
�����������

�	�
�	

�
	���	��

�

���

��������

������

��������������	�
	

���� ��
�����

���������	
�������
��� ���
�������� �������
��

����� ������	 ������� ���
�����	
����

�������
��

�������� ���	

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ����������

 �
!�� ��"�����# �"���# ���� !	���
�
$�%��

Obfuscated Instructions for Software Protection
†‡Akito Monden †Antoine Monsifrot †Clark Thomborson

†Department of Computer Science
The University of Auckland

Private Bag 92019, Auckland, New Zealand
{antoine, cthombor}@cs.auckland.ac.nz

‡Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0101, Japan
akito-m@is.aist-nara.ac.jp

Abstract

Many computer systems are designed to make it easy
for end-users to install and update software. An
undesirable side-effect, from the perspective of many
software producers, is that hostile end-users may
analyze or tamper with the software being installed or
updated. This paper proposes a way to avoid the
side-effect without affecting the ease of installation
and update. We construct a computer system M with
the following properties: 1) the end-user may install
program P in any conveniently accessible area of M;
2) the program P contains obfuscated instructions
whose semantics are obscure and difficult to
understand; and 3) an internal interpreter W,
embedded in a non-accessible area of M, interprets
the obfuscated instructions without revealing their
semantics. Our W is a finite state machine (FSM)
which gives context-dependent semantics and
operand syntax to the obfuscated instructions in P;
thus, attempts to statically analyze the relation
between instructions and their semantics will not
succeed. We present a systematic method to construct
a P whose instruction stream is always interpreted
correctly regardless of its input, even though changes
in input will (in general) affect the execution
sequence of instructions in P. Our framework is
easily applied to conventional computer systems by
adding a FSM unit to a virtual machine or a
reconfigurable processor.

1 Introduction

Security is an overarching problem for today’s
computer systems including personal computers,
their peripherals, consumer electric devices, and any
other machinery that contains software programs.
Some systems administrators, and some software
suppliers, require assurance that end-users will not
analyze or tamper with protected programs or data.
For example, a typical software digital rights
management (DRM) system is designed to run in a
“hostile” environment where the end-user is not fully
trusted by the supplier of the content whose rights are

being managed. Typically, these DRM systems
contain cryptographic keys and algorithms that need
to be kept secret [Chow, Johnson and Oorschot 2002].
There is, however, no known method for completely
concealing these keys and algorithms from a
determined attacker. For example, the keys for the
CSS encryption standard for DVD media content
were revealed by a “crack” in 1999. As a result,
programs which subvert DVD copy protection are
now widely distributed through the Internet [Patrizio
1999]. Embedded software in consumer electric
devices, e.g. mobile phones and set-top boxes, also
needs to be protected since these devices are also
susceptible to attacks by hostile users [The U.K.
Parliament 2002]. However, it seems impossible to
completely prohibit end-user access to the software
implementation, without also making it impossible to
update this software to patch a “bug” or add a
“feature”.

In order to hide secrets in software implementation,
software obfuscation techniques have been proposed
[Cohen 1993, Collberg and Thomborson 2002,
Kanzaki et al. 2003]. Software obfuscations
transform a program so that it is more difficult to
understand, yet is functionally equivalent to the
original program. However, there is no evidence
those techniques are powerful enough to hide secrets
in a program [Barak et al. 2001]. Given enough time
and effort, the obfuscated program can be understood
by hostile users since it still contains all the necessary
information to be thoroughly understood. Although
software obfuscations are practically useful to some
extent, a variety of complementary techniques are
needed to dissuade the widest possible range of
attackers.

Instead of obfuscating the program itself, this paper
gives an idea for obfuscating the program
interpretation. If the interpretation being taken is
obscure and thus it can not be understood by a hostile
user, the program being interpreted is also kept
obscure since the user lacks the information about
“how to read it.” This idea is similar to the
randomized instruction-set approach [Barrantes et al.

2003]; however, in the randomization approach, the
interpretation itself is not obscure because
randomized instructions still have one-to-one map to
their semantics, although the map can be occasionally
changed [Kc, Keromytis, and Prevelakis 2003]. On
the other hand, our aim is to give a dynamic map
between instructions and their semantics.

In this paper we describe enhancements to our
recently-proposed framework for constructing an
interpreter W, which carries out obfuscated
interpretations for a given program P [Monden et al,
2003]. Here P is a translated version of an original
program P0 written in a common programming
language (such as Java bytecode and x86 assembly.)
The obfuscated interpretation means that an
interpretation W for a given instruction c is not fixed;
specifically, the interpretation W(c) is determined not
only by c itself but also by previous instructions input
to W (Figure 1).

In order to realize an obfuscated interpretation in W,
we employ a FSM that takes as input an instruction c
where each state makes a different interpretation for c.
Since transitions between states are made according
to the input, the interpretation for a particular type of
instruction varies with respect to previous inputs.
Such W we call a FSM-based interpreter. In our
framework, W is built independent of P0; thus, many
programs run on a single interpreter W, and any of the
programs can be easily replaced to a new program for
the sake of updating.

In our original proposal [Monden et al, 2003], we had
required the obfuscating opcode translation to
preserve the number and type of the operands. In this
paper we demonstrate how to build a FSM without
this restriction. This increases the range of
possibilities from which the FSM W is chosen, which
has an effect analogous to increasing the “key length”
of a cryptographic cipher. That is, the proposal in this
paper is more resilient to brute-force enumerative
(“naïve key-search”) attacks. This paper also extends

its predecessor by demonstrating an example in x86
assembly code rather than in Java bytecode; this
extension required us to add a dead-register analysis
to our process for obfuscating code by interpretation.

In some sense, the mechanism of our obfuscated
interpretation is a kind of stream cipher where a
ciphered bit sequence is decoded one bit at a time
dependent on its context [Robshaw 1995, Stinson
1995]; however, conventional stream ciphers can not
be simply applied for encrypting the instructions in P
since the instruction stream (execution sequence) of
P varies according to conditional branches taken on
its input. In our framework, through the process of
translation P0 → P, we inject dummy instructions
into P to force expedient state transitions in W so that
P is always interpreted correctly regardless of its
input.

Apart from obfuscation techniques, another possible
way to hide secrets in software is program encryption
[Albert and Morse 1984, Herzberg and Pinter 1987].
Encrypting P0 by an encryption function E can make
P0 difficult to understand. However, decryption E-1
must take place before executing an encrypted
program E(P0), and this decryption must reveal P0 (or
a part of P0) to the execution unit or interpreter, thus,
hostile users have a chance to intercept and read the
decrypted program P0. On the other hand, in our
framework, although W(P) may reveal an instruction
stream of P0 as it executes on a particular input I, it
will not reveal P0 itself. Anyway, obfuscation of code,
obfuscation of interpretation, and encryption of code
are not exclusive techniques, and should be used as
complementary techniques to secure the software
system.

The rest of this paper is organized as follows. In
Section 2, a framework for obfuscated interpretation
is described which is less restrictive than our original
proposal. Section 3 shows a case study of obfuscated
interpretation. Section 4 discusses several attacks and
defences. Finally, Section 5 concludes the paper with
some suggestions for future work.

2 Framework for Obfuscated Interpretation

2.1 Overview

Before going into the mechanism of the FSM-based
interpreter W, we describe the surroundings of W
(Figure 2), then clarify the aim of our framework. The
following are brief definitions of materials related to
W.

Instruction stream
Obfuscated

Interpretation

......

......

......

......

Program
P

sub
sub
add
div
...

Result of
interpretation
(Semantics)

Input I
No static
relationship

add sub add sub.. add sub add sub..

Figure 1. Concept of obfuscated interpretation

P0: is a target program intended to be hidden from
hostile users. For simplicity, we assume P0 is written
in a low level programming language, such as
bytecode or machine code, where each statement in
P0 consists of a single opcode and (occasionally)
some operands.

W0: is a common (conventional) interpreter for P0,
such as a Java Virtual Machine, a Common Language
Runtime or an x86 processor.

Px: is a program containing obfuscated instructions
whose semantics are determined during execution
according to their context. This Px is an equivalently
translated version of P0, i.e. Px has the same
functionality as P0.

I: is an input of P0 and Px. Note that P0 and Px take the
same input.

x: is the specification of a FSM that defines a
dynamic map between obfuscated instructions
(inputs of the FSM) and their semantics (outputs of
the FSM). This x is used both in a FSM-based
interpreter Wx and a program translator Tx.

Wx: is a FSM-based interpreter that can evaluate
obfuscated instructions of Px according to the current
state of the FSM built inside. This Wx is an extension
of W0 with a FSM unit of given specifications x.

Tx: is a program translator that automatically
translates P0 into Px with respect to the specifications
x.

Mx: is a computer system delivered to and/or owned
by a program user.

In our framework, we assume Wx is hidden from the
program user as much as possible, e.g. if Mx is an
electronic device such as a mobile phone, then Wx
should be built in a non-accessible part of Mx so as to
prevent the user reading the implementation of Wx.
However, Px must be delivered to the user and put in
an accessible area of Mx so as to enable its updating.
There should be many functionally-different Wx, and
ideally each machine Mx would be manufactured with
a different Wx so that an adversary cannot easily guess
one machine’s interpreter after having “cracked”
some other machine’s interpreter.

Building an efficient Tx in a systematic manner is a
fundamental part of this framework. Since Px is quite
different from ordinary programs, even though the
program developer owns x, writing Px from scratch is
extremely difficult for the developer. In our
framework, we provide a systematic method Tx to
construct Px from any given P0 and x.

In comparison to our framework, Figure 3 shows an
alternative approach to hide the program
interpretation from the user [T. Maude and D. Maude
1984, Zhang and Gupta 2003]. In this approach, an
essential piece of code (denoted s) is cut off from P0.
This secret portion s is embedded in an interpreter Ws
which is implemented in secure hardware, and
attached to computer system Ms. The remaining part
of the program (denoted Ps) is delivered to the user in

W0

Tx

Conventional
Interpreter

FSM-based
Interpreter

P0

Input I

Program
Translator

Output

Output

Input I

Px Wx

Spec. x (chosen when Mx is manufactured)

(Display)

(Display)

Computer System Mx
Figure 2. Framework for obfuscated

interpretation

Interpreter

P0

Ps

s

Ws

Input I

Output
(Display)

Computer System Ms

a

Figure 3. Alternative approach to hide program

interpretation

E

Interpreter

P0

Program
Encrypter

Output

Input I

E(P0) W0
(Display)

Computer System Mk

P0E-1

Decrypter

Cryptographic key k
(chosen when Mk is manufactured)

RAM R

Figure 4. Basic approach for program
encryption

the usual way. This program is executed normally on
the CPU in Ms, except for the secret portion which is
executed by making calls to the interpreter Ws. For
example, some of the arithmetic operations in Ps may
be executed by Ws, possibly updating one or more
state variables held in Ws. Since the return value from
the calls to the interpreter Ws may be used to control
branches and case statements in Ps, much of the
control structure of P0 can be obscured. One
difficulty with this approach is that it does not allow
multiprogramming: while Ws is holding state for Ps,
no other program can be run on Ws. Another problem
is that any adversary who examines Ps will soon
discover how to call Ws. The adversary can then write
a program which makes similar calls to Ws in various
orders. An analysis of the variability in the output of
Ws, when it is exercised in this systematic way, is
likely to reveal secrets of Ws. A final problem is that
updates to Ps will, in general, require updates to its
secret portion s. Thus we must have a secure channel
for the transmission of s in encrypted form, and this
channel is another avenue for attack. On the other
hand, in our framework, Wx is built independent of
P0; thus, many different programs run on a single
interpreter Wx, and any of the programs can be easily
updated without sending secret messages.

The most commonly-proposed method for hiding
interpretation is program encryption [Albert and
Morse 1984, Herzberg and Pinter 1987]. Figure 4
illustrates a typical scheme in which an encrypted
program E(P0) is delivered to the user, and a
decrypter E-1 including a decryption key k is put in a
non-accessible area of a computer system Mk. This
E-1 decrypts E(P0), and puts the resultant P0 in a
random-access memory R. Then, this P0 is passed to
the interpreter W0 for execution. In this approach,
E(P0) itself is not understandable to the user. Also,
many different programs can run on a single system
Mk, and they are easily updatable. However, the
problem of this approach is that it is not easy to
completely hide the decrypted P0 from the user. One
method for hiding the decrypted P0 is to decrypt only
a small piece of E(P0) at a time, and our approach
takes this method to its logical extreme – we
“decrypt” (translate) only one instruction at a time.
Our approach minimises the size of RAM R, and
building Wx in a non-accessible area of Mx’s hardware
is easily realized by adding a small FSM unit to
current hardware-based virtual machines [such as
picoJava, TinyJ, and Xpresso], modern
implementations of the x86 instruction set (which
translate it into a simpler microcode before
execution), and reconfigurable processors. A final

point of distinction, as noted in Section 1 above, is
that our interpreter translates the dynamic program
stream, whereas decryption operates on the static
representation of the program.

2.2 FSM-based interpreter

2.2.1 Design types

There are five types of design choices for the
FSM-based interpreter, which are dependent upon the
instruction set used for Px. Let InsP0 and InsPx be the
instruction sets for P0 and Px, and let LP0 and Lpx be
the programming language for P0 and Px respectively.
We define five types of designs. Note: in our original
proposal we had not defined “Type 2.5”.

(Type 1) InsPx is the same as InsP0 and all Px have
correct static semantics in LP0 (e.g. Px would pass
Java’s bytecode verifier if P0 were valid Java
bytecode) although the dynamic semantics are
determined during execution. Thus Px is executable in
the original interpreter W0 although its outputs would
be incorrect.

(Type 2) LPx has the same syntax as LP0, but the static
semantics of Px may be incorrect (e.g. if LP0 is Java
bytecode, the stack signature of some opcodes in Px
may be incorrect). The number of different FSMs
that could be used to interpret Px is larger than in
Type 1.

(Type 2.5) LPx has different operand syntax to LP0;
individual opcodes in P0 are translated into opcodes
in Px with the same number of bytes; and the opcode
sets and encodings in InsP0 and InsPx are identical.
Because the type and number of operands (and their
specifiers) associated with each opcode may differ
from LP0, Px is generally not a valid program in LP0.
The number of different FSMs that could be used to
interpret Px is larger than in Type 2.

(Type 3) InsPx includes InsP0 with some extra
(“Type-3”) instructions. These may be used to
control the FSM. The number of different FSMs is
larger than in Type 2.5.

(Type 4) InsPx differs completely from InsP0, however
there exists some (secret) many-to-one mapping
which transforms InsPx into a Type-3 instruction set.
That is, Px appears to be written in a totally different
language than P0. The number of different FSMs is
larger than in Type 3.

In the rest of this paper, we focus on Type 2.5
designs.

2.2.2 Architecture

Figure 5 shows a suitable architecture for FSM-based
interpreter, characterized by pipelined stages of
interpretation. In this paper we focus on opcodes to be
translated in the FSM. In Type 2.5 design, the
FSM-based interpreter is augmented by an additional
pipeline stage, called a FSM unit, which translates a
“Type-2.5” obfuscated opcode into an unobfuscated
opcode, passing it to a conventional opcode decode
unit. Then, the translated opcode is decoded, and the
number of operands to be fetched is determined.
After required operands are fetched in an operand
fetch unit, the instruction is executed in an execute
unit. This architecture is applicable to many present
Java Virtual Machines (JVMs) and reconfigurable
processors.
The FSM unit has a switch to start/stop the
obfuscated interpretation to enable us running both an
ordinary program and an obfuscated program on the
same interpreter. If the FSM unit is stopped, then the
interpreter works as an ordinary one, and if it is
started, then the interpreter works as a FSM-based
interpreter. The start/stop signal could be invoked by
a system call, or a by a special Type-3 instruction.

2.2.3 FSM unit

The FSM unit (denoted as wx) is a DFA
(Deterministic Finite Automaton) defined by 6-tuple
(Q, ∑, Ψ, ∆, Λ, q0) where

Q = {q0, q1, …, qn-1} is the states in the FSM.

∑ = {c0, c1, …, cn-1} is the input alphabet.

Ψ = {c0, c1, …, cn-1} is the output alphabet
(interpretations for inputs).

δi : ∑ → Q is the next-state function for state qi.

∆ = (δ0, δ1,…, δn-1) is the n-tuple of all next-state
functions.
λi : ∑ → Ψ is the output function for state qi.

Λ = (λ0, λ1, …, λn-1) is the n-tuple of all output
functions.

q0∈Q is the starting state of the FSM.
In Type 2.5 design, the instruction set for Px is the
same as that for P0, so InsPx = InsP0. We assume InsPx
= ∑∪O where elements ci ∈ ∑ are obfuscated
instructions, and oi∈O are non-obfuscated
instructions. This means, Px contains both ci and oi,
and, if the FSM unit recognizes ci∈∑ as input then its
semantics is determined by the FSM and it is passed
to the execute unit, otherwise an input oi∈O is
directly passed to the execute unit.

In our Type-2.5 design, each underlined symbol ci in
Ψ denotes the normal (untranslated) semantics for the
correspondingly-indexed opcode ci in ∑.

The input (and output) alphabet is partitioned into
two classes by an integer b, such that symbols c0, c1,
…, cb-1 are in the first class C1 (of branching opcodes
including non-conditional jump) and the remaining
symbols cb, cb+1, …, cn-1 are in the second class C2 (of
non-branching opcodes).

The FSM design has the following constraints.

1. Each δi : ∑ → Q is a bijection; we will use its
inverse δi

-1 : Q → ∑.

2. Each λi : ∑ → Ψ is a bijection, defining λi
-1 : Ψ →

∑.

3. For all i and j, the length of the translated opcode
λi(cj) is the same as the obfuscated opcode cj so
that the opcode fetch unit can correctly fetch
obfuscated opcodes. For example, in the
instruction set of Intel x86 CPU family, the
length of MOV opcode is the same as SUB but it
differs from MOVZX [Intel 1999]. Thus the
MOV opcode may be obfuscated as “sub” but not
as “movzx”.

4. For all pairs of states qi, qk there exists a “dummy
instruction sequence” dj with the following three
properties. First, dj is a short sequence of
(translated) instructions containing exactly one
obfuscated instruction. Second, an FSM initially
in state qi will be in state qk after it produces dj as
output. Third, dj has no effective functionality.

Opcode Fetch
Unit

Opcode Decode
Unit

FSM
Unit

Start / Stop

Execute
Unit

Operand Fetch
Unit

Figure 5. Pipelined stages of FSM-based interpreter

Thus dj is an efficiently executed no-op that
forces the FSM to make any desired transition.
Note that for any pair of states qi, qk there exists cz
such that δi(cz) = qk, because the next-state
function δi is a bijection. The obfuscated
instruction in dj is λi(cz).

5. For all states qk and branching instructions cj ∈ C1,
there exists a state qi with the property δi(cj) = qk.
That is, if we have a branching instruction cj and
a desired state qk to be reached, we can find some
initial state qi that reaches qk via the input cj.
(When we translate a branch instruction cj, we
apply the previous constraint to force the FSM
into state qi if the instruction at the target of the
branch must be interpreted in state qk.)

Figure 6 shows a simple example of wx where

Q = {q0, q1}

∑ = {add, sub}

Ψ = {add, sub}

∆ : δ0(add) = q1, δ0(sub) = q0, δ1(add) = q0, δ1(sub)
= q1

Λ : λ0(add) = sub, λ0(sub) = add, λ1(add) = add,
λ1(add) = sub

This wx takes an opcode ci∈{add, sub} as an input,
translates it into its semantics ci∈{add, sub}, and
outputs ci. Figure 7 shows an example of
interpretation for an instruction stream done by this
wx. Obviously, even this simple FSM has the ability
to conduct the obfuscated interpretation. As shown in
Figure 7, the opcode “add” is interpreted as either add
or sub according to its context.

2.2.4 Program translator

In order to utilize the FSM-based interpreter Wx, a
program translator Tx : P0 → Px is indispensable.
However, building Tx is much more than building an
inverse interpreter of wx. Let us assume we have wx of
Figure 6, and P0 of Figure 8 that computes a
summation p := 1+2+3+…+n. The loop in P0 must be
taken into account. We need a consistency of
interpretation: the instructions in each execution of
the loop in Px must always be translated into the same
instruction stream (in this case, “add p, x” and “sub
x, 1”). In other words, wx must always be in the same
state every time the execution reaches the
control-flow junction at the top of the loop body.
Taking advantage of constraints 4 and 5 above, we
inject a sequence of dummy instructions into the tail
of the loop, so that the FSM will reach the desired

state at the top of the loop without changing program
semantics.

Anyway, we first build an inverse interpreter of wx
(denoted as wx

-1), then we use this inverse interpreter
to translate P0 into Px. Our wx

-1 is the DFA defined by
6-tuples (Q’, ∑’, Ψ’, ∆’, Λ-1, q0) where

Q’ = Q = {q0, q1, …, qn-1} is the states in the FSM.

∑’ = Ψ = {c0, c1, …, cn-1} is the input alphabet.

Ψ’ = ∑ = {c0, c1, …, cn-1} is the output alphabet.

δi’ : ∑’ → Q’ is the next-state function for state qi,
where δi’(cj) has the value δi(λi

-1(cj)) for all i, j.

add/sub
sub/add

add/add
sub/sub

add

add

sub sub

q0 q1

Starting
State

Figure 6. Example of FSM wx

sub p, x
add x, 1
add p, x
add x, 1

add p, x
sub x, 1
add p, x
sub x, 1

Figure 7. Example of instruction stream

interpretation

let x = n
let p = 1

loop: if x == 0 exit
add p, x
sub x, 1
goto loop:

Figure 8. Example of P0

sub/add
add/sub

add/add
sub/sub

sub

add

add sub

q0 q1

Starting
State

Figure 9. Example of wx

-1

∆’ = (δ0’, δ1’,…, δn-1’) is the n-tuple of all
next-state functions.
λi’: ∑’ → Ψ’ is the output function for state qi,
where each λi’ : ∑’ → Ψ’ has the value λi

-1(cj) for
all i, j.

Λ’ = (λ0’, λ1’, …, λn-1’) is the n-tuple of all output
functions.

q0∈Q’ is the starting state of the FSM.

Figure 9 shows an example of wx
-1 corresponding to

wx of Figure 6. As shown in Figure 9, wx
-1 has the

same number of states and transitions as wx.

Next, we give a procedure for the translation Tx: P0 →
Px. Figure 10 shows this procedure where:

PC is a program counter (we assume PC is a line
number of P0).

codeP0(PC) is an instruction in P0 at PC.

codePx(PC) is an instruction in Px at PC.

qs∈Q is a state of wx
-1.

state(PC) is a state in which codeP0(PC) was
interpreted.

We also assume this procedure Tx uses a stack
(denoted as Stack), and its operation push and pop, to
accumulate values of PC.

Figure 11 shows an example of Px translated from P0
of Figure 8. In this example, a dummy instruction
“add p, 0” is inserted into Px to force the state
transition q1 → q0 so that w comes to q0 every time the
execution reaches the entry point of loop.

3 Case Study

3.1 Program translation

In this section we explain a more complex example,
in which we execute the procedure Tx:P0→Px of
Figure 10 using the inverse interpreter wx

-1 given in
Table 1. This wx

-1 is designed for programs written in
an Intel x86 instruction set. We use the AT&T
syntax (GNU assembler format) to write assembly
codes in LP0 and LPx. Our sample wx

-1 has eight states
Q’ = {q0, q1, …q7} with q0 a starting state, and has
eight types of instructions ∑’ = {jmp, jne, pushl,
decl, movl89, subl, movl8B, leal}. Here, “movl89”
indicates MOV instructions whose opcode byte are
“89”, and “movl8B” indicates “8B” opcode as well.
Two instructions (jmp and jne) are branching
instructions. The other six are non-branching
instructions. For each instruction in Table 2, a binary

(hexadecimal) representation of the opcode is shown.
Please see [Intel 1999] for detailed information on
instruction semantics.

Let state(k) := NULL for all k of P0
Let qs := q0
 Set PC to the entry point of P0
loop:
 If PC = exit of P0 then goto resume
 If state(PC) ≠ NULL && state(PC) ≠ qs then{
 Call choose&insert_dummy
 Goto resume
 }
 Let state(PC) := qs
 If codeP0(PC)∈∑’ then { /* obfuscated instruction */
Interpret codeP0(PC) via wx

-1, i.e.
Let qs := δs’(codeP0(PC))
Let codePx(PC) := λs

-1(codeP0(PC))
 }else{ /* non-obfuscated instruction */
Let codePx(PC) := codeP0(PC)
 }
If codeP0(PC) = branching instruction then {
 If codeP0(PC) ≠ non-conditional jump then {
 Do push(PCfalse) where PCfalse is a line number of next
instruction in false branch
 Let state(PCfalse) = qs
 }
 Let PC := a line number of next instruction in true
branch
}else{
 PC := PC + 1
 }
Goto loop

resume:
 If Stack is empty then end
PC := pop()
qs := state(PC)
Goto loop

choose&insert_dummy:
 Let PCprev := previous value of PC
 If codeP0(PCprev) = non-branching instruction then{
 Choose ci∈∑’ that satisfies δs’(ci) = state(PC)
 Let di := a sequence of dummy instructions for ci
 Let di := λs

-1(di)
 Insert di into Px right after the line number = PCprev
 }else{
Choose k that satisfies δk’(codeP0(PCprev)) = state(PC)
 Choose ci∈∑’ that satisfies δstate(PCprev)’(ci) = qk
 Let di := a sequence of dummy instructions for ci
 Let di := λs

-1(di)
 Insert di into Px at the line number = PCprev
 state(PCprev) = qk
}
 return

Figure 10. Procedure for Tx: P0 → Px

Table 2 shows sequences of dummy instructions di
for each ci∈∑’. The obfuscated (translated) dummy
sequence di = λj

-1(di) does not change the behaviour of
Px, yet it causes one state-transition in wx. Some of
these di modify registers, and these must be “dead
registers” to define our desired no-op function. Dead
registers can be detected easily by static analysis of
P0 [Irwin, Page and Smart 2002]. If there no dead
register is available, one can be created by adding
pushl and pop instructions to di to preserve the value
of a live register.

The target P0, which is to be translated, is shown in
Figure 13. This P0 is a x86 assembly program,
compiled by gcc from the C source program shown in
Figure 12. This P0 computes a summation of odd
numbers p := 1+3+5+…+n. Figure 14 shows Px
corresponding to this P0. In Figure 13, numbers
described in leftmost column indicates line numbers,
and their corresponding lines are described in Figure
14 as well. Second column in Figure 13 describes the
state of w-1 in which each instruction is interpreted.
Due to limited space, we have not included a detailed
explanation of our translation process in this paper.
However, a full explanation of a sample translation of
a Java bytecode program for a Type-2 interpreter is
shown in our previous paper [Monden et al, 2003].

3.2 Obscurity of translated program

The program Px obtained by above translation has
some fundamental characteristics to make itself
obscure. Below we describe the characteristics of Px
in Figure 14 compared with P0 in Figure 13.

1. As described in 2.2.1, Px uses the opcodes of an
original x86 assembly language LP0, but it is not
itself a valid x86 program since the operand
signatures in Px are not all correct in LP0. For
example, in line 2 of Figure 14, the “pushl”
opcode requires one operand in LP0, however it
has two operands in Px. This indicates Px cannot
be parsed accurately by a disassembler for LPx
into instructions, since the correct number of
operands required for each opcode LPx differs
from that in LP0. (Indeed, LPx might not even
have a consistent syntax.)

2. Instructions in Px do not have static binding to
their semantics. For example, “pushl” in line 2 is
interpreted as “movl89” via wx (see the same line
in Figure 13), but in line 24, it is interpreted as
“leal”. Note that dummy instructions, for
example the one between line 25 and 26, also
have non-static semantics, so they are not
statically recognizable as dummy instructions.

3. The control flow of P0 is not apparently
preserved in Px, i.e. if Px were executed without
translation “just as it appears”, it would take
different branches than P0. For example, the
conditional jump “jne” in line 10 is actually an
unconditional JMP. (In addition, if a translated
program Px contain a dummy instruction
sequence for a branching instruction, then the
apparent control flow of Px is more complex than
P0.)

4 Security Analysis

In this section, we analyze the security of our scheme
against adversaries of varying resources, knowledge,
and persistence.

Generally speaking, our security objective is to
prevent an adversary from understanding the
protected software. The understanding of an
adversary is not directly measurable, however, so we
define our security metric by a series of restrictions
on an adversary’s future actions.

1. [Local tamper-proofing] The adversary should
not understand the protected software well
enough to make small alterations in program
representation and behavior. An example of a
small alteration is the replacement of an IFNE
(jne) opcode with a GOTO (jmp) opcode, in order
to defeat a license check [LaDue 1997].

2. [Global tamper-proofing] The adversary should
not understand the protected software well

let x = n
let p = 1

loop: if x == 0 exit
sub p, x
add x, 1
add p, 0 ; dummy instruction
goto loop:

Figure 11. Example of translated Px

int sumodd(int N){
 int i, p;
 p = 0;
 for(i = 1; i <= N; i++){
 if(i % 2 == 1) p = p + i;
 }
 return p;
 }

Figure 12. Example of P0 in C language

enough to make large-scale alterations in
representation and/or small alterations in
behavior. An example of a large-scale alteration
in representation is a de-compilation and
re-compilation. Such an attack will obscure
many static code watermarks [Collberg and
Thomborson 2002], and it will defeat a
copyright-violation test that is based on a code
comparison.

3. [Reverse engineering; algorithmic
understanding] The adversary should not
understand the protected software well enough to
make a large-scale alteration in its behavior, for
example by identifying, copying, and re-using a
substantial portion of its code (or its embedded
“secrets” such as a decryption key) in another
software product.

We have listed these restrictions in order of
increasing understanding. Only an adversary with
“level-3 understanding”, in our metric, is able to

reverse-engineer a program. Such an adversary
would also possess level-2 and level-1 understanding.
An adversary who has level-2 understanding can
de-compile (or at least dis-assemble) the code, and
then make wholesale changes in program
representation and some changes in behavior. An
adversary with level-1 understanding may discover,
through a trial-and-error process, a conditional
branch whose annulment will defeat a simple
license-checking mechanism.

We do not expect to be able to prevent expert and
well-resourced adversaries from gaining level-1
understanding of a program. However, as argued
below, our protection scheme in conjunction with
other obfuscations will prevent adversaries with
considerable knowledge, resources and motivation
from ever gaining level-3 understanding. Weaker
adversaries will be unable to gain level-2 or even
level-1 understanding, unless they are very persistent.

.globl sumodd
 .type sumodd,@function
example:
 1 q0 pushl %ebp
 2 q2 movl89 %esp, %ebp
 3 q4 subl $8, %esp
 4 q4 movlC7 $0, -4(%ebp)
 5 q4 movlC7 $1, -8(%ebp)
 6 .L3:
 7 q4 movl8B -8(%ebp), %eax
 8 q7 cmpl 8(%ebp), %eax
 9 q7 jle .L6
10 q7 jmp .L4
11 q7 .L6:
12 q7 movl8B -8(%ebp), %edx
13 q7 movl89 %edx, %eax
14 q4 sarl $31, %eax
15 q4 shrl $31, %eax
16 q4 leal (%eax,%edx), %eax
17 q4 sarl $1, %eax
18 q4 sall $1, %eax
19 q4 subl %eax, %edx
20 q0 movl89 %edx, %eax
21 q1 cmpl $1, %eax
22 q1 jne .L5
23 q3 movl8B -8(%ebp), %edx
24 q4 leal -4(%ebp), %eax
25 q5 addl %edx, (%eax)
 q5
26 q3 .L5:
27 q3 leal -8(%ebp), %eax
28 q0 incl (%eax)
29 q0 jmp .L3
 q0
30 q0 .L4:
31 q0 movl8B -4(%ebp), %eax
32 q3 leave
33 q3 ret

Figure 13. P0 in AT&T syntax

.globl sumodd
 .type sumodd,@function
example:
 1 decl %ebp
 2 pushl %esp, %ebp
 3 subl $8, %esp
 4 movlC7 $0, -4(%ebp)
 5 movlC7 $1, -8(%ebp)
 6 .L3:
 7 leal -8(%ebp), %eax
 8 cmpl 8(%ebp), %eax
 9 jle .L6
10 jne .L4
11 .L6:
12 leal -8(%ebp), %edx
13 pushl %edx, %eax
14 sarl $31, %eax
15 shrl $31, %eax
16 leal (%eax,%edx), %eax
17 sarl $1, %eax
18 sall $1, %eax
19 movlC7 %eax, %edx
20 movl89 %edx, %eax
21 cmpl $1, %eax
22 jmp .L5
23 leal -8(%ebp), %edx
24 pushl -4(%ebp), %eax
25 addl %edx, (%eax)
 subl %eax ,%ebx ; dummy q5→q3
26 .L5:
27 movlC7 -8(%ebp), %eax
28 incl (%eax)
29 jne .L3
30 .L4:
31 leal -4(%ebp), %eax
32 leave
33 ret

Figure 14. Px in AT&T syntax

We characterize an adversary’s knowledge and
resources along several dimensions (labeled A, B,
etc.), as listed below. To simplify our analyses, we
consider only adversaries who are equal on all
dimensions. An adversary that is at level-0 is a naïve
end-user. Our level-1 adversary is an end-user with
very limited technical skill and ability. Our level-2
adversary has a debugger and good technical skills.
Our level-3 adversary is expert and extremely
well-resourced, and our level-4 adversary is in
possession of powerful custom software.

A. FSM interpretation.

0. The level-0 adversary has a computer system Mx
(containing interpreter Wx as shown in Figure 2)
and a copy of the translated (protected) program
Px. Note that these resources are required to
execute the protected program.

1. The adversary has an algorithmic understanding
of the principles of FSM-based interpretation, as
described in this article.

2. The adversary has a debugger with “breakpoint”
functionality, attached to an obfuscated software
implementation of Wx. Alternatively, the
adversary has a logic state analyzer, attached to
the inputs and outputs of a hardware
implementation of Wx.

3. The adversary is able to reverse-engineer a
software implementation of Wx, so that it is
possible to collect output traces from Wx, and to
inject arbitrary input for translation by Wx.

4. The adversary has source code for a generic
interpreter W(x) which emulates Wx for any x, and
a generic translator T(x) which implements Tx for
any x.

B. Observation.

0. In a level-0 observation, the adversary observes
the audio-visual outputs of the computer system
Mx, as it executes a program.

1. The adversary determines, by inspection of
audio-visual outputs, whether or not Mx is
running a program that has the same behavior as
the protected program.

2. The adversary records a snapshot (i.e. a small
number of opcodes and operands, before and
after FSM interpretation) of the input and output
of Wx.

3. The adversary records a complete trace of the
output of Wx, during a run of the protected
program on computer system Mx.

4. The adversary has a generic interpreter W(x), and
knows how to use this to record a complete trace
of the output of Wx for any x. The adversary also
has a generic translator T(x) whose outputs can be
recorded.

C. Control.

0. The adversary operates the keyboard and mouse
inputs of the computer system Mx, as it executes
the protected program.

1. The adversary can modify the statements in
program Px in any desired way, before running it
on computer system Mx.

2. The adversary injects a small number of
(arbitrary) inputs into Wx, after the unit has
interpreted some (arbitrary) number of opcodes
and operands. These injections are at low speed,
and for this reason they will generally not
produce the same audio-visual output from
system Mx as if these inputs were normally
presented to Wx.

3. The adversary injects arbitrary inputs into Wx, at
full bandwidth.

4. The adversary injects arbitrary inputs, including
the setting of parameter x, into T(x) and W(x).

Under our definitions above, level-0 adversaries have
very few avenues of attack. They might attempt a
“black-box re-engineering” – inferring program code
from program behavior. Such an attack is infeasible
unless program behavior is trivial, and in any event it
would not breach any of our security objectives.

The only other avenue of attack of a level-0 adversary
is an inspection and cryptographic analysis of the
translated program Px. An early step in such an
analysis would be a working knowledge of the
principles of FSM interpretation, which would be
much more effectively gained by reading this article
(a level-1 attack) than by a naïve level-0 attack.

We turn to the level-1 attacks. A
cryptographically-skilled adversary with knowledge
of programming language semantics and our FSM
algorithm would probably start by building a table of
“dummy instruction sequences” dj similar to Table 2.
Note that the obfuscation on these sequences is weak.
Each dummy sequence consists of a short (possibly
empty) prefix of non-obfuscated instructions, a single

obfuscated instruction, and a short (possibly empty)
suffix of non-obfuscated instructions. Algorithm Tx
will place a dummy instruction sequence at the end of
branch to a predecessor instruction, except in the
(relatively rare) cases where the FSM is in the same
state in both paths to the target instruction. So the
suffixes will be recognizable as the
commonly-repeated patterns before a
backwards-branch or jump. Note that all
control-flow opcodes are recognizable (either as
class-C1 opcodes, or as unobfuscated opcodes) in our
Type 2.5 FSM design, although the adversary will
certainly make some mistakes in recognition of
branching opcodes wherever instruction boundaries
are obscure in the obfuscated code due to the
differing operand syntax in LP0 and Lpx . For example
a 0xEB byte in the obfuscated sequence is reasonably
likely to be an obfuscated branch opcode but it may
also be an operand.

The adversary might examine O(n2) loops to be
reasonably certain of having discovered all suffixes,
so hypothesizing dj may take days but not months if n
= 100. The prefixes can be recognized as the
commonly-repeated short sequences that occur
immediately before a single (variable) instruction that
precedes a suffix. The attacker can prune the list of
possible dummy sequences by discarding any
prefix-suffix pair that is not a no-op for at least one
choice of (variable) instruction semantics.

Our cryptographically-skilled level-1 attacker could
then build up a (hypothesized) list djk of obfuscated
dummy sequences by substituting all (hypothesised)
ck for the cj in each (hypothesized) sequence dj. Using
their level-1 control, they could insert an arbitrary
instruction at the beginning of a (hypothesized) loop
body; this will soon reveal the location of a sensitive
loop, whose semantics visibly affects program
operation (a level-1 observation). The attacker would
then insert a short no-op sequence to confirm that
program correctness is not hypersensitive to loop
timing. Then the attacker would choose one pair dij,
dkz of the (hypothesized) obfuscated dummy
sequences for insertion at this point in the program.
A small fraction of these pairs (about 1/10000 if there
are 100 obfuscated opcodes) will not affect program
correctness. One such discovery constitutes a major
“crack” because the attacker is almost certain that the
FSM was in the same state at the beginning and the
end of this sequence. After 10000 such discoveries,
the attacker would have cracked a 100-state FSM Wx.
We have not done a complete cryptographic analysis,
however our preliminary analysis indicates that O(n4)

observations and controls would suffice for an attack
of the type described above, on an n-state Type 2.5
FSM by an extremely persistent level-1 attacker with
cryptographic skill. This might take months or years,
because each step requires our adversary to observe a
run of a modified Px’ on their machine Mx. We could
increase the difficulty of such attacks by increasing
the search space, for example by using multiple
“dummy sequences” for each instruction, by
randomizing the locations in which we insert
“dummy sequences” (our translation algorithm Tx
could insert a dummy sequence at any point in the
straight-line code leading up to a branchpoint in P0),
by using a Type-2 or Type-2.5 design without a
partition between branching and non-branching
opcodes, by using a Type-3 FSM to make it harder for
the attacker to recognize no-op suffixes and prefixes,
or by using a Type-4 FSM to increase n. We intend to
explore these options in future work.

The “crack” described above for a level-1 attacker
gives them level-2 understanding of a single machine
Mx, for they can predict how a single FSM Wx will
translate arbitrary inputs – including the obfuscated
program Px! (Note: the attacker must do some
cut-and-paste work, and some exercising of program
paths, perhaps by program modification, to transform
their traces of Px into a program listing. Alternatively,
they might choose to write source code for a
specialised de-obfuscator Tx: this may take months,
but they have probably already spent months if not
years to reach this level of understanding: they are
now essentially a level-3 adversary.) The level-1
adversary in possession of this “crack” can also
discover the FSM state at any point in the code where
their code insertions can visibly affect program
correctness. With this knowledge they can inject
short code sequences, followed by an appropriate
“dummy sequence” to preserve the correctness of
translation of the subsequent code.

We now briefly consider level-2 and level-3
adversaries.

A level-2 adversary can correlate the outputs with the
inputs of the FSM, where these inputs are the ones
associated with any desired “breakpoint” in a
(possibly modified) Px. This ability will greatly
speed the brute-force attack described above for our
level-1 adversary, and it will allow new attack
strategies such as directly observing the translation
λi(cz) of an instruction cz that occurs in (hypothesised)
dummy sequences in Px. Our preliminary analysis
indicates that O(n3) observations and controls, each
taking a few seconds or milliseconds (in an

automated attack), will suffice for a level-2 attacker
to achieve level-2 understanding.

A level-3 adversary can collect an execution trace of
P0, and they can correlate all branch-points in this
trace with the corresponding branch-points in Px. If
Px is short, they can produce an accurate cleartext
bytecode listing by hand. If Px is long, they should try
to obtain a copy of a “general-purpose”
deobfuscating tool that some other level-3 adversary
may have produced when cracking some other Mx’. If
no such tool exists, our level-3 attacker may write and
publish such a tool, so that subsequent level-3
attackers merely have to obtain the tool to get a
program listing for any Px. However we note that, if
the value of x is embedded in secure hardware, and if
the party in possession of Tx preserves the secrecy of
x, level-3 adversaries will be rare – they must either
have the ability to “crack” secure hardware or they
must develop more powerful cryptanalytic attacks
than we have outlined above for our hypothetical
level-2 adversary.

We close our security analysis with a warning. Our
translation system is essentially cryptographic in
nature, so it should only be used to obfuscate long
programs that have been “randomized” (i.e.
obfuscated) before they are translated by our Tx.
Otherwise the attacker will be able to make a likely
guess to the cleartext, which may greatly speed their
attack.

5 Conclusion

In this paper we proposed a framework for
obfuscating the program interpretation. We defined a
FSM-based interpreter wx that gives
context-dependent semantics to program instructions.
We also defined a program translator Tx to
systematically construct a program Px, which is
executable with wx, from a given program P0 written
in a conventional programming language.

Our case study of a “Type 2.5” translation of an x86
assembly-language P0 into an “x86-like” Px showed
that instructions in Px have non-static semantics, i.e.
functionality is hidden from program users, yet Px is
still functionally equivalent to P0.

Our preliminary security analysis showed that our
design is reasonably secure against adversaries of
varying resources, knowledge, and persistence. Our
analysis highlighted some areas where our design
could be improved, and we conclude that our design
should only be used to obfuscate long programs that

have been “randomized” (i.e. obfuscated) before they
are translated.

In the future, we will develop detailed designs for
interpreters of Type 1, 3 and 4, and we intend to
clarify their advantages and shortcomings.

6 References

Albert, D.J. and Morse, S.P. (1984): Combatting
software piracy by encryption and key
management. Computer, 17(4):68-73, IEEE
Computer Society.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,
Sahai A., Vadhan, S. and Yang, K. (2001): On the
(im)possibility of obfuscating programs. Lecture
Notes in Computer Science, 2139:1-18,
Springer-Verlag.

Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer,
T.S., Stefanovic, D. and Zovi, D.D. (2003):
Randomized instruction set emulation to disrupt
binary code injection attacks. Proc. 10th ACM
Conference on Computer and Communications
Security (CCS2003), 281-289, Washington DC,
USA.

Chow, S., Eisen, P., Johnson, H. and van Oorschot,
P.C. (2002): A white-box DES implementation for
DRM applications. Proc. 2nd ACM Workshop on
Digital Rights Management (DRM2002),
Washington DC, USA.

Cohen, F.B. (1993): Operating system protection
through program evolution. Computers and
Security, 12(6):565- 584, Elsevier Science.

Collberg, C. and Thomborson, C. (2002):
Watermarking, tamper-proofing, and obfuscation -
Tools for software protection. IEEE Transactions
on Software Engineering, 28(8):735-746, IEEE
Computer Society.

Herzberg, A. and Pinter, S.S. (1987): Public
protection of software. ACM Transactions on
Computer Systems, 5 (4):371-393.

Intel Corporation. (1999): Intel architecture software
developer’s manual volume 2 instruction set
reference. http://www.intel.com/design/
intarch/manuals/243191.htm

Irwin, J., Page, D. and Smart N. P. (2002): Instruction
stream mutation for non-deterministic processors.
Proc. 13th International Conference on
Application-specific Systems, Architectures and
Processors (ASAP2002), 286-295.

Kanzaki, Y., Monden, A., Nakamura, M. and
Matsumoto, K. (2003): Exploiting
self-modification mechanism for program
protection. Proc. 27th IEEE Computer Software
Applications Conference (compsac2003), 170-179,
Dallas, USA, Nov. 2003.

Kc, G.S., Keromytis, A.D. and Prevelakis, V. (2003):
Countering code-injection attacks with
instruction-set randomization. Proc. 10th ACM
Conference on Computer and Communications
Security (CCS2003), 272-280, Washington DC,
USA.

LaDue, M. (1997): The Maginot license: Failed
approaches to licensing Java software over the
Internet.http://www.geocities.com/securejavaappl
ets/maginot.html

Maude, T. and Maude, D. (1984): Hardware
protection against software piracy.
Communications of the ACM, 27(9):950-959.

Monden, A., Monsifrot, A. and Thomborson, C.
(2004): A framework for obfuscated interpretation.
Australasian Information Security Workshop
(AISW2004), Conferences in Research and
Practice in Information Technology, 32,
Australian Computer Society (to appear).

picoJava, Sun Microsystems.
http://www.sun.com/microelectronics/picoJava/

Patrizio, A. (1999): Why the DVD hack was a cinch.
Wired News. http://www.wired.com/news/
technology/0,1282,32263,00.html

Robshaw, M.J.B. (1995): Stream ciphers. RSA
Laboratories Technical Report TR-701.
http://islab.oregonstate.edu/koc/ece575/rsalabs/tr-
701.pdf

Stinson, D.R. (1995): Cryptography: Theory and
practice. Florida, USA, CRC Press.

The U.K. Parliament (2002): The mobile telephones
(re-programming) bill. House of Commons
Library Research Paper 02-47.
http://www.parliament.uk/commons/lib/research/r
p2002/rp02-047.pdf

TinyJ, Advancel Logic Corporation.
http://www.advancel.com/products.htm

Xpresso, Zucotto Wireless Inc.
http://www.zucotto.com/home/

Zhang, X. and Gupta, R. (2003): Hiding program
slices for software security, Proc. International

Symposium on Code Generation and Optimization
(CGO2003), 325-336, San Francisco, USA.

Table 2. List of sequence of dummy instructions
Sequence of dummy

instructions #
 jmp .Lx
 any instructions
.Lx

0

 jne .Lx
 addl $0,%eax
.Lx

1

 pushl %eax
 pop %eax 2
 decl %eax
 incl %eax 3
 mvl89 %eax,%ebx* 4
 movl $0, %eax
 subl %ebx,%eax 5

 mvl8B -4(ebp),%eax* 6

 leal -4(ebp),%eax* 7

* these registers must be dead

Table 1. Example of FSM wx
-1

State Input / Output transition State Input / Output transitio
n

q0

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 4D decl %ebp
4D decl %epb / 55 pushl %ebp
89 movl89 / 89 movl89
29 subl / 29 subl
8B movl8B / 8D leal
8D leal / 8B movl8B

q4
q7
q2
q5
q1
q6
q3
q0

q4

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 89 movl89
48 decl %ebp / 48 decl %ebp
89 movl89 / 29 subl
29 subl / 8B movl8B
8B movl8B / 8D leal
8D leal / 55 pushl %ebp

q6
q4
q2
q1
q3
q0
q7
q5

q1

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 8D leal
4D decl %ebp / 55 pushl %ebp
89 movl89 / 8B movl8B
29 subl / 29 subl
8B movl8B / 89 movl89
8D leal / 4D decl %ebp

q1
q3
q4
q2
q0
q6
q7
q5

q5

EB jmp / EB jmp
75 jne / 75 jne
55 pushl %ebp / 8B movl8B
4D decl %ebp / 55 pushl %ebp
89 movl89 / 29 subl
29 subl / 89 movl89
8B movl8B / 4D decl %ebp
8D leal / 8D leal

q2
q1
q4
q0
q3
q6
q5
q7

q2

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 29 subl
4D decl %ebp / 8D leal
89 movl89 / 55 pushl %ebp
29 subl / 8B movl8B
8B movl8B / 89 movl89
8D leal / 4D decl %ebp

q7
q0
q6
q5
q4
q3
q1
q2

q6

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 8D leal
4D decl %ebp / 89 movl89
89 movl89 / 8B movl8B
29 subl / 4D decl %ebp
8B movl8B / 55 pushl %ebp
8D leal / 29 subl

q5
q2
q4
q1
q6
q7
q0
q3

q3

EB jmp / EB jmp
75 jne / 75 jne
55 pushl %ebp / 4D decl %ebp
4D decl %ebp / 89 movl89
89 movl89 / 29 subl
29 subl / 55 pushl %ebp
8B movl8B / 8D leal
8D leal / 8B movl8B

q3
q5
q2
q6
q1
q7
q4
q0

q7

EB jmp / 75 jne
75 jne / EB jmp
55 pushl %ebp / 4D decl %ebp
4D decl %ebp / 89 movl89
89 movl89 / 55 pushl %ebp
29 subl / 29 subl
8B movl8B / 8D leal
8D leal / 8B movl8B

q0
q6
q5
q3
q4
q1
q7
q2

