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Abstract 

Many computer systems are designed to make it easy 
for end-users to install and update software.  An 
undesirable side-effect, from the perspective of many 
software producers, is that hostile end-users may 
analyze or tamper with the software being installed or 
updated.  This paper proposes a way to avoid the 
side-effect without affecting the ease of installation 
and update.  We construct a computer system M with 
the following properties: 1) the end-user may install 
program P in any conveniently accessible area of M; 
2) the program P contains obfuscated instructions 
whose semantics are obscure and difficult to 
understand; and 3) an internal interpreter W, 
embedded in a non-accessible area of M, interprets 
the obfuscated instructions without revealing their 
semantics. Our W is a finite state machine (FSM) 
which gives context-dependent semantics and 
operand syntax to the obfuscated instructions in P; 
thus, attempts to statically analyze the relation 
between instructions and their semantics will not 
succeed. We present a systematic method to construct 
a P whose instruction stream is always interpreted 
correctly regardless of its input, even though changes 
in input will (in general) affect the execution 
sequence of instructions in P. Our framework is 
easily applied to conventional computer systems by 
adding a FSM unit to a virtual machine or a 
reconfigurable processor. 

1 Introduction 

Security is an overarching problem for today’s 
computer systems including personal computers, 
their peripherals, consumer electric devices, and any 
other machinery that contains software programs. 
Some systems administrators, and some software 
suppliers, require assurance that end-users will not 
analyze or tamper with protected programs or data. 
For example, a typical software digital rights 
management (DRM) system is designed to run in a 
“hostile” environment where the end-user is not fully 
trusted by the supplier of the content whose rights are 

being managed.  Typically, these DRM systems 
contain cryptographic keys and algorithms that need 
to be kept secret [Chow, Johnson and Oorschot 2002].  
There is, however, no known method for completely 
concealing these keys and algorithms from a 
determined attacker.  For example, the keys for the 
CSS encryption standard for DVD media content 
were revealed by a “crack” in 1999.  As a result, 
programs which subvert DVD copy protection are 
now widely distributed through the Internet [Patrizio 
1999]. Embedded software in consumer electric 
devices, e.g. mobile phones and set-top boxes, also 
needs to be protected since these devices are also 
susceptible to attacks by hostile users [The U.K. 
Parliament 2002]. However, it seems impossible to 
completely prohibit end-user access to the software 
implementation, without also making it impossible to 
update this software to patch a “bug” or add a 
“feature”. 

In order to hide secrets in software implementation, 
software obfuscation techniques have been proposed 
[Cohen 1993, Collberg and Thomborson 2002, 
Kanzaki et al. 2003]. Software obfuscations 
transform a program so that it is more difficult to 
understand, yet is functionally equivalent to the 
original program. However, there is no evidence 
those techniques are powerful enough to hide secrets 
in a program [Barak et al. 2001]. Given enough time 
and effort, the obfuscated program can be understood 
by hostile users since it still contains all the necessary 
information to be thoroughly understood. Although 
software obfuscations are practically useful to some 
extent, a variety of complementary techniques are 
needed to dissuade the widest possible range of 
attackers. 

Instead of obfuscating the program itself, this paper 
gives an idea for obfuscating the program 
interpretation. If the interpretation being taken is 
obscure and thus it can not be understood by a hostile 
user, the program being interpreted is also kept 
obscure since the user lacks the information about 
“how to read it.” This idea is similar to the 
randomized instruction-set approach [Barrantes et al. 



2003]; however, in the randomization approach, the 
interpretation itself is not obscure because 
randomized instructions still have one-to-one map to 
their semantics, although the map can be occasionally 
changed [Kc, Keromytis, and Prevelakis 2003]. On 
the other hand, our aim is to give a dynamic map 
between instructions and their semantics. 

In this paper we describe enhancements to our 
recently-proposed framework for constructing an 
interpreter W, which carries out obfuscated 
interpretations for a given program P [Monden et al, 
2003].  Here P is a translated version of an original 
program P0 written in a common programming 
language (such as Java bytecode and x86 assembly.) 
The obfuscated interpretation means that an 
interpretation W for a given instruction c is not fixed; 
specifically, the interpretation W(c) is determined not 
only by c itself but also by previous instructions input 
to W (Figure 1). 

In order to realize an obfuscated interpretation in W, 
we employ a FSM that takes as input an instruction c 
where each state makes a different interpretation for c. 
Since transitions between states are made according 
to the input, the interpretation for a particular type of 
instruction varies with respect to previous inputs. 
Such W we call a FSM-based interpreter. In our 
framework, W is built independent of P0; thus, many 
programs run on a single interpreter W, and any of the 
programs can be easily replaced to a new program for 
the sake of updating. 

In our original proposal [Monden et al, 2003], we had 
required the obfuscating opcode translation to 
preserve the number and type of the operands.  In this 
paper we demonstrate how to build a FSM without 
this restriction. This increases the range of 
possibilities from which the FSM W is chosen, which 
has an effect analogous to increasing the “key length” 
of a cryptographic cipher.  That is, the proposal in this 
paper is more resilient to brute-force enumerative 
(“naïve key-search”) attacks.  This paper also extends 

its predecessor by demonstrating an example in x86 
assembly code rather than in Java bytecode; this 
extension required us to add a dead-register analysis 
to our process for obfuscating code by interpretation. 

In some sense, the mechanism of our obfuscated 
interpretation is a kind of stream cipher where a 
ciphered bit sequence is decoded one bit at a time 
dependent on its context [Robshaw 1995, Stinson 
1995]; however, conventional stream ciphers can not 
be simply applied for encrypting the instructions in P 
since the instruction stream (execution sequence) of 
P varies according to conditional branches taken on 
its input. In our framework, through the process of 
translation P0 → P, we inject dummy instructions 
into P to force expedient state transitions in W so that 
P is always interpreted correctly regardless of its 
input. 

Apart from obfuscation techniques, another possible 
way to hide secrets in software is program encryption 
[Albert and Morse 1984, Herzberg and Pinter 1987]. 
Encrypting P0 by an encryption function E can make 
P0 difficult to understand. However, decryption E-1 
must take place before executing an encrypted 
program E(P0), and this decryption must reveal P0 (or 
a part of P0) to the execution unit or interpreter, thus, 
hostile users have a chance to intercept and read the 
decrypted program P0. On the other hand, in our 
framework, although W(P) may reveal an instruction 
stream of P0 as it executes on a particular input I, it 
will not reveal P0 itself. Anyway, obfuscation of code, 
obfuscation of interpretation, and encryption of code 
are not exclusive techniques, and should be used as 
complementary techniques to secure the software 
system. 

The rest of this paper is organized as follows. In 
Section 2, a framework for obfuscated interpretation 
is described which is less restrictive than our original 
proposal. Section 3 shows a case study of obfuscated 
interpretation. Section 4 discusses several attacks and 
defences. Finally, Section 5 concludes the paper with 
some suggestions for future work. 

2 Framework for Obfuscated Interpretation 

2.1 Overview 

Before going into the mechanism of the FSM-based 
interpreter W, we describe the surroundings of W 
(Figure 2), then clarify the aim of our framework. The 
following are brief definitions of materials related to 
W. 

Instruction stream
Obfuscated

Interpretation

......

......

......

......

Program
P

sub
sub
add
div
...

Result of 
interpretation
(Semantics)

Input I
No static
relationship

add sub add sub.. add sub add sub..

Figure 1. Concept of obfuscated interpretation 



P0: is a target program intended to be hidden from 
hostile users. For simplicity, we assume P0 is written 
in a low level programming language, such as 
bytecode or machine code, where each statement in 
P0 consists of a single opcode and (occasionally) 
some operands. 

W0: is a common (conventional) interpreter for P0, 
such as a Java Virtual Machine, a Common Language 
Runtime or an x86 processor. 

Px: is a program containing obfuscated instructions 
whose semantics are determined during execution 
according to their context. This Px is an equivalently 
translated version of P0, i.e. Px has the same 
functionality as P0. 

I: is an input of P0 and Px. Note that P0 and Px take the 
same input. 

x: is the specification of a FSM that defines a 
dynamic map between obfuscated instructions 
(inputs of the FSM) and their semantics (outputs of 
the FSM). This x is used both in a FSM-based 
interpreter Wx and a program translator Tx. 

Wx: is a FSM-based interpreter that can evaluate 
obfuscated instructions of Px according to the current 
state of the FSM built inside. This Wx is an extension 
of W0 with a FSM unit of given specifications x. 

Tx: is a program translator that automatically 
translates P0 into Px with respect to the specifications 
x. 

Mx: is a computer system delivered to and/or owned 
by a program user. 

In our framework, we assume Wx is hidden from the 
program user as much as possible, e.g. if Mx is an 
electronic device such as a mobile phone, then Wx 
should be built in a non-accessible part of Mx so as to 
prevent the user reading the implementation of Wx. 
However, Px must be delivered to the user and put in 
an accessible area of Mx so as to enable its updating.  
There should be many functionally-different Wx, and 
ideally each machine Mx would be manufactured with 
a different Wx so that an adversary cannot easily guess 
one machine’s interpreter after having “cracked” 
some other machine’s interpreter. 

Building an efficient Tx in a systematic manner is a 
fundamental part of this framework. Since Px is quite 
different from ordinary programs, even though the 
program developer owns x, writing Px from scratch is 
extremely difficult for the developer. In our 
framework, we provide a systematic method Tx to 
construct Px from any given P0 and x. 

In comparison to our framework, Figure 3 shows an 
alternative approach to hide the program 
interpretation from the user [T. Maude and D. Maude 
1984, Zhang and Gupta 2003]. In this approach, an 
essential piece of code (denoted s) is cut off from P0.  
This secret portion s is embedded in an interpreter Ws 
which is implemented in secure hardware, and 
attached to computer system Ms.  The remaining part 
of the program (denoted Ps) is delivered to the user in 

W0

Tx

Conventional
Interpreter

FSM-based
Interpreter

P0

Input I

Program
Translator

Output

Output

Input I

Px Wx

Spec. x (chosen when Mx is manufactured)

(Display)

(Display)

Computer System Mx  
Figure 2. Framework for obfuscated 

interpretation 

Interpreter

P0

Ps

s

Ws

Input I

Output
(Display)

Computer System Ms

a

 
Figure 3. Alternative approach to hide program 

interpretation 

E

Interpreter

P0

Program
Encrypter

Output

Input I

E(P0) W0
(Display)

Computer System Mk

P0E-1

Decrypter

Cryptographic key k
(chosen when Mk is manufactured)

RAM R

Figure 4. Basic approach for program 
encryption 



the usual way.  This program is executed normally on 
the CPU in Ms, except for the secret portion which is 
executed by making calls to the interpreter Ws.  For 
example, some of the arithmetic operations in Ps may 
be executed by Ws, possibly updating one or more 
state variables held in Ws.  Since the return value from 
the calls to the interpreter Ws may be used to control 
branches and case statements in Ps, much of the 
control structure of P0 can be obscured.  One 
difficulty with this approach is that it does not allow 
multiprogramming: while Ws is holding state for Ps, 
no other program can be run on Ws.  Another problem 
is that any adversary who examines Ps will soon 
discover how to call Ws.  The adversary can then write 
a program which makes similar calls to Ws in various 
orders.  An analysis of the variability in the output of 
Ws, when it is exercised in this systematic way, is 
likely to reveal secrets of Ws.  A final problem is that 
updates to Ps will, in general, require updates to its 
secret portion s.  Thus we must have a secure channel 
for the transmission of s in encrypted form, and this 
channel is another avenue for attack.  On the other 
hand, in our framework, Wx is built independent of 
P0; thus, many different programs run on a single 
interpreter Wx, and any of the programs can be easily 
updated without sending secret messages. 

The most commonly-proposed method for hiding 
interpretation is program encryption [Albert and 
Morse 1984, Herzberg and Pinter 1987]. Figure 4 
illustrates a typical scheme in which an encrypted 
program E(P0) is delivered to the user, and a 
decrypter E-1 including a decryption key k is put in a 
non-accessible area of a computer system Mk.  This 
E-1 decrypts E(P0), and puts the resultant P0 in a 
random-access memory R. Then, this P0 is passed to 
the interpreter W0 for execution. In this approach, 
E(P0) itself is not understandable to the user. Also, 
many different programs can run on a single system 
Mk, and they are easily updatable. However, the 
problem of this approach is that it is not easy to 
completely hide the decrypted P0 from the user. One 
method for hiding the decrypted P0 is to decrypt only 
a small piece of E(P0) at a time, and our approach 
takes this method to its logical extreme – we 
“decrypt” (translate) only one instruction at a time.  
Our approach minimises the size of RAM R, and 
building Wx in a non-accessible area of Mx’s hardware 
is easily realized by adding a small FSM unit to 
current hardware-based virtual machines [such as 
picoJava, TinyJ, and Xpresso], modern 
implementations of the x86 instruction set (which 
translate it into a simpler microcode before 
execution), and reconfigurable processors.  A final 

point of distinction, as noted in Section 1 above, is 
that our interpreter translates the dynamic program 
stream, whereas decryption operates on the static 
representation of the program. 

2.2 FSM-based interpreter 

2.2.1 Design types 

There are five types of design choices for the 
FSM-based interpreter, which are dependent upon the 
instruction set used for Px. Let InsP0 and InsPx be the 
instruction sets for P0 and Px, and let LP0 and Lpx be 
the programming language for P0 and Px respectively. 
We define five types of designs.  Note: in our original 
proposal we had not defined “Type 2.5”. 

(Type 1) InsPx is the same as InsP0 and all Px have 
correct static semantics in LP0 (e.g. Px would pass 
Java’s bytecode verifier if P0 were valid Java 
bytecode) although the dynamic semantics are 
determined during execution. Thus Px is executable in 
the original interpreter W0 although its outputs would 
be incorrect. 

(Type 2) LPx has the same syntax as LP0, but the static 
semantics of Px may be incorrect (e.g. if LP0 is Java 
bytecode, the stack signature of some opcodes in Px 
may be incorrect).  The number of different FSMs 
that could be used to interpret Px is larger than in 
Type 1. 

(Type 2.5) LPx has different operand syntax to LP0; 
individual opcodes in P0 are translated into opcodes 
in Px  with the same number of bytes; and the opcode 
sets and encodings in InsP0 and InsPx are identical.  
Because the type and number of operands (and their 
specifiers) associated with each opcode may differ 
from LP0, Px is generally not a valid program in LP0. 
The number of different FSMs that could be used to 
interpret Px is larger than in Type 2. 

(Type 3) InsPx includes InsP0 with some extra 
(“Type-3”) instructions.  These may be used to 
control the FSM. The number of different FSMs is 
larger than in Type 2.5. 

(Type 4) InsPx differs completely from InsP0, however 
there exists some (secret) many-to-one mapping 
which transforms InsPx into a Type-3 instruction set. 
That is, Px appears to be written in a totally different 
language than P0.  The number of different FSMs is 
larger than in Type 3. 

In the rest of this paper, we focus on Type 2.5 
designs. 



2.2.2 Architecture 

Figure 5 shows a suitable architecture for FSM-based 
interpreter, characterized by pipelined stages of 
interpretation. In this paper we focus on opcodes to be 
translated in the FSM. In Type 2.5 design, the 
FSM-based interpreter is augmented by an additional 
pipeline stage, called a FSM unit, which translates a 
“Type-2.5” obfuscated opcode into an unobfuscated 
opcode, passing it to a conventional opcode decode 
unit. Then, the translated opcode is decoded, and the 
number of operands to be fetched is determined. 
After required operands are fetched in an operand 
fetch unit, the instruction is executed in an execute 
unit. This architecture is applicable to many present 
Java Virtual Machines (JVMs) and reconfigurable 
processors. 
The FSM unit has a switch to start/stop the 
obfuscated interpretation to enable us running both an 
ordinary program and an obfuscated program on the 
same interpreter. If the FSM unit is stopped, then the 
interpreter works as an ordinary one, and if it is 
started, then the interpreter works as a FSM-based 
interpreter.  The start/stop signal could be invoked by 
a system call, or a by a special Type-3 instruction. 

2.2.3 FSM unit 

The FSM unit (denoted as wx) is a DFA 
(Deterministic Finite Automaton) defined by 6-tuple 
(Q, ∑, Ψ, ∆, Λ, q0) where 

Q = {q0, q1, …, qn-1} is the states in the FSM. 

∑ = {c0, c1, …, cn-1} is the input alphabet. 

Ψ = {c0, c1, …, cn-1} is the output alphabet 
(interpretations for inputs). 

δi : ∑ → Q is the next-state function for state qi. 

∆ = (δ0, δ1,…, δn-1) is the n-tuple of all next-state 
functions. 
λi : ∑ → Ψ is the output function for state qi. 

Λ = (λ0, λ1, …, λn-1) is the n-tuple of all output 
functions. 

q0∈Q is the starting state of the FSM. 
In Type 2.5 design, the instruction set for Px is the 
same as that for P0, so InsPx = InsP0. We assume InsPx 
= ∑∪O where elements ci ∈ ∑ are obfuscated 
instructions, and oi∈O are non-obfuscated 
instructions. This means, Px contains both ci and oi, 
and, if the FSM unit recognizes ci∈∑ as input then its 
semantics is determined by the FSM and it is passed 
to the execute unit, otherwise an input oi∈O is 
directly passed to the execute unit. 

In our Type-2.5 design, each underlined symbol ci in 
Ψ denotes the normal (untranslated) semantics for the 
correspondingly-indexed opcode ci in ∑. 

The input (and output) alphabet is partitioned into 
two classes by an integer b, such that symbols c0, c1, 
…, cb-1 are in the first class C1 (of branching opcodes 
including non-conditional jump) and the remaining 
symbols cb, cb+1, …, cn-1 are in the second class C2 (of 
non-branching opcodes). 

The FSM design has the following constraints. 

1. Each δi : ∑ → Q is a bijection; we will use its 
inverse δi

-1 : Q → ∑. 

2. Each λi : ∑ → Ψ is a bijection, defining λi
-1 : Ψ → 

∑. 

3. For all i and j, the length of the translated opcode 
λi(cj) is the same as the obfuscated opcode cj so 
that the opcode fetch unit can correctly fetch 
obfuscated opcodes. For example, in the 
instruction set of Intel x86 CPU family, the 
length of MOV opcode is the same as SUB but it 
differs from MOVZX [Intel 1999].  Thus the 
MOV opcode may be obfuscated as “sub” but not 
as “movzx”. 

4. For all pairs of states qi, qk  there exists a “dummy 
instruction sequence” dj with the following three 
properties.  First, dj is a short sequence of 
(translated) instructions containing exactly one 
obfuscated instruction.  Second, an FSM initially 
in state qi will be in state qk after it produces dj as 
output.  Third, dj has no effective functionality.  

Opcode Fetch
Unit

Opcode Decode
Unit

FSM
Unit

Start / Stop

Execute
Unit

Operand Fetch
Unit  

Figure 5. Pipelined stages of FSM-based interpreter 



Thus dj is an efficiently executed no-op that 
forces the FSM to make any desired transition.  
Note that for any pair of states qi, qk there exists cz 
such that δi(cz) = qk, because the next-state 
function δi is a bijection.  The obfuscated 
instruction in dj is λi(cz). 

5. For all states qk and branching instructions cj ∈ C1, 
there exists a state qi with the property δi(cj) = qk. 
That is, if we have a branching instruction cj and 
a desired state qk to be reached, we can find some 
initial state qi that reaches qk via the input cj. 
(When we translate a branch instruction cj, we 
apply the previous constraint to force the FSM 
into state qi if the instruction at the target of the 
branch must be interpreted in state qk.) 

Figure 6 shows a simple example of wx where 

Q = {q0, q1} 

∑ = {add, sub} 

Ψ = {add, sub} 

∆ : δ0(add) = q1, δ0(sub) = q0, δ1(add) = q0, δ1(sub) 
= q1 

Λ : λ0(add) = sub, λ0(sub) = add, λ1(add) = add, 
λ1(add) = sub 

This wx takes an opcode ci∈{add, sub} as an input, 
translates it into its semantics ci∈{add, sub}, and 
outputs ci. Figure 7 shows an example of 
interpretation for an instruction stream done by this 
wx. Obviously, even this simple FSM has the ability 
to conduct the obfuscated interpretation. As shown in 
Figure 7, the opcode “add” is interpreted as either add 
or sub according to its context. 

2.2.4 Program translator 

In order to utilize the FSM-based interpreter Wx, a 
program translator Tx : P0 → Px is indispensable. 
However, building Tx is much more than building an 
inverse interpreter of wx. Let us assume we have wx of 
Figure 6, and P0 of Figure 8 that computes a 
summation p := 1+2+3+…+n.  The loop in P0 must be 
taken into account. We need a consistency of 
interpretation: the instructions in each execution of 
the loop in Px must always be translated into the same 
instruction stream (in this case, “add p, x” and “sub 
x, 1”). In other words, wx must always be in the same 
state every time the execution reaches the 
control-flow junction at the top of the loop body. 
Taking advantage of constraints 4 and 5 above, we 
inject a sequence of dummy instructions into the tail 
of the loop, so that the FSM will reach the desired 

state at the top of the loop without changing program 
semantics. 

Anyway, we first build an inverse interpreter of wx 
(denoted as wx

-1), then we use this inverse interpreter 
to translate P0 into Px.  Our wx

-1 is the DFA defined by 
6-tuples (Q’, ∑’, Ψ’, ∆’, Λ-1, q0) where 

Q’ = Q = {q0, q1, …, qn-1} is the states in the FSM. 

∑’ = Ψ = {c0, c1, …, cn-1} is the input alphabet. 

Ψ’ = ∑ = {c0, c1, …, cn-1} is the output alphabet. 

δi’ : ∑’ → Q’ is the next-state function for state qi, 
where δi’(cj) has the value δi(λi

-1(cj)) for all i, j. 

add/sub
sub/add

add/add
sub/sub

add

add

sub sub

q0 q1

Starting
State

 
Figure 6. Example of FSM wx 

 

sub p, x
add x, 1
add p, x
add x, 1

add p, x
sub x, 1
add p, x
sub x, 1

 
Figure 7. Example of instruction stream 

interpretation 

 

let x = n
let p = 1

loop:     if x == 0 exit
add p, x
sub x, 1
goto loop:  

Figure 8. Example of P0 
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add/sub

add/add
sub/sub

sub

add

add sub

q0 q1

Starting
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Figure 9. Example of wx

-1 

 



∆’ = (δ0’, δ1’,…, δn-1’) is the n-tuple of all 
next-state functions. 
λi’: ∑’ → Ψ’ is the output function for state qi, 
where each λi’ : ∑’ → Ψ’ has the value λi

-1(cj) for 
all i, j. 

Λ’ = (λ0’, λ1’, …, λn-1’) is the n-tuple of all output 
functions. 

q0∈Q’ is the starting state of the FSM. 

Figure 9 shows an example of wx
-1 corresponding to 

wx of Figure 6. As shown in Figure 9, wx
-1 has the 

same number of states and transitions as wx. 

Next, we give a procedure for the translation Tx: P0 → 
Px. Figure 10 shows this procedure where: 

PC is a program counter (we assume PC is a line 
number of P0). 

codeP0(PC) is an instruction in P0 at PC. 

codePx(PC) is an instruction in Px at PC. 

qs∈Q is a state of wx
-1. 

state(PC) is a state  in which codeP0(PC) was 
interpreted.  

We also assume this procedure Tx uses a stack 
(denoted as Stack), and its operation push and pop, to 
accumulate values of PC. 

Figure 11 shows an example of Px translated from P0 
of Figure 8. In this example, a dummy instruction 
“add p, 0” is inserted into Px to force the state 
transition q1 → q0 so that w comes to q0 every time the 
execution reaches the entry point of loop. 

3 Case Study 

3.1 Program translation 

In this section we explain a more complex example, 
in which we execute the procedure Tx:P0→Px of 
Figure 10 using the inverse interpreter wx

-1 given in 
Table 1. This wx

-1 is designed for programs written in 
an Intel x86 instruction set.   We use the AT&T 
syntax (GNU assembler format) to write assembly 
codes in LP0 and LPx. Our sample wx

-1 has eight states 
Q’ = {q0, q1, …q7} with q0 a starting state, and has 
eight types of instructions ∑’ = {jmp, jne, pushl, 
decl, movl89, subl, movl8B, leal}. Here, “movl89” 
indicates MOV instructions whose opcode byte are 
“89”, and “movl8B” indicates “8B” opcode as well. 
Two instructions (jmp and jne) are branching 
instructions.  The other six are non-branching 
instructions. For each instruction in Table 2, a binary 

(hexadecimal) representation of the opcode is shown. 
Please see [Intel 1999] for detailed information on 
instruction semantics. 

Let state(k) := NULL for all k of P0 
Let qs := q0 
  Set PC to the entry point of P0 
loop: 
  If PC = exit of P0 then goto resume 
  If state(PC) ≠ NULL && state(PC) ≠ qs then{ 
    Call choose&insert_dummy 
    Goto resume 
  } 
  Let state(PC) := qs 
  If codeP0(PC)∈∑’ then { /* obfuscated instruction */ 
Interpret codeP0(PC) via wx

-1, i.e. 
Let qs := δs’(codeP0(PC)) 
Let codePx(PC) :=  λs

-1(codeP0(PC)) 
  }else{ /* non-obfuscated instruction */ 
Let codePx(PC) :=  codeP0(PC) 
  } 
If codeP0(PC) = branching instruction then { 
    If codeP0(PC) ≠ non-conditional jump then { 
      Do push(PCfalse) where PCfalse is a line number of next 
instruction in false branch 
      Let state(PCfalse) = qs 
    } 
    Let PC := a line number of next instruction in true 
branch 
}else{ 
    PC := PC + 1 
  } 
Goto loop 
 
resume: 
  If Stack is empty then end 
PC := pop() 
qs := state(PC) 
Goto loop 
 
choose&insert_dummy: 
  Let PCprev := previous value of PC 
  If  codeP0(PCprev) = non-branching instruction then{ 
    Choose ci∈∑’ that satisfies δs’(ci) = state(PC) 
    Let di := a sequence of dummy instructions for ci 
    Let di := λs

-1(di) 
    Insert di into Px right after the line number = PCprev 
  }else{ 
Choose k that satisfies δk’(codeP0(PCprev)) = state(PC) 
    Choose ci∈∑’ that satisfies δstate(PCprev)’(ci) = qk 
    Let di := a sequence of dummy instructions for ci 
    Let di := λs

-1(di) 
    Insert di into Px at the line number = PCprev 
    state(PCprev) = qk 
} 
  return 

Figure 10. Procedure for Tx: P0 → Px 



Table 2 shows sequences of dummy instructions di 
for each ci∈∑’. The obfuscated (translated) dummy 
sequence di = λj

-1(di) does not change the behaviour of 
Px, yet it causes one state-transition in wx. Some of 
these di modify registers, and these must be “dead 
registers” to define our desired no-op function. Dead 
registers can be detected easily by static analysis of 
P0 [Irwin, Page and Smart 2002].  If there no dead 
register is available, one can be created by adding 
pushl and pop instructions to di to preserve the value 
of a live register. 

The target P0, which is to be translated, is shown in 
Figure 13. This P0 is a x86 assembly program, 
compiled by gcc from the C source program shown in 
Figure 12. This P0 computes a summation of odd 
numbers p := 1+3+5+…+n. Figure 14 shows Px 
corresponding to this P0. In Figure 13, numbers 
described in leftmost column indicates line numbers, 
and their corresponding lines are described in Figure 
14 as well. Second column in Figure 13 describes the 
state of w-1 in which each instruction is interpreted. 
Due to limited space, we have not included a detailed 
explanation of our translation process in this paper. 
However, a full explanation of a sample translation of 
a Java bytecode program for a Type-2 interpreter is 
shown in our previous paper [Monden et al, 2003]. 

3.2 Obscurity of translated program 

The program Px obtained by above translation has 
some fundamental characteristics to make itself 
obscure. Below we describe the characteristics of Px 
in Figure 14 compared with P0 in Figure 13. 

1. As described in 2.2.1, Px uses the opcodes of an 
original x86 assembly language LP0, but it is not 
itself a valid x86 program since the operand 
signatures in Px are not all correct in LP0. For 
example, in line 2 of Figure 14, the “pushl” 
opcode requires one operand in LP0, however it 
has two operands in Px. This indicates Px cannot 
be parsed accurately by a disassembler for LPx 
into instructions, since the correct number of 
operands required for each opcode LPx differs 
from that in LP0.  (Indeed, LPx might not even 
have a consistent syntax.) 

2. Instructions in Px do not have static binding to 
their semantics. For example, “pushl” in line 2 is 
interpreted as “movl89” via wx (see the same line 
in Figure 13), but in line 24, it is interpreted as 
“leal”. Note that dummy instructions, for 
example the one between line 25 and 26, also 
have non-static semantics, so they are not 
statically recognizable as dummy instructions. 

3. The control flow of P0 is not apparently 
preserved in Px, i.e. if Px were executed without 
translation “just as it appears”, it would take 
different branches than P0. For example, the 
conditional jump “jne” in line 10 is actually an 
unconditional JMP. (In addition, if a translated 
program Px contain a dummy instruction 
sequence for a branching instruction, then the 
apparent control flow of Px is more complex than 
P0.) 

4 Security Analysis 

In this section, we analyze the security of our scheme 
against adversaries of varying resources, knowledge, 
and persistence. 

Generally speaking, our security objective is to 
prevent an adversary from understanding the 
protected software.  The understanding of an 
adversary is not directly measurable, however, so we 
define our security metric by a series of restrictions 
on an adversary’s future actions. 

1. [Local tamper-proofing] The adversary should 
not understand the protected software well 
enough to make small alterations in program 
representation and behavior.  An example of a 
small alteration is the replacement of an IFNE 
(jne) opcode with a GOTO (jmp) opcode, in order 
to defeat a license check [LaDue 1997]. 

2. [Global tamper-proofing] The adversary should 
not understand the protected software well 

let x = n
let p = 1

loop: if x == 0 exit
sub p, x
add x, 1
add p, 0 ; dummy instruction
goto loop:  

Figure 11. Example of translated Px 
 

int sumodd(int N){ 
  int i, p; 
  p = 0; 
  for(i = 1; i <= N; i++){ 
   if(i % 2 == 1) p = p + i; 
  } 
  return p; 
 } 

Figure 12. Example of P0 in C language 



enough to make large-scale alterations in 
representation and/or small alterations in 
behavior.  An example of a large-scale alteration 
in representation is a de-compilation and 
re-compilation.  Such an attack will obscure 
many static code watermarks [Collberg and 
Thomborson 2002], and it will defeat a 
copyright-violation test that is based on a code 
comparison. 

3. [Reverse engineering; algorithmic 
understanding] The adversary should not 
understand the protected software well enough to 
make a large-scale alteration in its behavior, for 
example by identifying, copying, and re-using a 
substantial portion of its code (or its embedded 
“secrets” such as a decryption key) in another 
software product. 

We have listed these restrictions in order of 
increasing understanding. Only an adversary with 
“level-3 understanding”, in our metric, is able to 

reverse-engineer a program.  Such an adversary 
would also possess level-2 and level-1 understanding.  
An adversary who has level-2 understanding can 
de-compile (or at least dis-assemble) the code, and 
then make wholesale changes in program 
representation and some changes in behavior.  An 
adversary with level-1 understanding may discover, 
through a trial-and-error process, a conditional 
branch whose annulment will defeat a simple 
license-checking mechanism. 

We do not expect to be able to prevent expert and 
well-resourced adversaries from gaining level-1 
understanding of a program.  However, as argued 
below, our protection scheme in conjunction with 
other obfuscations will prevent adversaries with 
considerable knowledge, resources and motivation 
from ever gaining level-3 understanding.  Weaker 
adversaries will be unable to gain level-2 or even 
level-1 understanding, unless they are very persistent. 

.globl sumodd 
        .type   sumodd,@function 
example: 
 1     q0        pushl    %ebp 
 2     q2        movl89  %esp, %ebp 
 3     q4        subl      $8, %esp 
 4     q4        movlC7  $0, -4(%ebp) 
 5     q4        movlC7  $1, -8(%ebp) 
 6            .L3: 
 7     q4           movl8B  -8(%ebp), %eax 
 8     q7        cmpl      8(%ebp), %eax 
 9     q7            jle       .L6 
10    q7        jmp     .L4 
11    q7  .L6: 
12    q7        movl8B  -8(%ebp), %edx 
13    q7        movl89  %edx, %eax 
14    q4        sarl    $31, %eax 
15    q4        shrl    $31, %eax 
16    q4        leal    (%eax,%edx), %eax 
17    q4         sarl    $1, %eax 
18    q4        sall    $1, %eax 
19    q4        subl    %eax, %edx 
20    q0        movl89  %edx, %eax 
21    q1        cmpl    $1, %eax 
22    q1        jne     .L5 
23    q3        movl8B  -8(%ebp), %edx 
24    q4        leal    -4(%ebp), %eax 
25    q5        addl    %edx, (%eax) 
        q5 
26    q3 .L5: 
27    q3        leal    -8(%ebp), %eax 
28    q0        incl    (%eax) 
29    q0        jmp     .L3 
        q0  
30    q0  .L4: 
31    q0        movl8B  -4(%ebp), %eax 
32    q3        leave 
33    q3        ret 

Figure 13. P0 in AT&T syntax 

.globl sumodd
        .type   sumodd,@function 
example: 
 1        decl   %ebp 
 2        pushl    %esp, %ebp 
 3        subl    $8, %esp 
 4        movlC7  $0, -4(%ebp) 
 5        movlC7  $1, -8(%ebp) 
 6   .L3: 
 7        leal    -8(%ebp), %eax 
 8        cmpl    8(%ebp), %eax 
 9        jle     .L6 
10       jne     .L4 
11    .L6: 
12       leal    -8(%ebp), %edx 
13       pushl    %edx, %eax 
14       sarl    $31, %eax 
15       shrl    $31, %eax 
16       leal    (%eax,%edx), %eax 
17       sarl    $1, %eax 
18       sall    $1, %eax 
19       movlC7  %eax, %edx 
20       movl89  %edx, %eax 
21       cmpl    $1, %eax 
22       jmp     .L5 
23       leal    -8(%ebp), %edx 
24       pushl    -4(%ebp), %eax 
25       addl    %edx, (%eax) 
           subl   %eax ,%ebx         ; dummy q5→q3
26   .L5: 
27       movlC7  -8(%ebp), %eax 
28       incl    (%eax) 
29       jne     .L3 
30   .L4: 
31       leal    -4(%ebp), %eax 
32       leave 
33       ret 

Figure 14. Px in AT&T syntax 



We characterize an adversary’s knowledge and 
resources along several dimensions (labeled A, B, 
etc.), as listed below.  To simplify our analyses, we 
consider only adversaries who are equal on all 
dimensions.  An adversary that is at level-0 is a naïve 
end-user.  Our level-1 adversary is an end-user with 
very limited technical skill and ability.  Our level-2 
adversary has a debugger and good technical skills.  
Our level-3 adversary is expert and extremely 
well-resourced, and our level-4 adversary is in 
possession of powerful custom software. 

A. FSM interpretation. 

0. The level-0 adversary has a computer system Mx 
(containing interpreter Wx as shown in Figure 2) 
and a copy of the translated (protected) program 
Px.  Note that these resources are required to 
execute the protected program. 

1. The adversary has an algorithmic understanding 
of the principles of FSM-based interpretation, as 
described in this article. 

2. The adversary has a debugger with “breakpoint” 
functionality, attached to an obfuscated software 
implementation of Wx.  Alternatively, the 
adversary has a logic state analyzer, attached to 
the inputs and outputs of a hardware 
implementation of Wx.   

3. The adversary is able to reverse-engineer a 
software implementation of Wx, so that it is 
possible to collect output traces from Wx, and to 
inject arbitrary input for translation by Wx. 

4. The adversary has source code for a generic 
interpreter W(x) which emulates Wx for any x, and 
a generic translator T(x) which implements Tx for 
any x. 

B. Observation.  

0. In a level-0 observation, the adversary observes 
the audio-visual outputs of the computer system 
Mx, as it executes a program. 

1. The adversary determines, by inspection of 
audio-visual outputs, whether or not Mx is 
running a program that has the same behavior as 
the protected program. 

2. The adversary records a snapshot (i.e. a small 
number of opcodes and operands, before and 
after FSM interpretation) of the input and output 
of Wx. 

3. The adversary records a complete trace of the 
output of Wx, during a run of the protected 
program on computer system Mx. 

4. The adversary has a generic interpreter W(x), and 
knows how to use this to record a complete trace 
of the output of Wx for any x.  The adversary also 
has a generic translator T(x) whose outputs can be 
recorded. 

C. Control. 

0. The adversary operates the keyboard and mouse 
inputs of the computer system Mx, as it executes 
the protected program. 

1. The adversary can modify the statements in 
program Px in any desired way, before running it 
on computer system Mx. 

2. The adversary injects a small number of 
(arbitrary) inputs into Wx, after the unit has 
interpreted some (arbitrary) number of opcodes 
and operands.  These injections are at low speed, 
and for this reason they will generally not 
produce the same audio-visual output from 
system Mx as if these inputs were normally 
presented to Wx. 

3. The adversary injects arbitrary inputs into Wx, at 
full bandwidth. 

4. The adversary injects arbitrary inputs, including 
the setting of parameter x, into T(x) and W(x).  

Under our definitions above, level-0 adversaries have 
very few avenues of attack.  They might attempt a 
“black-box re-engineering” – inferring program code 
from program behavior. Such an attack is infeasible 
unless program behavior is trivial, and in any event it 
would not breach any of our security objectives. 

The only other avenue of attack of a level-0 adversary 
is an inspection and cryptographic analysis of the 
translated program Px.  An early step in such an 
analysis would be a working knowledge of the 
principles of FSM interpretation, which would be 
much more effectively gained by reading this article 
(a level-1 attack) than by a naïve level-0 attack. 

We turn to the level-1 attacks.  A 
cryptographically-skilled adversary with knowledge 
of programming language semantics and our FSM 
algorithm would probably start by building a table of 
“dummy instruction sequences” dj similar to Table 2.  
Note that the obfuscation on these sequences is weak.  
Each dummy sequence consists of a short (possibly 
empty) prefix of non-obfuscated instructions, a single 



obfuscated instruction, and a short (possibly empty) 
suffix of non-obfuscated instructions.  Algorithm Tx 
will place a dummy instruction sequence at the end of 
branch to a predecessor instruction, except in the 
(relatively rare) cases where the FSM is in the same 
state in both paths to the target instruction.  So the 
suffixes will be recognizable as the 
commonly-repeated patterns before a 
backwards-branch or jump.  Note that all 
control-flow opcodes are recognizable (either as 
class-C1 opcodes, or as unobfuscated opcodes) in our 
Type 2.5 FSM design, although the adversary will 
certainly make some mistakes in recognition of 
branching opcodes wherever instruction boundaries 
are obscure in the obfuscated code due to the 
differing operand syntax in LP0 and Lpx .  For example 
a 0xEB byte in the obfuscated sequence is reasonably 
likely to be an obfuscated branch opcode but it may 
also be an operand.   

The adversary might examine O(n2) loops to be 
reasonably certain of having discovered all suffixes, 
so hypothesizing dj may take days but not months if n 
= 100.  The prefixes can be recognized as the 
commonly-repeated short sequences that occur 
immediately before a single (variable) instruction that 
precedes a suffix.  The attacker can prune the list of 
possible dummy sequences by discarding any 
prefix-suffix pair that is not a no-op for at least one 
choice of (variable) instruction semantics. 

Our cryptographically-skilled level-1 attacker could 
then build up a (hypothesized) list djk of obfuscated 
dummy sequences by substituting all (hypothesised) 
ck for the cj in each (hypothesized) sequence dj.  Using 
their level-1 control, they could insert an arbitrary 
instruction at the beginning of a (hypothesized) loop 
body; this will soon reveal the location of a sensitive 
loop, whose semantics visibly affects program 
operation (a level-1 observation).  The attacker would 
then insert a short no-op sequence to confirm that 
program correctness is not hypersensitive to loop 
timing.  Then the attacker would choose one pair dij, 
dkz of the (hypothesized) obfuscated dummy 
sequences for insertion at this point in the program.  
A small fraction of these pairs (about 1/10000 if there 
are 100 obfuscated opcodes) will not affect program 
correctness.  One such discovery constitutes a major 
“crack” because the attacker is almost certain that the 
FSM was in the same state at the beginning and the 
end of this sequence.  After 10000 such discoveries, 
the attacker would have cracked a 100-state FSM Wx.  
We have not done a complete cryptographic analysis, 
however our preliminary analysis indicates that O(n4) 

observations and controls would suffice for an attack 
of the type described above, on an n-state Type 2.5 
FSM by an extremely persistent level-1 attacker with 
cryptographic skill.  This might take months or years, 
because each step requires our adversary to observe a 
run of a modified Px’ on their machine Mx.  We could 
increase the difficulty of such attacks by increasing 
the search space, for example by using multiple 
“dummy sequences” for each instruction, by 
randomizing the locations in which we insert 
“dummy sequences” (our translation algorithm Tx 
could insert a dummy sequence at any point in the 
straight-line code leading up to a branchpoint in P0), 
by using a Type-2 or Type-2.5 design without a 
partition between branching and non-branching 
opcodes, by using a Type-3 FSM to make it harder for 
the attacker to recognize no-op suffixes and prefixes, 
or by using a Type-4 FSM to increase n.  We intend to 
explore these options in future work. 

The “crack” described above for a level-1 attacker 
gives them level-2 understanding of a single machine 
Mx, for they can predict how a single FSM Wx will 
translate arbitrary inputs – including the obfuscated 
program Px! (Note: the attacker must do some 
cut-and-paste work, and some exercising of program 
paths, perhaps by program modification, to transform 
their traces of Px into a program listing.  Alternatively, 
they might choose to write source code for a 
specialised de-obfuscator Tx: this may take months, 
but they have probably already spent months if not 
years to reach this level of understanding: they are 
now essentially a level-3 adversary.)  The level-1 
adversary in possession of this “crack” can also 
discover the FSM state at any point in the code where 
their code insertions can visibly affect program 
correctness.   With this knowledge they can inject 
short code sequences, followed by an appropriate 
“dummy sequence” to preserve the correctness of 
translation of the subsequent code. 

We now briefly consider level-2 and level-3 
adversaries. 

A level-2 adversary can correlate the outputs with the 
inputs of the FSM, where these inputs are the ones 
associated with any desired “breakpoint” in a 
(possibly modified) Px.  This ability will greatly 
speed the brute-force attack described above for our 
level-1 adversary, and it will allow new attack 
strategies such as directly observing the translation 
λi(cz) of an instruction cz that occurs in (hypothesised) 
dummy sequences in Px.   Our preliminary analysis 
indicates that O(n3)  observations and controls, each 
taking a few seconds or milliseconds (in an 



automated attack), will suffice for a level-2 attacker 
to achieve level-2 understanding. 

A level-3 adversary can collect an execution trace of 
P0, and they can correlate all branch-points in this 
trace with the corresponding branch-points in Px.  If 
Px is short, they can produce an accurate cleartext 
bytecode listing by hand.  If Px is long, they should try 
to obtain a copy of a “general-purpose” 
deobfuscating tool that some other level-3 adversary 
may have produced when cracking some other Mx’.  If 
no such tool exists, our level-3 attacker may write and 
publish such a tool, so that subsequent level-3 
attackers merely have to obtain the tool to get a 
program listing for any Px.  However we note that, if 
the value of x is embedded in secure hardware, and if 
the party in possession of Tx preserves the secrecy of 
x, level-3 adversaries will be rare – they must either 
have the ability to “crack” secure hardware or they 
must develop more powerful cryptanalytic attacks 
than we have outlined above for our hypothetical 
level-2 adversary. 

We close our security analysis with a warning.  Our 
translation system is essentially cryptographic in 
nature, so it should only be used to obfuscate long 
programs that have been “randomized” (i.e. 
obfuscated) before they are translated by our Tx.  
Otherwise the attacker will be able to make a likely 
guess to the cleartext, which may greatly speed their 
attack.  

5 Conclusion 

In this paper we proposed a framework for 
obfuscating the program interpretation. We defined a 
FSM-based interpreter wx that gives 
context-dependent semantics to program instructions. 
We also defined a program translator Tx to 
systematically construct a program Px, which is 
executable with wx, from a given program P0 written 
in a conventional programming language. 

Our case study of a “Type 2.5” translation of an x86 
assembly-language P0 into an “x86-like” Px showed 
that instructions in Px have non-static semantics, i.e. 
functionality is hidden from program users, yet Px is 
still functionally equivalent to P0. 

Our preliminary security analysis showed that our 
design is reasonably secure against adversaries of 
varying resources, knowledge, and persistence.  Our 
analysis highlighted some areas where our design 
could be improved, and we conclude that our design 
should only be used to obfuscate long programs that 

have been “randomized” (i.e. obfuscated) before they 
are translated. 

In the future, we will develop detailed designs for 
interpreters of Type 1, 3 and 4, and we intend to 
clarify their advantages and shortcomings. 
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Table 2. List of sequence of dummy instructions 
Sequence of dummy 

instructions # 
   jmp     .Lx 
   any instructions 
.Lx 

0 

   jne   .Lx 
   addl     $0,%eax 
.Lx 

1 

   pushl   %eax 
   pop      %eax 2 
   decl     %eax 
   incl      %eax 3 
   mvl89 %eax,%ebx* 4 
   movl   $0, %eax    
   subl     %ebx,%eax 5 

   mvl8B  -4(ebp),%eax* 6 

   leal       -4(ebp),%eax* 7 

* these registers must be dead 

Table 1. Example of FSM wx
-1 

State        Input / Output transition State        Input / Output transitio
n 

 
 
 

q0 

EB jmp               /   75 jne          
75  jne                /   EB jmp 
55  pushl  %ebp /   4D decl  %ebp 
4D decl  %epb   /   55  pushl  %ebp  
89  movl89          /   89 movl89 
29  subl              /   29  subl 
8B movl8B          /   8D leal 
8D leal               /   8B  movl8B 

q4 
q7 
q2 
q5 
q1 
q6 
q3 
q0 

 
 
 

q4 

EB  jmp              /   75   jne 
75   jne               /   EB  jmp 
55   pushl %ebp /   89   movl89    
48   decl  %ebp  /   48   decl %ebp  
89   movl89         /   29   subl    
29   subl             /   8B  movl8B 
8B  movl8B         /   8D  leal    
8D  leal              /   55   pushl %ebp 

q6 
q4 
q2 
q1 
q3 
q0 
q7 
q5 

 
 
 

q1 

EB jmp               /   75  jne 
75  jne                /   EB  jmp 
55  pushl  %ebp /   8D  leal    
4D decl %ebp    /   55   pushl  %ebp  
89  movl89          /   8B  movl8B 
29  subl              /   29   subl         
8B movl8B          /   89   movl89 
8D leal               /   4D   decl  %ebp 

q1 
q3 
q4 
q2 
q0 
q6 
q7 
q5 

 
 
 

q5 

EB jmp               /   EB  jmp             
75  jne                /   75   jne 
55  pushl  %ebp /   8B  movl8B 
4D decl  %ebp   /   55   pushl %ebp   
89  movl89          /   29   subl    
29  subl              /   89   movl89 
8B movl8B          /   4D  decl  %ebp 
8D leal               /   8D  leal 

q2 
q1 
q4 
q0 
q3 
q6 
q5 
q7 

 
 
 

q2 

EB jmp               /   75    jne 
75  jne                /   EB  jmp    
55  pushl  %ebp /   29   subl 
4D decl %ebp    /   8D  leal    
89  movl89          /   55   pushl  %ebp 
29  subl              /   8B  movl8B 
8B movl8B          /   89  movl89 
8D leal               /   4D  decl %ebp 

q7 
q0 
q6 
q5 
q4 
q3 
q1 
q2 

 
 
 

q6 

EB jmp               /   75   jne 
75  jne                /   EB  jmp    
55  pushl %ebp  /   8D  leal 
4D decl %ebp    /   89   movl89   
89  movl89          /   8B  movl8B    
29  subl              /   4D  decl  %ebp 
8B movl8B          /   55   pushl %ebp  
8D leal               /   29   subl 

q5 
q2 
q4 
q1 
q6 
q7 
q0 
q3 

 
 
 

q3 

EB jmp               /   EB  jmp 
75  jne                /   75   jne    
55  pushl  %ebp /   4D  decl  %ebp  
4D decl  %ebp   /   89   movl89 
89  movl89          /   29   subl    
29  subl              /   55   pushl  %ebp 
8B movl8B          /   8D  leal    
8D leal               /   8B  movl8B 

q3 
q5 
q2 
q6 
q1 
q7 
q4 
q0 

 
 
 

q7 

EB jmp               /  75   jne 
75  jne                /  EB  jmp 
55  pushl  %ebp /  4D  decl %ebp   
4D decl  %ebp   /  89   movl89    
89  movl89          /  55   pushl %ebp  
29  subl              /  29   subl 
8B movl8B          /  8D  leal    
8D leal               /  8B  movl8B  

q0 
q6 
q5 
q3 
q4 
q1 
q7 
q2 


