. 5, callingh is permit-
ted only wheng has been called an odd number of times. If
there is an SHA programπ′3 that simulatesπ3, then the SHA
of π′3 must have a run for sequenceg2i−1h for i ≥ 1 but must

1By the definition of the semantics and the trace set of an F-SA program,
any F-SA does not perceive the call to and the return from the initial method
(e.g. f for π′2).

g {p}

h {p}

f {}

n2

n3

n0

return

nop

return

check[p]

s1

s0
return m1

m0callg

callhcallg

PRV = {n1}

n1

Figure 4 JVM6� F-SA

transition function of F-SA

g

h

f

n2

n3

n0

return

nop

return

return m1

m0callg

callhcallg
n1

s0

g

g
h

Figure 5 F-SA6� SHA

not have any run forg2ih. However, there is no such SHA be-
cause the state of an SHA just after readingg j for any j ≥ 1
is {g}, and thus the SHA has a run forg2ih if it has a run
for g2i−1h. �

Surprisingly, HBAC can simulate neither R-SI nor SHA.

Theorem 4. R-SI 6� HBAC.

Proof. Consider the R-SI programπ4 in Fig. 6. This program
recursively callsn0 arbitrary times, and then returns atn3 if
the call atn1 was repeated an even number of times. Thus
the trace set ofπ4 is [[π4]] =

∪
i≥1 prefix(n0(n1n0)2i−2n2n2i−1

3 +

n0(n1n0)2i−1n2).
Suppose that there exists an HBAC programπ′4 that simu-

latesπ4, i.e.,nc([[π′4]]) =
∪

i≥1 prefix(n2i−2
1 n2i−1

3 + n2i−1
1). Note

that in an HBAC program, the current permissions alter only
at a call and return. At the beginning ofπ′4, the current per-
missions equalSPg. If the current permissions equalSPg
at n1 or n1’s satellite inπ′4, then the current permissions just
after the call at the node equal (SPg∪PG)∩SPg = SPg, where
PG is the grant permissions of the node. Thus regardless of
the number of calls at a node insat(n1), the current permis-
sions remainSPg, and thusπ′4 cannot distinguish between
even and odd numbers of calls at the nodes insat(n1). �

Theorem 5. SHA 6� HBAC

4

g

n2

n3

n0

return

nop

callg
n1 check[n2(n1n1)*]

Figure 6 R-SI6� HBAC

f

m1

m2

m0

return

nop

callg

m3

callh

g

return
n0

h

return
s0

{g} {g, h}{ }
g h

transition function of SHA

Figure 7 SHA6� HBAC

Proof. In the SHA programπ5 in Fig. 7, a call toh is per-
mitted only when a call tog has occurred. Suppose that
there exists an HBAC programπ′5 that simulatesπ5, i.e.,
nc([[π′5]]) = prefix(m1nm2pm3 +m2). The HBAC programπ′5
necessarily has a check nodesc betweenm2 (or m2’s satellite)
ands0, andsc has to abort executions that have never calledg.
Let C02 be the current permissions when the control reaches
a node insat(m2) without callingg, and letC012 be the cur-
rent permissions when the control reaches a node insat(m2)
after callingg. By definition,C02 = SPf andC012 ⊆ SPf .
If the control reachessc andg has been called, then the cur-
rent permissions become (C012∪ PG) ∩ SPh, wherePG is the
grant permissions of somem′2 ∈ sat(m2). SinceC012 ⊆ C02,
m′2 can be reached even wheng has never been called. If the
control reachessc via m′2 andg has never been called, then
the current permissions become (C02∪PG)∩SPh. The check
nodesc must not abort the execution in the former case but
must abort the execution in the latter case. However, there
can be no such check node sinceC012 ⊆ C02. �

4 An Extended Model

An HBAC program cannot remove a permission from the
current permissions unless it takes the intersection of the
current permissions and the static permissions of a callee

method. Thus, we extend HBAC by introducing a sub-
set SET of NO (like PRV in a JVM program) such that if
n ∈ NOf ∩ SETandIS(n) = callg[PG,PA] in HBAC thenn
replaces the current permissions withPG before taking the
intersection of the current permissions and the static permis-
sions ofg. We also extend HBAC so that the initial current
permissionsC0 in the definition of the trace set can be an
arbitrary subset ofSPf0 and is given as a component of an
HBAC program.

The syntax and semantics of the extended model, called
sHBAC, are defined as follows.

• An sHBAC program isπ = (Mhd, f0, {G f | f ∈ Mhd},
PRM,SET,C0).

• The semantic rules for an sHBAC program are the rules
obtained from the original rules in Section 2.1 by re-
placing the first rule with the following two rules.

IS(n) = callg[PG,PA], n < SET, n′ ∈ ITg
ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, (C ∪ PG) ∩ SPg〉
IS(n) = callg[PG,PA], n ∈ SET, n′ ∈ ITg
ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′,PG ∩ SPg〉

The definition of trace equivalence is the same as the one
in Section 3 except that we add:

(S3′) Delete the designation of set nodes (nodes being inSET)
if α = sHBAC.

Theorem 6. R-SI� sHBAC

Proof. Let π = (Mhd, f0, {G f | f ∈ Mhd}) be an arbitrary
R-SI program. At first, we consider a simple case in whichπ
has only one check nodenc. Assume thatIS(nc) = check[R]
andR is specified by a DFAMR = (NO,Q,q0, F, δ), where
Q = {q0,q1, . . . , qk} is a set of states,q0 ∈ Q is the initial
state,F ⊆ Q is a set of final states, andδ : Q × NO → Q
is a state transition function. The alphabet ofMR is the node
set NO of π. We can construct an sHBAC programπ′ =
(Mhd, f0, {G′f | f ∈ Mhd},PRM,SET,C0) that simulatesπ as
follows. DefinePRM = Q, SPf = PRM for all f ∈ Mhd,
andC0 = {q0}. For eachf ∈ Mhd, the control flow graph
G′f is the same asG f except that each call noden is replaced
with the structure shown in Fig. 8 and the check nodenc is
replaced with the structure shown in Fig. 9. DefineSETbe
the set of all call nodes inπ′. In an execution ofπ′, the current
permissions represent the state ofMR for the current stack
(except the topmost node; i.e., the current permissions equal
the singleton{ δ(. . . δ(δ(q0,m1),m2), . . . ,mj−1) } if the stack
equalsm1m2 . . .mj−1mj). The structure in Fig. 8 selects a call
nodeni corresponding to the current stateqi of MR andni sets
the next stateq′i = δ(qi ,n) of MR to the current permissions.
The structure in Fig. 9 blocks the execution unless the current
state ofMR is a final state.

5

n0 nkn1callg[{q′ callg[{q′

check[q0] check[qk]

0},Q] k},Q]

...

check[q1]

callg[{q′1},Q]

...

q′i = δ(qi ,n) (0 ≤ i ≤ k)

Figure 8 Structure for replacing a call node in an R-SI pro-
gram

...check[q′′1]
check[q′′2]

check[q′′k′]

{q′′1 , . . . , q′′k′ } = {q′′ | δ(q′′, nc) ∈ F }

Figure 9 Structure for replacing a check node in an R-SI
program

Consider the case in whichπ has more than one check
nodesnc1, . . . , ncm. Let MR be the product automaton of
MR1, . . . ,MRm whereMRi (1 ≤ i ≤ m) is the DFA specified
for nci. Also letFFi = Q1 × · · · ×Qi−1 × Fi ×Qi+1 × · · · ×Qm

for 1 ≤ i ≤ m whereQ j andF j (1 ≤ j ≤ m) are the state set
and the final state set ofMRj , respectively. In other words,
FFi is the set ofMR’s states that contains a final state ofMRi

as a component. Then constructπ′ as stated above, except
that when replacing each check nodenci, we considerFFi

asF. �

In the sHBAC programπ′ in the proof of Theorem 6, the
accept permissions of every call node in methodf equalSPf .
This means that the effect of finished method execution is
canceled and thus the current permissions depend only on
the current stack. We call the class of such restricted sHBAC
programs sH-SI. By the proof of Theorem 6, R-SI� sH-SI.
Moreover, we can show sH-SI� R-SI.

Theorem 7. sH-SI� R-SI

Proof. For a given sH-SI programπ = (Mhd, f0, {G f | f ∈
Mhd},PRM,SET,C0), consider a DFAM = (NO,2PRM,C0,
F, δ) defined as follows. The alphabet ofM is the node
set NO of π, the state set is the power set ofPRM, and
the initial state isC0. For each call noden of π such that
IS(n) = callg[PG,PA] and each subsetC ⊆ PRM, δ(C,n) =
(C ∪ PG) ∩ SPg if n < SET and δ(C,n) = PG ∩ SPg if
n ∈ SET. For any other nodem and each subsetC ⊆ PRM,
δ(C,m) = C. The state ofM after reading a node sequenceσ
represents the current permissions ofπ when the stack isσ.

HBAC

R-SI F-SA

JVM SHA

 bold arrow: new result
 α → β : α can be simulated by β

Th2 [5]

Th3

Th4 [10]

[8]

Th1

Th5

sHBAC

sH-SI
Th6

Th7

Figure 10 Comparison of the expressive power

We can construct an R-SI programπ′ that simulatesπ as fol-
lows. For each check noden such thatIS(n) = check[P],
change the label toIS(n) = check[R] where the regular lan-
guageR is given by a copy ofM whose finial state setF is
{C | P ⊆ C }. �

Note that HBAC� sHBAC by definition. SHA6� sHBAC
since the proof of Theorem 5 remains valid for sHBAC.

Known results and new results are summarized in Fig. 10.
For any pair of program classesα, β, eitherα � β or α 6� β
has been proved. In the figure, an arrow is omitted between
program classesα andβ if α � β or α 6� β can be implied
by other relations. For example, R-SI6� JVM is implied by
JVM � HBAC and R-SI6� HBAC.

5 Conclusion

The expressive power of five subclasses of programs with
access control was compared. In particular, the expressive
powers are incomparable between any pair of history-based
access control, regular stack inspection and shallow history
automata. Based on these results, we introduced an extension
of HBAC, of which expressive power exceeds that of regular
stack inspection. It is left as a future study to clarify whether
some composition of programs can simulate HBAC, for ex-
ample, HBAC� JVM × SHA and/or HBAC � R-SI× F-SA.

References

[1] M. Abadi and C. Fournet, “Access control based on ex-
ecution history,” Network & Distributed System Secu-
rity Symp., pp.107–121, 2003.

[2] A. Banerjee and D.A. Naumann, “History-based ac-
cess control and secure information flow,” CASSIS04,
LNCS 3362, pp.27–48, 2004.

6

[3] M. Bartoletti, P. Degano, and G.L. Ferrari, “History-
based access control with local policies,” 8th FOS-
SACS, LNCS 3441, pp.316–332, 2005.

[4] J. Esparza, A. Kǔcera, and S. Schwoon, “Model-
checking LTL with regular variations for pushdown
systems,” TACS01, LNCS 2215, pp.316–339, 2001.

[5] P.W. Fong, “Access control by tracking shallow exe-
cution history,” IEEE Symp. on Security & Privacy,
pp.43–55, 2004.

[6] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers, “Going beyond the sandbox: An
overview of the new security architecture in the JavaTM

development kit 1.2,” USENIX Symp. on Internet Tech-
nologies and Systems, pp.103–112, 1997.

[7] T. Jensen, D. le Ḿetayer, and T. Thorn, “Verification of
control flow based security properties,” IEEE Symp. on
Security & Privacy, pp.89–103, 1999.

[8] N. Nitta, Y. Takata, and H. Seki, “An efficient secu-
rity verification method for programs with stack inspec-
tion,” 8th ACM Computer & Communications Security,
pp.68–77, 2001.

[9] F.B. Schneider, “Enforceable security policies,” ACM
Trans. Information & System Security, vol.3, no.1,
pp.30–50, 2000.

[10] Y. Takata, J. Wang, and H. Seki, “A formal model
and its verification of history-based access control,” IE-
ICE Trans. Inf. & Syst., vol.J91-D, no.4, pp.847–858,
2008. In Japanese. Earlier version appeared in 11th ES-
ORICS, LNCS 4189, pp.263–278, 2006.

7

