Comparison of the Expressive Power of Language-based
Access Control Models

Yoshiaki Takata Hiroyuki Seki
Dept. of Information Systems Engineering Graduate School of Information Science
Kochi University of Technology Nara Institute of Science and Technology
Abstract stack inspection are incomparable. However, the relations

among the control models mentioned so far have not been
This paper compares the expressive power of five language-fully clarified.

based access control models. We show that the expressive |n this paper, we first define five of the existing control
powers are incomparable between any pair of history-basedmechanisms in a simple and uniform framework based on
access control, regular stack inspection and shallow history control flow graph. Next, we introduce a trace equivalence
automata. Based on these results, we introduce an extensiohelation among programs, and compare the expressive power
of HBAC, of which expressive power exceeds that of regular of the five subclasses of programs. In particular, the expres-

stack inspectign. . ~ sive powers are incomparable between any pair of history-
Keywords history-based access control, stack inspection, based access control, regular stack inspection and shallow
shallow history automaton, expressive power history automata. Based on these results, we introduce an

extension of HBAC, of which expressive power exceeds that

1 Introduction of regular stack inspection.

To prqtect secure information against malicious access, it 9 Definitions

is desirable to incorporate a runtime access control mecha-

nism in a host language. This approach is calltjuage- 2.1 HBAC program

based access contiolnd a few models have been pro-

posed [1, 5, 6, 9]. A common feature of these models is An HBAC program is a tupler = (Mhd, fo, {G; | f € Mhd},
that the history of execution such as method invocation and PRM) whereMhdis a finite set of method namefg, e Mhdis
resource access is used for access con8tick inspection the main method namé&; (f € Mhd) is acontrol flow graph
provided in the Java virtual machine [6] is one of the best- of f defined below an&RMis a finite set opermissionsG¢
known such control mechanisms. In stack inspection, a set of is a directed grapfNOs, TGt, ISy, IT ¢, SPr) whereNOy is a
permissions is assigned statically to each method and whenfinite set of nodesTGs € NO; x NOx is a set oftransfer
the control reaches a statement for checking permissions, itisedges|S; : NOs — {call,[Pg, Pa] | ¢ € Mhd, P C SF;,
examined whether or not every method on the runtime stack P € SP} U {checkP] | P € PRM} U {return nop} is a
has the permissions specified by the statement. Stack inspectabeling function for nodeslT¢ € NOs is a set ofinitial
tion has been extended in several ways. For example, stacknodes which represents the set of entry points of mettipd
pattern can be specified by LTL formula in [7] and regular andSP; € PRMis a subset of permissions assignedfto
language in [4, 8]. Automatic verification methods for a pro- before runtimegtatic permissionjs NOy is divided into four
gram with stack inspection are also discussed in [4, 7, 8]. subsets byS; as follows.

Abadi and Fournet [1] pointed out the problem of stack in-)

spection, which completely cancels théeet of the finished * 1S¢(n) = call,[Ps, Pa]. Nodenis acall nodethat rep-
method execution. They proposed a new control mechanism ~ '€Sents a call to methog Parameter®s and P, are
calledhistory-based access conti@¢iBAC). In HBAC, cur- called grant permissionsand accept permissionsre-
rent permissions are modified each time a method is invoked, ~ SPeCtively.

and they may depend on all the methods executed so far. Ver-
ification of HBAC programs is also discussed in [2, 3, 10].
Meanwhile, Schneider [9] definesecurity automataand
later Fong [5] defineshallow history automatas a sub- e IS¢(n) = checkP] whereP € PRM. Noden is acheck
class of finite-state security automata. Fong showed that the nodethat represents a test for the current permissions.
expressive powers of shallow history automata and regular For p € PRM, check{p}] is abbreviated asheckp].

e |S¢(n) = return. Noden is areturn nodethat represents
a return to the caller method.

¢ |S;(n) = nop. Noden is anop nodewith no dfect.

We writen —» ' for n,n’ € NOy if (n,n’) € TG;. LetNO =
Utemna NOr and IS = Usemng 1St Forn € NO, also let
inn) ={n | > n}andoutn) ={n |n->n'}.

In the figures in this paper, a dotted arrow denotes a trans-
fer edge and a solid arrow connects between a call node and
the initial node(s) of the callee method. Also, a method is

surrounded by a rectangle and a set beside the rectangle de-

notes the static permissions of the method.

A state ofr is a pair(n, C) of a noden € NO and a subset
of permission<C € PRM. A configurationof x is a finite
sequence of states, which is also callexdfack The concate-
nation of state sequencésandé; is denoted ag; : &. The
semantics of an HBAC program is defined by the transition

Figure 1 An HBAC program

2.2 JVM and R-SI programs

relation= over the set of configurations, which is the least A program withJava stack inspectiofabbreviated as JVM

relation satisfying the following rules.
IS(n) = call,[Pg, Pa], " €T,
E:(NCy=¢:(nC): (", (CUPg)NSE)
IS(m) = return, 1S(n) = call,[Pg, Pal, n— 1’
E:(n,C):(MC')y=&:(n",CN(C' UPL))
IS(n) = checkP], P C, n—>n’
£:(n,C)=&:(n,C)
IS(n) =nop n—> 1’
E:An,C)=¢:(n,C)

The rule ofnop for the other program subclasses in the fol-
lowing subsections is the same as above and will be omit-
ted below. For a configuratiotn;,C;) : ... : (n,Cy),
the stack top ign,, C,) wheren, andC, are called theur-
rent program pointand thecurrent permissionsf the con-
figuration, respectively. Thérace setof n is defined as
|[7T]| = {nghy...ng | Np € |Tf0, AC4,...,Ck € PRM,
3é, ..., & € (NOX2PRM)* & (i, Ci) = &ivr & (Nisa, Cist)
forO <i <k, Cop=SP, & = ¢}, wheree denotes the
empty sequence. For a setof sequences, let prefi®] de-
note the set of all nonempty prefixes of sequenceés in

Example 1. Chinese wall policy is a policy such that a user

has access permission to any resources, but once the user has
accessed one of the resources, (s)he loses access permission

to the resources belonging to competing parties. A simpli-
fied Chinese wall policy can be represented by progtam
Fig. 1. If the control reaches;p andn;a calls A, then the
current permissions lose permissipg Thus, ifnyg callsB
afterward, the check ayg fails. The same situation occurs
whenB andA are called in this order. In factaf] = prefix(

NoNzAMoaMA(N2aMoaMANE + N2Mog)
+ NoNyeMosMye(N2MosMieNz + N2aMon)),

where the argument of ‘prefix’ is specified by a regular ex-
pression and denotes the union operator.

program) has a form = (Mhd, fo, {G; | f € Mhd}, PRM,

PRV) similar to an HBAC program such th&; = (NOx,

TGy, ISs, IT ¢, SPr) where each component 6f; is the same
as that of an HBAC program, except that the lal$(n) of
each call node is simplycall, (¢ € Mhd) without Pg or Py,
and a set of privileged nodé2RV C NO is specified. The
semantics ofr is defined as follows. (The rule faheckis
the same as HBAC programs.)

IS(n) = call;,, n¢ PRV, n" €T,
E:(n,C)=&:(n,C):(n",CNSF)
IS(n) = call,, ne PRVNNO¢, " €T,
£:(n,Cy=¢:(n,C) : (", SP NSE,)

IS(m) = return, n — n’
E:(n,Cy:(MC')y= &:(n,C)

A regular stack inspectiofR-Sl) programr = (Mhd, fo,
{Gt | f € Mhd}) is introduced in [4, 8] as an extension of a
JVM program wherés; = (NOs, TG, ISs, IT¢). Its seman-
tics is given by the following rules.

IS(n) =call,, " €T,
En=&:n:n

IS(m) = return, n— n’
Enim=¢én
IS(n) = checkR], £ :neR n—>n’
En=¢&:n

whereR € (NO)* is a regular language ov&O. The trace

set of a JVM or R-SI program is defined in the same way as
that of an HBAC program except that current permissions are
missing in R-SI.

2.3 F-SA and SHA Programs

A finite security automato(F-SA) [9] is just a deterministic
finite automaton (DFAM = (Z, Q, go, 6) without final states
whereX is a finite set of input symbolLQ is a finite set of
states,qo € Q is the initial state and is a state transition

function, which is a partial function from x £ to Q. We
write 6(q,a) = L if 6(g,a) is undefined. Ashallow history
automatonSHA) [5] is an F-SAM = (Z, Q, qo, 6) such that
Q = 2* andqo = 0 and if§(g, a) # L thend(g,a) = q U {a}.

An F-SA program is a tupleMhd, fo, {Gs | f € Mhd},
M) without permissions or check nodes wh&g = (NOy,
TGt,1S4,1T¢) (f € Mhd) andM = (X, Q, o, 5) is an F-SA
such that = {f, f | f € Mhd}. The semantics of an F-SA
program is defined as follows.

IS(n) = call,, n" €1T,, 6(q,9) # L
€ :ng=<(£:n:n,6(g9)
IS(m) = return, me NO,, n—n’, 6(0,g) # L
:n:ma)=<(£:n,6(a,9)
The trace set of an F-SA programis defined as] =

{nony...ng | Ng €Ty, Adh,...,0 € Q, Fé1,...,& € NO,
& on, o) = v Nk, Ger) for 0 < i <k, & = e}

3 Expressive Power

A program without check nodes, permissions or privileged
nodes is called basic program Leta € {HBAC, R-SI, JVM,
F-SA SHA}. An « programr is anextensiorof a basic pro-
gramny if 7g is obtained fromr by the following operations.

(S1) Delete each check nodéif « = HBAC, R-Sl or JVM).
At the same time, for any pair of; € in(n) andn, €
out(n), add a transfer edgge —n,. Moreover, ifn € IT;
for somef € Mhd, then add everm, € out(n) into IT ;.

(S2) Delete grant permissions and accept permissions
each call node (ir = HBAC).

(S3) Delete the designation of privileged nodes dif =
JVM).

(S4) (Optional) For a pair of call nodeg andn, in methodf
such thatlS(n;) = I1S(ny) = call,, in(ny) = in(ny),
out(n;) = out(ny) and eitheny,n; € IT; orng, Ny ¢ 1T+,
delete one nod@, and leave the other nodg as it
is. We call the deleted nod® a satelliteof n;. This

step can be repeated an arbitrary finite number of times;
however, we constrain a node that has a satellite from

being a satellite of another node, for consistency with
later definitions.

Letsatn) = {n |n" = norn is a satellite oh}.

2.
checkm@ @ @ checkpp]

checkbﬂ ;

call{ p&}ﬁ]@ @ @ cally{ p3}h.2]

cally[{'p5}.2]

\‘O
Figure 2 A call noden; and its satellites,, andng

from the stack bottom to; matchesR,. However, the fact

that a prefix of the stack matchBscan be checked in other
check nodes without using satellite nodes, and thus satel-
lite nodes are useless in R-SI programs. On the other hand,
without check nodes, satellite nodes are meaningless because
in(ny) = in(ny) andout(n;) = out(ny) for a call noden;

and its satelliten,, i.e., whereven; appears in an execution
sequencen, can also appear regardless of context. Hence
satellite nodes are meaningless in program models without
check nodes, such as F-SA and SHA.

Let nc be a homomorphism over the set of nodes defined
by nc(n) = n’ for a satellite noden of n’, ng(n) = n for a
return or call noden that is not a satellite of another node,
andnc(n) = ¢ for a check or nop node. For two programs
m andmy, we say thatr; is trace equivalento r, if they
are extensions of a single basic progragrandnd([71]) =
no([72]).

Let us denote the class af programs byr. For classes

fromof programsa andg, we write@ < g if for an arbitrarya

programm, there is a8 programsm, trace equivalent tary
(we say thatr; can be simulated by,). If @ < 3, we also
say thata can be simulated bg. < is reflexive and tran-
sitive. We writea £ B if @ < B does not hold. By def-
inition, SHA < F-SA. It is known that JVM< R-SI [8],
R-SI £ SHA, SHA £ R-SI [5] and JVM=< HBAC [10].

In the following theorems, we show that £ B for any
pair of program classes g other than SHA< F-SA, JVM <
R-SI, and JVM=< HBAC. Intuitively, R-SI (and JVM) can-
not simulate HBAC (Theorem 1) because an R-SI program
completely cancels thefect of the finished method execu-
tion. R-SI cannot simulate F-SA and SHA for the same rea-
son. F-SA (and SHA) cannot simulate JVM (and R-SI and
HBAC) (Theorem 2) because an F-SA does not consider the
stack and cannot decide whether the number of calls equals

Satellite nodes can be used with check nodes for making the number of returns. HBAC cannot simulate SHA (and
grant permissions and accept permissions (resp. designatior--SA) (Theorem 5) because an HBAC program cannot sim-
as a privileged node) depend on the current permissions inulate a program where a call to some metpahables a call
an HBAC (resp. JVM) program, as shown in Fig. 2. An to another method.

R-SI program can contain the same structure as Fig. 2 ex-)

cept that the label of each check nade(1 < m < 3) is Theorem 1. HBAC £ R-SI.
IS(m;) = checkR] for some regular languagg,. In this
case, ifn; € saf(n;) is in the stack, then the prefix of the stack

Proof. Consider the HBAC program; in Fig. 3. When
the control reachesy, the current permissions contamif

g}

o _call{@,2] @

h{n}

call,[3a,

Figure 3 HBAC#£ R-SI

and only ifng has never been visited. Thus the trace set of
myis [m] = prefix(mominomeso + mompsosims). Suppose
that there is an R-SI programi that simulatesr;. Since
no[71]) = prefix(mngm + mpsyme), 77 necessarily has a
check nodes. betweenm, ands;, ands; has to abort exe-
cutions that have calleg. Sincem, is a call node, we can
assumes; = S without loss of generality. The stack s
after callingg has to be dferent from the stack a, wheng
has never been called. However, the stack atust bem, s,
and thus the above-mentioned check negg@ndr}) cannot
exist. |

Theorem 2. JVM £ F-SA.

Proof. The JVM programr, in Fig. 4 cannot be simulated
by any F-SA program. At the beginning of the program,
the current permissions equaP: = 0. However, when the
privileged call noden; € PRV calls ng, the current permis-
sions becom&P, = {p}. Hence whem; calls s, the cur-
rent permissions do not includeif and only if n; is not in
the stack, i.e.n; has never been visited or every callrat
has returned. Therefore the trace setrpis [r2] = U1
prefix(mono(nuno) ~* [(& + N2Sos)na]' ™ (N2So + Nsmy)).
Suppose that there exists an F-SA progrethat sim-
ulatesm,. The F-SA ofz/, must have a run (i.e. path from
the initial state) for sequeneg(hhg)' g for i > 11 but must
not have any run fog'(hhg)'~h. However, such a finite au-
tomaton never exists by the pumping lemma of regular lan-
guages. m]

Theorem 3. F-SA£ SHA.

Proof. In the programr; shown in Fig. 5, callindn is permit-
ted only whery has been called an odd number of times. If
there is an SHA program, that simulatess, then the SHA
of 75 must have a run for sequeng®thfori > 1 but must

1By the definition of the semantics and the trace set of an F-SA program,
any F-SA does not perceive the call to and the return from the initial method
(e.g.f for o).

transition function of F-SA

Figure5 F-SA£ SHA

not have any run fog?h. However, there is no such SHA be-
cause the state of an SHA just after readjhdor any j > 1
is {g}, and thus the SHA has a run fgfh if it has a run
for g~h. O

Surprisingly, HBAC can simulate neither R-SI nor SHA.

Theorem 4. R-SI£ HBAC.

Proof. Consider the R-SlI program, in Fig. 6. This program
recursively callgg arbitrary times, and then returnsrat if

the call atn; was repeated an even number of times. Thus
the trace set ofy is [74] = Uis1 prefix(o(ning)®2non -1+
No(NNo)?~ny).

Suppose that there exists an HBAC progrgpthat simu-
latesns, i.e.,nc([7,]) = Uisy prefix(Z=-2n2-1 + n2-1). Note
that in an HBAC program, the current permissions alter only
at a call and return. At the beginning of, the current per-
missions equabP,. If the current permissions equ&P,
atny or ny’s satellite ins,, then the current permissions just
after the call at the node equ&k, UPs)NSF, = SF,, where
Pg is the grant permissions of the node. Thus regardless of
the number of calls at a node #at(n;), the current permis-
sions remainSF,, and thusr, cannot distinguish between
even and odd numbers of calls at the nodesaitn;). O

Theorem 5. SHA£ HBAC

method. Thus, we extend HBAC by introducing a sub-

setSET of NO (like PRV in a JVM program) such that if
I{«’.\ n € NOf n SETandIS(n) = call,[Pg, Pa] in HBAC thenn
) (ng) gheck{na(nuny)*] replaces the current permissions wikg before taking the
RN intersection of the current permissions and the static permis-
®retur sions ofg. We also extend HBAC so that the initial current

permission<Cy in the definition of the trace set can be an
arbitrary subset oEP;, and is given as a component of an
Figure 6 R-Sl¢ HBAC HBAC program.
The syntax and semantics of the extended model, called
sSHBAC, are defined as follows.

@}

g e An sHBAC program ist = (Mhd, fo, {Gt | f € Mhd},
el @ PRM, SET, Cy).
3 @ e The semantic rules for an SHBAC program are the rules
@’\ h obtained from the original rules in Section 2.1 by re-
U call, return placing the first rule with the following two rules.
\ @’e‘“@ IS(n) = call,[Pg, Pa], n¢ SET, " € 1T,

.) £:(nCy=>¢: (nC): (. (CUPS)N SRy
IS(n) = call,[Pe, Pal, n € SET, 1 € IT,

transition function of SHA Z:(nCy>é&:(n,C) (M, Pgn SPg)

Figure 7 SHAZ HBAC The definition of trace equivalence is the same as the one
in Section 3 except that we add:

(S3) Delete the designation of set nodes (nodes beil®ii

Proof. In the SHA progranrs in Fig. 7, a call toh is per- if & = SHBAC.
mitted only when a call tgy has occurred. Suppose that
there exists an HBAC progranms, that simulatesrs, i.e., Theorem 6. R-SI< sHBAC

nA[75]) = prefix(munmppms + ny). The HBAC programrg

necessarily has a check noglédetweenm, (or my's satellite) Proof. Let 7 = (Mhd, fo, {G; | f € Mhd}) be an arbitrary
andso, ands; has to abort executions that have never cajled R-S| program. At first, we consider a simple case in which
Let Coz be the current permissions when the control reaches has only one check nodg. Assume thatS(n;) = checkR]

a node insat(mp) without callingg, and letCo1, be the cur- andR s specified by a DFAVIr = (NO, Q, oo, F, 6), where

rent permissions when the control reaches a nodafim,) Q = {go, 0, ..., Q) is a set of stategyy € Q is the initial
after callingg. By definition, Co2 = SP; andCo12 C SPr. state,F C Qs a set of final states, antd: Q x NO - Q
If the control reaches; andg has been called, then the cur- s a state transition function. The alphabety is the node
rent permissions becom€d;, U Pg) N SR, wherePg is the setNO of 7. We can construct an sHBAC program =
grant permissions of somg, € saf(ny). SinceCo12 € Cop, (Mhd, fo, {G} | f € Mhd}, PRM, SET, Cy) that simulates as

m;, can be reached even whgias never been called. If the follows. DefinePRM = Q, SP; = PRMfor all f € Mhd,

control reaches; via m, andg has never been called, then andc, = {0o}. For eachf e Mhd, the control flow graph

the current permissions becon@$U Pc) N Sh,. The check G/ is the same a6+ except that each call nods replaced

nodes. must not abort the execution in the former case but with the structure shown in Fig. 8 and the check nogdés

must abort the execution in the latter case. However, there replaced with the structure shown in Fig. 9. DefBET be

can be no such check node sir@g, C Co>. m the set of all call nodes it . In an execution of’, the current
permissions represent the stateM for the current stack
(except the topmost node; i.e., the current permissions equal
the singletor{ 6(. .. 5(6(do, M), My), ..., m;_1) } if the stack

4 An Extended Model equalsmm, ... m;_;m;). The structure in Fig. 8 selects a call
noden; corresponding to the current stagef Mg andn; sets

An HBAC program cannot remove a permission from the the next state = §(g;, n) of Mg to the current permissions.

current permissions unless it takes the intersection of the The structure in Fig. 9 blocks the execution unless the current

current permissions and the static permissions of a calleestate ofMg is a final state.

R
P
i

check[qo] (j(j .

- C check[qyd
 checkla, :

callg[{q’o},Q] @ @wlg[{qu,Q]

ALY
P

o =6(g,n) (0<i<k)

Figure 8 Structure for replacing a call node in an R-SI pro-
gram

checkla 1 () @ - () check{a]
“cheek[az],
e
{q7,....q0) ={g” 16(q".,nc) € F}
Figure 9 Structure for replacing a check node in an R-SI
program

Consider the case in whiclhh has more than one check
nodesng,...,Nem. Let Mg be the product automaton of
Mg,,..., Mg, whereMg (1 < i < m) is the DFA specified
forng. Also letFFj = Q1 X -+ X Qi1 X Fi X Qj11 X -+ X Qn
for 1 <i < mwhereQ; andF; (1 < j < m) are the state set
and the final state set dflr;, respectively. In other words,
FFi is the set oMR’s states that contains a final statehdg
as a component. Then constru¢tas stated above, except
that when replacing each check nodg we considerFF;
asF. m|

In the SHBAC programx’ in the proof of Theorem 6, the
accept permissions of every call node in metticejualSP;.
This means that thefliect of finished method execution is

canceled and thus the current permissions depend only on
the current stack. We call the class of such restricted sHBAC

programs sH-SI. By the proof of Theorem 6, R-SEH-SI.
Moreover, we can show sH-S R-SI.

Theorem 7. sH-SI< R-SI

Proof. For a given sH-SI program = (Mhd, fo,{G¢ | f €
Mhd}, PRM, SET, Cy), consider a DFAM = (NO, 2°RM C,,
F,6) defined as follows. The alphabet M is the node
set NO of x, the state set is the power set BRM, and
the initial state isCy. For each call noda of = such that
IS(n) = call,[Pg, Pa] and each subs&@ ¢ PRM, 6(C,n) =
(CUPg)NSE,if n ¢ SETands(C,n) = Pg N SE, if
n € SET. For any other noden and each subs& c PRM,
6(C,m) = C. The state oM after reading a node sequence
represents the current permissionsrafhen the stack is-.

sHBAC

Ths
HBAC
Th4 Thi
Thé /{/ 0]
sH-S| EFR-S| F-SA
Th7 Th3
[8]
NM Th2 (5] SHA

bold arrow: new result
o - B:a canbesimulated by B

Figure 10 Comparison of the expressive power

We can construct an R-SI prograrhthat simulatex as fol-
lows. For each check nodesuch thatlS(n) = checkP],
change the label tt5(n) = checkR] where the regular lan-
guageR is given by a copy oM whose finial state sdt is
{C|PcC). O

Note that HBAC< sHBAC by definition. SHAZ sHBAC
since the proof of Theorem 5 remains valid for sHBAC.
Known results and new results are summarized in Fig. 10.
For any pair of program classesp, eithera < gora £ B
has been proved. In the figure, an arrow is omitted between
program classes andg if @ < B ora £ g can be implied
by other relations. For example, R-81JVM is implied by
JVM < HBAC and R-SI£ HBAC.

5 Conclusion

The expressive power of five subclasses of programs with
access control was compared. In particular, the expressive
powers are incomparable between any pair of history-based
access control, regular stack inspection and shallow history
automata. Based on these results, we introduced an extension
of HBAC, of which expressive power exceeds that of regular
stack inspection. It is left as a future study to clarify whether
some composition of programs can simulate HBAC, for ex-
ample, HBAC= JVM x SHA andglor HBAC < R-SIx F-SA.

References

[1] M. Abadi and C. Fournet, “Access control based on ex-
ecution history,” Network & Distributed System Secu-
rity Symp., pp.107-121, 2003.

[2] A. Banerjee and D.A. Naumann, “History-based ac-
cess control and secure information flow,” CASSIS04,
LNCS 3362, pp.27-48, 2004.

[3]

[4]

5]

[6]

[7]

[8]

(9]

[10]

M. Bartoletti, P. Degano, and G.L. Ferrari, “History-
based access control with local policies,” 8th FOS-
SACS, LNCS 3441, pp.316-332, 2005.

J. Esparza, A. Ktera, and S. Schwoon, “Model-
checking LTL with regular variations for pushdown
systems,” TACSO01, LNCS 2215, pp.316-339, 2001.

P.W. Fong, “Access control by tracking shallow exe-
cution history,” IEEE Symp. on Security & Privacy,
pp.43-55, 2004.

L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers, “Going beyond the sandbox: An
overview of the new security architecture in the J&va
developmentkit 1.2,” USENIX Symp. on Internet Tech-
nologies and Systems, pp.103-112, 1997.

T. Jensen, D. le Mtayer, and T. Thorn, “Verification of
control flow based security properties,” IEEE Symp. on
Security & Privacy, pp.89—-103, 1999.

N. Nitta, Y. Takata, and H. Seki, “Anficient secu-
rity verification method for programs with stack inspec-
tion,” 8th ACM Computer & Communications Security,
pp.68-77, 2001.

F.B. Schneider, “Enforceable security policies,” ACM
Trans. Information & System Security, vol.3, no.1,
pp.30-50, 2000.

Y. Takata, J. Wang, and H. Seki, “A formal model
and its verification of history-based access control,” IE-
ICE Trans. Inf. & Syst., vol.J91-D, no.4, pp.847—-858,
2008. In Japanese. Earlier version appeared in 11th ES-
ORICS, LNCS 4189, pp.263-278, 2006.

