
Design and Evaluation of Dynamic Software Birthmarks Based on API Calls

Haruaki Tamada Keiji Okamoto Masahide Nakamura Akito Monden
Ken-ichi Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology,

8916-5, Takayama, Ikoma, Nara 630-0101, Japan,
Email: {harua-t, keiji-o, masa-n, akito-m, matumoto}@is.naist.jp

Abstract

This paper presents a technique of dynamic software
birthmarks to support efficient detection of software theft.
A dynamic birthmarkf(p, I) is a set of unique and na-
tive characteristics of a programp, obtained by executing
p with a given inputI. For a pair of softwarep and q, if
f(p, I) = f(q, I) holds,q is suspected as a copy ofp. In
this paper, we propose two kinds of dynamic birthmarks,
EXESEQ and EXEFREQ for the abovef . In general, it is
difficult for adversaries to alter API calls in the binary code
automatically. Based on the fact, we extensively use runtime
information of API calls as a strong signature of the pro-
gram, specifically, the execution order for EXESEQ and the
frequency distribution for EXEFREQ. We evaluated the pro-
posed birthmarks through two experiments. The first exper-
iment evaluates the preservation and distinction properties
of the birthmarks with a set of the same-purpose applica-
tions. In the second experiment, we examined the impact of
using different compilers. The results showed that the birth-
marks of an extended-version application was very similar
to that of its ancestor application, and that the birthmarks
are robust enough to tolerate different compilers.

Key Words: software theft, copyright protection, software
birthmark, API calls, dynamic analysis

1 Introduction

In highly competitive world of software industry, the
software theftis an issue that often arises. Recently, many
incidents have been reported, including; SCO Group’s
lawsuit against IBM [19], GPL infringement [5], piracy
of MS-Office [18], and copyright infringement of free-
ware/shareware [24]. According to a recent report by Busi-
ness Software Alliance [2], in 2003 more than 2.8 billion
dollars worth of computer software products were copied,

sold illegally, or stolen. It is therefore crucial for software
companies to protect their own intellectual properties.

It is, however, not an easy task to protect software from
such theft. Since a number of software products are dis-
tributed today, evendetecting suspected copiesis quite dif-
ficult, unless the product is well-known to the public. More-
over, an adversary would add a little crafty modification to
the stolen code, and would insist of the ownership for the
modified code, as if it was completely developed by the ad-
versary. In such a case, detection of the theft becomes much
more difficult, since it requires a manual binary code anal-
ysis to get a reasonable evidence. The binary code analysis
is very expensive and needs extremely high skill.

To facilitate the detection of the theft, a concept ofsoft-
ware birthmarkhas been proposed [7, 15, 22]. Intuitively,
a (static) birthmarkf(p) of a programsp is the set ofna-
tive anduniquecharacteristics thatp originally possesses.
f(p) is computed by applying a certain methodf to p itself.
A set of used classes, inheritance relationships, or types of
field variables are examples of birthmarks [22]. For a pair
of programsp andq, if f(p) = f(q) holds,q is very likely
to be a stolen copy ofp (and vice versa). Unfortunately,
for the static birthmark, some effective attacking methods
to alter the original birthmarks have been proposed[6, 15].

To complement the weakness of the static birthmark, a
technique using program’s runtime information was pro-
posed, specifically calleddynamic birthmark[15]. For
a given programp and an inputI, a dynamic birthmark
f(p, I) is derived based on an information obtained by exe-
cutingp with I. In [15], Myles et al. presented a dynamic
birthmark WPP, and evaluated it with a small Java program.
The WPP birthmark utilizes the structure ofprogram execu-
tion pathsas a unique signature of the program. However,
as mentioned by the authors, the WPP birthmark is frag-
ile to program optimization, including loop transformations
and inlining functions. Therefore, the WPP birthmark is not
good at programs for which various compilers and compiler
options are available, such as Windows applications.

In this paper, we propose two new dynamic birthmarks
EXESEQ and EXEFREQ, which are well applicable to
Windows applications. In general, a complex program is
built with the support of variousAPIs(Application Program
Interfaces), to make full use of ready-made features pro-
vided by the operating system. For a programp that calls
some APIs, it is difficult for adversaries to alter the API
calls in p with other equivalent ones, especially low-level
APIs such as file I/O, semaphore and GUIs. Also, since the
APIs are already built in the OS, the compiler does not opti-
mize the APIs themselves. Therefore, we consider that the
API calls can be used as a robust signature to characterize
the program. In the proposed method, for a given program
p and an inputI, we executep with I, and measure theor-
dered sequenceandfrequencyof API calls during runtime.
Then, we use the ordered sequence and the frequency as
birthmarksEXESEQ(p, I) and EXEFREQ(p, I), re-
spectively.

The proposed birthmarks are evaluated through two ex-
periments. The first experiment evaluates thepreservation
anddistinction propertiesfor a set of same-purpose appli-
cations (Windows MP3 tag editors). As a result, the pro-
posed birthmarks were able to distinguish well different ap-
plications independently developed. Also, it was shown
that an application and its extended version have quite sim-
ilar birthmarks. In the second experiment, we evaluate how
the proposed birthmarks can tolerate the program optimiza-
tion, by employingdifferent commercial compilersvarying
their compile options. In general, compiling the same pro-
gram with debug option and release option yields different
executable with different instruction sequences. An adver-
sary who could obtain source code might exploit this phe-
nomenon. However, the proposed birthmarks were shown
to be well preserved even if different compilers and options
were used.

The preliminary idea of the proposed birthmarks was
originally published in a workshop paper [23]. Changes
were made for this version, most significantly the addi-
tion of the quantitative evaluation with the practical MS-
Windows applications and commercial compilers. These
new results clarify the applicability and limitations of the
proposed birthmarks against realistic situation of software
theft.

2 Related Work

Software watermarking(often calledsoftware finger-
printing) is a well-known technique used to provide a way
to prove ownership of stolen software [4, 14]. Unfortu-
nately, watermarking is not always feasible for our objec-
tive. A watermark is basically an extra information for the
program. Therefore, it requires software developers to em-
bed a watermarkbeforereleasing the software. Thus, proofs

cannot be given for already-released software without wa-
termarks.

Software similarity computationis also a technique,
which is commonly used for plagiarism detection in pro-
gramming classes. Various methods for similarity compu-
tation have been proposed based on attribute counting [17],
structure metrics [1], Kolmogorov complexity [3], and code
clones [10]. Unfortunately, since these methods require the
source codeof software, they are not applicable in our prob-
lem setting where software products are usually distributed
withoutsource code.

There is also a technique calledauthorship analysis[11].
It tries to identify the author (as a programmer) from dif-
ferent programs by focusing on the programming style and
program layouts peculiar to the programmer. Although the
objective is different from ours, the term(program) birth-
markwas originally used by Grover [7] to refer such pecu-
liarity.

3 Definitions

3.1 Copy Relation

We start with formulation what it means for a programq
to be acopyof another programp.

Definition 1 (Copy Relation) Let Prog be a set of given
programs. Let≡cp denote an equivalent relation overProg
such that: forp, q ∈ Prog, p ≡cp q holds iff q is acopyof
p (vice versa). The relation≡cp is called acopy relation.

The criteria for whether or notq is acopyof p can vary
depending on the context. For example, each of the follow-
ing criterion is relatively reasonable for general computer
programs:

(a) q is an exact duplication ofp,

(b) q is obtained fromp by renaming all identifiers in the
source code ofp, or

(c) q is obtained fromp by eliminating all the comment
lines in the source code ofp.

To avoid confusion, we suppose that≡cp is originally
givenby the user. Since≡cp is an equivalent relation, the
following proposition holds.

Proposition 1 For p, q ∈ Prog, the following properties
hold. (Reflexive)p ≡cp p, (Symmetric)p ≡cp q ⇒ q ≡cp p,
(Transitive)p ≡cp q ∧ q ≡cp r ⇒ p ≡cp r.

All the above properties meet well the intuition of copy.
Next, if q is a copy ofp, the external behavior ofq should
be identical top’s.

Proposition 2 Let Spec(p) be a (external) specification
conformed byp. Then, the following property holds:p ≡cp

q ⇒ Spec(p) = Spec(q).

Note that the inverse of this proposition does not neces-
sarily hold since we can see, in general, different program
implementations conforming the same specification.

3.2 Software Birthmarks

GivenProg and≡cp, we define the concept ofdynamic
birthmark of a program. The following definition is a re-
statement of the definition by Myles et al. [15]1.

Definition 2 (Dynamic Birthmark) Let p, q ∈ Prog be
programs,I be a given input and≡cp be a given copy rela-
tion. Let f(p, I) be a set of characteristics extracted from
p by executingp with I. f(p, I) is called adynamic birth-
markof p under≡cp iff both of the following conditions are
satisfied:

1. f(p, I) is obtained only fromp itself by executingp
with I, and

2. p ≡cp q ⇒ f(p, I) = f(q, I)

Condition 1 means that the birthmark is not extra in-
formation and is required forp to run. Hence, extracting
a birthmark does not require extra code as watermarking
does. Condition 2 states that the same birthmark has to be
obtained from copied programs. By contraposition, if birth-
marksf(p, I) andf(q, I) are different, thenp ̸≡cp q holds.
That is, we can guarantee thatq is not a copy ofp. Hope-
fully a birthmark should satisfy the following properties.

Property 1 (Preservation) For p′ obtained fromp by any
program transformation,f(p, I) = f(p′, I) holds.

Property 2 (Distinction) For p andq such thatSpec(p) =
Spec(q), if p and q are written independently, then
f(p, I) ̸= f(q, I).

Property 1 specifies thepreservation propertyof the
birthmark against program transformation. We consider
that clever crackers may try to modify birthmarks by
transforming the original program into an semantically-
equivalent one to hide the fact of theft. Property 1 speci-
fies that the same birthmark must be obtained fromp and
convertedp′.

Property 2 specifies thedistinction propertyof the birth-
mark, stating that: even though the specification ofp and

1The definition of static birthmark is originally given in our previous
research [22]. The definitions of the static and dynamic birthmarks are
almost the same, except the static birthmark is independent of the inputI.

q is the same, if implemented separately, different birth-
marks should be extracted. In general, the detail of two
independent programs is almost never completely the same.
However, in the case thatp andq are bothtiny programs,
extracted birthmarks could become the same, even ifp and
q are written independently.

Those properties should be satisfied ideally. However,
there exist many ways of transformation and implementa-
tion of a program. Therefore, in reality, it is difficult to
extract a birthmark that perfectly achieves both Properties
1 and 2. Those properties should be tuned within an allow-
able range at the user’s discretion. Now, the the question
is how to develop an effective methodf for a setProg of
programs and the copy relation≡cp.

4 New Dynamic Birthmarks Based on API
Calls

4.1 Key Idea

As mentioned before, applications running on an operat-
ing system (OS) can use various build-in features of the OS
by callingAPIs. The typical API function calls include the
file input/output, synchronized objects such as semaphore,
mutex and critical section and graphic user interface (GUI).
For API calls involved in a programp (in a binary form),
we focus on the following properties.

• It is hardly possible to replace the API calls with other
instructions without changing the behavior ofp.

• In general, a compiler does not optimize the APIs
themselves.

As for the first property, this paper assumes a relatively
complex program (application) operating on the recent so-
phisticated operating systems such as MS Windows, where
every access to system resources is strictly managed via
APIs. In such OS, any operation to the file system, for
instance, must be done via file I/O APIs. The operations
to GUIs (widgets) must be also performed by API calls.
Hence, it is almost impossible to alter these API calls with
other user-made instructions.

These properties motivated us to use the history (i.e., ex-
ecution log) of API calls for robust dynamic birthmarks.
In the following, we propose two new dynamic birthmarks:
EXESEQ and EXEFREQ.

4.2 EXESEQ: Sequence of API Function Calls
Birthmark

For a given programp and an inputI, executingp with
I yields an ordered sequence of API calls. It is difficult

for an adversary to hackp and scramble the order of API
calls completely without changing the original behavior of
p. Also, it is a rare case that two different programsp andq
have the same order of API calls, even ifp andq are using
the same set of APIs. Hence, we use the ordered sequence
of API calls as a dynamic birthmarks. In practice, it is suf-
ficient to pay our attention to only a certain setW of APIs,
which is defined as follows.

Definition 3 (EXESEQ) Let p be a given program,I be a
given input, andW be a given set of API functions. Let
w1, w2, ..., wn be a sequence of API calls executed byp
with I in this order. Ifwi(1 ≤ i ≤ n) does not belong to
W , we eliminate it from the sequence. Then, the resultant
sequence(w1, w2, ..., wm) is called anEXESEQ birthmark
of p with I, denoted byEXESEQ(p, I).

4.3 EXEFREQ: Frequency of API Function Calls
Birthmark

The frequency distribution in the number of executed
API calls also provides a unique and robust characteristic
of a program. Even if an adversary succeeds in changing
the order of some APIs inEXESEQ(p, I), the total num-
ber of calls for each of the APIs could still remain the
same. Hence, we use the frequency distribution as the sec-
ond birthmark EXEFREQ.

Definition 4 (EXEFREQ) Let p be a given program,I be
a given input, and(w1, w2, ..., wn) be EXESEQ(p, I). Let
K be a set of allAPI namesappearing inEXESEQ(p, I).
Then, letk1, k2, ..., km be a sequence of API names ob-
tained by arranging all elements inK in a certain (fixed)
order. For ki (1 ≤ i ≤ m), let ai be the num-
ber of appearances ofki in EXESEQ(p, I). Then, the se-
quence((k1, a1), (k2, a2), ..., (km, am)) is called anEXE-
FREQ birthmarkof p, denoted byEXEFREQ(p, I).

4.4 Similarity of Birthmarks

Each of the proposed birthmarks is in a form of a
sequence. Suppose that we have a pair of birthmarks
f(p, I) = (p1, p2, ..., pn) andf(q, I) = (q1, q2, ..., qn) for
two programsp and q. Basically, we say thatf(p, I) is
equal tof(q, I), denoted byf(p, I) = f(q, I), iff pi = qi

for all i. In other word, even if only a single pair ofpi andqi

is different and other pairs are the same,f(p, I) ̸= f(q, I).
Then, we have to conclude thatp is not a copy ofq, al-
though the both birthmarks are quitesimilar to each other.
Thus, comparing the birthmarks by the equality only makes
the method too sensitive.

To cope with the problem, we introduce thesimilarity
of the proposed birthmarks. Intuitively, the similarity be-

tween a pair of EXESEQ birthmarks is defined as the ra-
tio of matched sequencecommonly contained in both birth-
marks. On the other hand, the similarity between a pair of
EXEFREQ birthmarks is defined as anvector angle, by re-
garding the birthmarks as vectors.

Definition 5 (Similarity of EXESEQ) Let p and q be
given programs, I be a given input. Suppose
that EXESEQ(p, I) = ρp = (p1, p2, ..., pm) and
EXESEQ(q, I) = ρq = (q1, q2, ..., qn) are derived from
p andq, respectively. Then, a sequenceρ = (r1, r2, ..., rk)
is called amatch amongρp and ρq, iff both ρp and ρq

commonly containρ as a sub-sequence, i.e., there ex-
ist i and j such thatr1 = pi = qj , r2 = pi+1 =
qj+1, ..., rk = pi+k = qi+k. A match ρ is called
the longest matchiff there is no other match longer than
ρ. Let ρ = (r1, r2, ..., rk) be the longest match among
EXESEQ(p, I) and EXESEQ(q, I). Then, the simi-
larity of the two birthmarks is defined by2k/(m + n),
which is the ratio of the longest match in the total of
EXESEQ(p, I) andEXESEQ(q, I). Since1 ≤ k ≤ m,
1 ≤ k ≤ n, the similarity varies within the range of 0.0 to
1.0.

Definition 6 (Similarity of EXEFREQ) Let p and q be
given programs,I be a given input. Suppose that
EXEFREQ(p, I) = ((k1, p1), (k2, p2), ..., (kn, pn)) and
EXEFREQ(q, I) = ((k1, q1), (k2, q2), ..., (kn, qn)) are
derived from p and q, respectively. Then, let⃗vp =
[p1, p2, ..., pn] and v⃗q = [q1, q2, ..., qn] be two vectors ob-
tained fromEXEFREQ(p, I) and EXEFREQ(q, I).
Then, the similarity of the two birthmarks is defined by:

p1q1 + p2q2 + ... + pnqn√
p2
1 + p2

2 + ... + p2
n

√
q2
1 + q2

2 + ... + q2
n

which is thecosine angleof v⃗p and v⃗q. The range of the
similarity is from 0.0 to 1.0, since allpi andqi are positive
integers.

5 Experimental Evaluation

5.1 Preliminaries

For the experiment, we have implemented a software
suite —K2 Birthmark Toolkit(K2BTk), which extracts and
evaluates the proposed two dynamic birthmarks for any MS
Windows applications (executables).K2BTk mainly con-
sists of two modules:WinAPI capture(wapicapture)
andbirthmark evaluator(bmeval).

wapicapture is a module tolog every observable API
call during runtime for a Windows application. When the
OS loads an applicationp on the memory,wapicapture

rewrites theimport section(i.e., a table for function point-
ers) ofp, so that every call of an APIc is redirected to a
wrapper function. The wrapper function outputs a log for
c to a file, and then invokes the original APIc. During the
execution ofp, wapicapture acts as aparasiteto moni-
tor and log the API calls. To achieve this,wapicapture
employs a technique ofWindows Hook[20]. bmeval ex-
tracts EXESEQ and EXEFREQ from the log obtained by
wapicapture , then evaluates the similarity among the
derived birthmarks.

Using K2BTk, we conduct two experiments to show
the effectiveness of the proposed birthmarks. As a set of
APIs to be used as the birthmark computation (i.e, the set
W , see Definition 3), we have selected 604 APIs from
winbase.h of Windows SDK, which is a header file of
Windows’ standard APIs. Indeed,winbase.h defines
total 613 API functions. However, we omit the following
8 APIs since for any application, they are called so many
times that the execution ofbmeval does not terminate
in a reasonable time: EnterCriticalSection ,
LeaveCriticalSection , TLSGetValue ,
RestoreLastError , LocalLock , LocalUnlock ,
HeapAlloc , and HeapFree . Moreover,
WriteProfileStringA is also omitted, since it
is used inwapicapture .

5.2 Experiment 1: Preservation and Distinction
Performance

In this experiment, we evaluate the preservation and dis-
tinction properties (see Section 3.2) of the proposed birth-
marks. We employ a set of thesame-purposeapplications,
and evaluate the similarity among the applications by the
proposed birthmarks.

We take the following five applications: Super Tag
Editor 2.00b7 (STE) [13], Super Tag Editor extended
(STE-ext) [8], Tsuyutagu 2.02 (Tsuyutagu) [21],
TeaTime 2.525 (Teatime) [12], and Mp3Tag 2.2.6.0
(MP3Tag) [9]. All of them are an MP3 tag editor, which
allows the user to edit information in MP3 music files.

Among the five applications,STE-ext is an extended
version ofSTE, where the author ofSTE-ext legally took
over the originalSTE project and added various features.
Thus, it is expected thatSTEandSTE-ext are quitesim-
ilar to each other.2 Other three applications are developed
independently, so the birthmarks should distinguish them.

For just comparison, we first see the similarity with re-
spect to thedifferenceamong executable files. For this, we
use a toolWDIFF[16], which can create apatchamong two

2More practically, we should have taken an example from actual inci-
dents of theft, but we could not obtain any products concerning the inci-
dents. However, we cansimulatethe scenario of theft, if we ignore the
fact that the author ofSTE legally agrees with the one ofSTE-ext for the
reuse ofSTE.

Table 1. Difference on executable files
Product name File size Patch size %

STE 2.00b7 565,248 —– —–
STE-Ext 966,656 706,189 73.055%
Tsuyutagu 956,928 903,345 94.400%
TeaTime 1,006,080 954,839 94.907%
Mp3tag 1,810,432 1,626,527 89.841%

Table 2. The result of Experiment 1
EXESEQ EXEFREQ

of calls len. of similarity similarity
match

STE 2.00b7 13,286 —– —– —–
STE-Ext 13,447 12,781 0.9562 0.9997
Tsuyutagu 10,834 129 0.0107 0.3855
TeaTime 1,647 70 0.0094 0.2891
Mp3Tag 191,783 189 0.0018 0.181

applications as a binary code difference (like UNIX’sdiff
for the source code difference). The result is shown in Table
1. The first column shows the file size of each product. The
second column represents the patch size created byWDIFF,
which reflects the degree of the binary-level difference from
STE. The% (percentage)column represents the percentage
of patch size over file size. From this result, we cannot say
anything but “STE is quite different from the other four ap-
plications”.

Next, we evaluate the similarities by the proposed dy-
namic birthmarks. As the input to each application, we
operate a simple scenario; launch the application and then
immediately quit. The birthmarks are computed from API
calls captured during the scenario.

Table 2 summarizes the result. First, we see the result
of EXESEQ. The column# of callsrepresents a number of
API calls found in the EXESEQ birthmark, which is equal
to the length of EXESEQ. The columnlen. of matchshows
the length of the longest match among EXESEQ birthmarks
of STEand each of other four applications. An fragment of
a match computed bybmeval is shown in Figure 1. As
seen in the columnsimilarity in Table 2, STE-ext has
a quite similar birthmark to that ofSTE, compared to the
other three products.

Next, we examine the result of EXEFREQ. Figure 2
shows frequency distribution diagrams obtained from the
EXEFREQ birthmarks, where the X-axis represents the
APIs ordered by a sequence number, Y-axis depicts the fre-
quency (i.e., the number of calls) for each API, and Z-axis
enumerates the five applications. From the figure, it can
be seen that the graph shapes ofSTE and STE-ext are
quite similar, which achieves 0.9997 of the similarity. On
the other hand, other three applications are not similar to
STEat all.

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Tsuyutagu
Mp3tag
TeaTime
STE Ext
STE2.00b71

10
100

1000

10000

100000

of calls

Seq. num. of API

Figure 2. Frequency distribution of EXEFREQ

Thus, in this experiment, it was shown that the pro-
posed birthmarks achieved a high preservation property for
related programs (STE and STE-ext), and a good dis-
tinction property for independently developed applications.
This implies that by using the proposed birthmarks, we can
identify the copy-prone products from a set of the same-
purpose applications quite efficiently in a quite practical set-
ting.

5.3 Experiment 2: Impact on Different Compilers
and Compile Options

In general, for a source codes, if we use different com-
piler options to compiles, different binary codes are gen-
erated. For example, a binary codebd compiled froms
with the debug optioncontains debug codes and informa-
tion (like symbol table). On the other hand, a binary code
br compiled froms with therelease optionis optimized for
fast and efficient execution. Hence, executingbd andbr may
yield different API calls although both are generated from
the same sources, which might be used as an attack to alter
and scramble the proposed birthmarks. Also, the know-how
of compilers and optimization techniques (e.g., loop trans-
formation, inlining functions) widely vary among the ven-
dors and the release versions of the compilers. Therefore,
different compilers surely generate different binary codes
from the same source code. If an adversary succeeds in ob-
taining the source codes of a productb, he would compile
s with the different compiler or different option to eliminate

Table 3. Size of STE executables
Compiler Option File size

Intel C++ 8.1.024 Debug 2,281,472
Release 913,408

Visual C++ 6.0 Debug 1,699,960
Release 581,632

Visual C++ 7.0 Debug 2,113,536
Release 577,536

the birthmark ofb.
Our interest here is to evaluate the resilience of the pro-

posed birthmarks against the program transformation with
the different compilers. For the experiment, we chose the
following commercial compilers: Intel C++ 8.1.024ev05
(evaluation version), Microsoft Visual C++ 6.0 Professional
Edition SP6, and Microsoft Visual C++ 7.0. As the target
product, we selected Super Tag Editor 2.01 (STE).

Using each compiler, we compiled the source code of
STE with the debug and release options, where the debug
option is to use the default option of the compiler whereas
the release option is to use the strongest optimization level.
Table 3 shows the size of the resultantSTE executables,
where we can see the significant difference.

Now, we evaluate the similarity among theseSTE
executables by the proposed birthmarks. In the
birthmark computation, we excluded the following
four from the set W of APIs to be monitored:
lsBadReadPtr , lsBadWritePtr , HeapValidate ,

Figure 1. A match among EXESEQ(STE, I) and
EXESEQ(STE-Ext, I)

andWaitForMultipleObjectsEx . These four APIs
are so sensitive to the current status of the OS (memory us-
age, time, running processes) that they vary even when exe-
cuting the same executable in different timing. Hence, these
four APIs are omitted tonormalizethe birthmark similarity
between the same executable. The scenario of the execution
is the same as the one used in Experiment 1.

Tables 4 and 5 summarize the similarity of EXESEQ and
EXEFREQ birthmarks, respectively, for every pair of the
STE executables. We can see in Table 4 that every pair
of the executables achieves a high similarity over 0.9. Es-
pecially, the release builds are quite similar to each other,
where the similarity is around 0.97 or more. The subtle
difference on the EXESEQ birthmarks among the release
builds is completely eliminated by EXEFREQ birthmarks,
as shown in 5. This implies that small changes in the order
of API calls may give an impact on the EXESEQ birthmark,
but it can be recovered by the EXEFREQ birthmark. For the
EXEFREQ birthmarks, the similarity between every pair of
executables is more than 0.99.

In summary, it was shown in this experiment that the pro-
posed birthmark is quite robust against the attack with dif-
ferent compilers and compiler options. This implies that the
proposed birthmarks have quite strong tolerance against the
automatic program optimization.

6 Conclusion

In this paper, we have proposed dynamic birthmarks to
provide reasonable evidence of theft. First, we formulated

the dynamic birthmark of programs, and then presented two
types of birthmarks: EXESEQ birthmark and EXEFREQ
birthmark.

The proposed birthmarks were thoroughly evaluated by
two experiments. The evaluation was conducted from the
viewpoints of birthmark properties and compiler-specific
properties. The result showed that proposed birthmarks
have a good performance in practical use, and sufficient na-
tive information of applications which cannot be erased by
different compilers.

We are currently conducting a deeper security analysis
of the proposed birthmarks through more experiments. In-
vestigation of other types of dynamic birthmarks is also an
interesting problem for our future work.

References

[1] Alex Aiken. MOSS: A system for de-
tecting software plagiarism, Jun 2004.
http://www.cs.berkeley.edu/˜aiken/moss.html.

[2] Business Software Alliance. Global software piracy
study, Jun 2004. http://www.bsa.org/globalstudy/.

[3] Xin Chen, Brent Francia, Ming Li, Brian Mckinnon,
and Amit Seker. SID plagiarism detection, Dec 2003.
http://genome.math.uwaterloo.ca/SID/.

[4] Christian Collberg and Clark Thomborson. Software
watermarking: Models and dynamic embeddings. In
Proc. of Principles of Programming Languages 1999,
POPL’99, pages 311–324, Jan 1999. San Antonio,
TX.

[5] Epson pulls linux software following
gpl violations (slashdot.org), Sep 2002.
http://slashdot.org/article.pl?sid=02/09/11/2225212.

[6] Kazuhide Fukushima, Toshihiro Tabata, and Kouichi
Sakurai. Program birthmark scheme with tolerance
to equivalent conversion of java classfiles. InIPSJ
SIG Notes, volume 2003, pages 81–86, Dec 2003. (in
Japanese).

[7] Derrick Grover, editor. The protection of computer
software – its technology and applications Second edi-
tion. The British Computer Society Monographs in
Informatics Cambridge University Press, May 1992.

[8] haseta. Super tag editor extended, Feb 2004.
http://hp.vector.co.jp/authors/VA012911/mp3DB/ste.html.

[9] Florian Heidenreich. Mp3tag - the uni-
versal tag editor and more, Nov 2004.
http://www.mp3tag.de/en/index.html.

Table 4. Similarities of EXESEQ in Experiment 2
Intel C++ 8.1.024 Visual C++ 6.0 Visual C++ 7.0
Debug Release Debug Release Debug Release

Intel C++ 8.1.024 Debug 1.0000 0.9492 0.9243 0.9492 0.9988 0.9492
Release —– 1.0000 0.9393 0.9698 0.9492 0.9996

Visual C++ 6.0 Debug —– —– 1.0000 0.9393 0.9243 0.9393
Release —– —– —– 1.0000 0.9492 0.9699

Visual C++ 7.0 Debug —– —– —– —– 1.0000 0.9492
Release —– —– —– —– —– 1.0000

Table 5. Similarities of EXEFREQ in Experiment 2
Intel C++ 8.1.024 Visual C++ 6.0 Visual C++ 7.0
Debug Release Debug Release Debug Release

Intel C++ 8.1.024 Debug 1.0000 0.9963 0.9966 0.9963 1.0000 0.9963
Release —– 1.0000 0.9912 1.0000 0.9963 1.0000

Visual C++ 6.0 Debug —– —– 1.0000 0.9912 0.9966 0.9912
Release —– —– —– 1.0000 0.9963 1.0000

Visual C++ 7.0 Debug —– —– —– —– 1.0000 0.9963
Release —– —– —– —– —– 1.0000

[10] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. Ccfinder: A multi-linguistic token-based code
clone detection system for large scale source code.
IEEE Trans. on Software Engineering, 28(7):654–
670, 2002.

[11] Ivan Krsul and Eugene H. Spafford. Authorship anal-
ysis: identifying the author of a program.Computers
and Security, 16(3):233–257, 1997.

[12] Toru Kuroda. Teatime, Jul 2002.
http://hp.vector.co.jp/authors/VA011396/.

[13] Mercury. Super tag editor, Dec 2001.
http://www5.wisnet.ne.jp/˜mercury/supertag/
index.html.

[14] Akito Monden, Hajimu Iida, Kenichi Matsumoto,
Katsuro Inoue, and Koji Torii. A practical method for
watermarking java programs. InProc. of COMPSAC
2000, 24th Computer Software and Applications Con-
ference, pages 191–197, 2000.

[15] Ginger Myles and Christian Collberg. Detecting soft-
ware theft via whole program path birthmarks. In
Proc. Information Security 7th International Con-
ference, ISC 2004, volume 3225, pages 404–415.
Springer-Verlag GmbH, Sep 2004. Palo Alto, CA,
USA.

[16] Tetsuhiro Nakagawa. Wdiff, May 1998.
http://www.vector.co.jp/soft/win95/util/
se057654.html.

[17] Karl J. Ottenstein. An algorithmic approach to the de-
tection and prevention of plagiarism.SIGCSE Bul-
letin, 8(4):30–41, 1976.

[18] Andy Patrizio. Pirates experience Office XP (wired
news), Mar 2001. http://www.wired.com/news/
business/0,1367,42402,00.html.

[19] Eric Raymond and Rob Landley. OSI position
paper on the sco-vs.-ibm complaint, May 2004.
http://www.opensource.org/sco-vs-ibm.html.

[20] Jeffrey Richter. Programming Applications for Mi-
crosoft Windows (Microsoft Programming Series).
Microsoft Press, 1999.

[21] P’s soft. Mpeg id3 tag editor tsuyutagu, Mar 2004.
http://www.lares.dti.ne.jp/˜mk3/Akmsoft/tuyutag.htm.

[22] Haruaki Tamada, Masahide Nakamura, Akito Mon-
den, and Ken ichi Matsumoto. Design and evalua-
tion of birthmarks for detecting theft of java programs.
In Proc. of IASTED International Conference on Soft-
ware Engineering (IASTED SE 2004), pages 569–575,
Feb 2004. Innsbruck, Austria.

[23] Haruaki Tamada, Keiji Okamoto, Masahide Naka-
mura, Akito Monden, and Ken ichi Matsumoto. Dy-
namic software birthmarks to detect the theft of win-
dows applications. InInternational Symposium on
Future Software Technology 2004 (ISFST 2004), Oct
2004. Xi’an, China.

[24] Tomohiro Ueno. The protest page to pocketmascot,
Sep 2001. http://members.jcom.home.ne.jp/tomohiro-
ueno/AboutPocketMascot/AboutPocketMascote.html.

