
 1

Automatic Generation of Java Query API

Capable of Simulating Active Database

Toshiaki Majima

Language Design Laboratory

Nara Institute of Science and Technology

 2

TABLE OF CONTENTS

1. ABSTRACT...5

2. INTRODUCTION... 6

3. TERMINOLOGY LIST.. 9

3-1. STRUCTURED QUERY LANGUAGE (SQL).. 9

3-2. SQL STATEMENTS .. 9

3-3. SQL DIALECT PROBLEM .. 10

3-4. JAVA 2 PLATFORM... 10

3-5. JAVA DATABASE CONNECTIVITY (JDBC) ... 10

3-6. JAVA INTERNATIONALIZATION .. 11

4. MOTIVATING ISSUES... 12

4-1. SQL LEARNING COST .. 12

4-2. SOURCE CODE INCONSISTENCY ... 13

4-3. LOW REUSABILITY ... 13

4-4. PROPOSED SOLUTION... 14

5. SOLUTION... 15

5-1 OVERVIEW .. 15

5-1.1 Java Query System Development Kit (Java Query SDK).......................... 15

5-1.2 System Generation Script (SG Script) ... 15

5-1.3 Just-in-time Implementer... 16

5-1.4 Java Query System Environment (Java Query API).................................. 17

5-2 TUTORIAL ... 18

Step 1. Write SG Script... 18

Step 2. Auto-generate Java Query API with Just-in-time Implementer 19

Step 3. Developing DB Applications in Java Query API .. 20

5-3 FEATURES... 23

5-3.1. Synchronizing Accesses with Table-level Lock Granularity 23

5-3.2. Dynamic SQL Dialect Composer.. 24

5-3.3. Pooling and Garbage Collection for Connection.. 27

5-3.4. Simple API for Data Loading.. 29

5-3.5. Active Database Features... 30

 3

6 MERITS AND ORIGINALITIES... 32

6-1 A BASIC KNOWLEDGE OF JAVA IS ALL THAT IS NEEDED....................................... 32

6-2 STAND-ALONE ON J2SE PLATFORM... 32

6-3 AUTOMATIC CODE GENERATION.. 32

6-4 SIMPLE SG SCRIPT RESULTS IN A DEPLOYABLE SYSTEM 33

6-5 CODE SIMPLICITY... 33

7. QUERY PERFORMANCE TEST RESULT.. 39

7-1. PERFORMANCE COMPARISON (JAVA QUERY API VS. JDBC) 39

7-2. THOUGHTS ON JAVA QUERY API PERFORMANCE OVERHEAD 40

8. REFERENCES... 40

 4

List of Figures

Figure 1 Development Flow with Java Query SDK ________________________7

Figure 2 JDBC Code Snippets__8

Figure 3 Activity diagram of the JDBC programmers____________________ 12

Figure 4 System Generation Script (sample) _____________________________ 15

Figure 5 Activity Diagram of Java Query SDK Developer _______________ 17

Figure 6 Synchronization with Lock on Table Accessor Class ____________ 24

Figure 7 Java Query API Dynamically Composing MySQL SQL Statements
___ 26

Figure 8 Java Query API Dynamically Composing Oracle Statements __ 26

Figure 9 Dynamic Connection Router ____________________________________ 28

Figure 10 Data Loading Capability of Java Query API___________________ 29

Figure 11 Application Level Trigger______________________________________ 31

Figure 12 Query Performance Result ____________________________________ 39

 5

1. Abstract

Various programming languages provide application programmer’s
interfaces (API) for accessing databases. Traditional APIs, however, require
the developers to explicitly include Structured Query Language (SQL)
statements as string literals within the source code of the host programming
language. For example, Java Database Connectivity, a database access
methodology of Java, requires Java programmers to embed SQL statements
as string literals in the Java code. While accomplishing the integration of
database access capability, the mixture of two different languages causes
several difficulties, such as SQL learning cost and inconsistency. To solve
these issues, we propose a programming paradigm that will let Java
database application programmers concentrate solely on Java throughout
the development phases, without having to write a single SQL command.

 6

2. Introduction

The database research and development field can be subdivided into the
following three major fields (Urman, 2000):

nThe User Interface
nThe Application Logic
nThe Database

Our concentration is on database application development, focusing on
designing and establishing a new programming paradigm.

The purpose of this research project is to extend the relational database
technology using Java, currently one of the most popular object-oriented
programming languages (see section titled “Terminology” for more details of
Java). Specifically, in this paper I introduce development methodology that
accepts a Java-oriented simple script as input, and outputs a development
environment where the client can manipulate database tables with
auto-generated pure Java application programmer’s interface (API). The
development tool established for this research project is what we call the
Java Query System Development Kit (Java Query SDK). The key
development components of Java Query SDK include Java Query System
Generation Script (SG Script), an automatic API generator called
Just-in-time Implementer that accepts the SG Script, and the resulting
output from the Just-in-time Implementer which we call the Java Query
System Environment (Java Query API). Figure 1 below shows an
schematic overview of how Java Query SDK development proceeds.

 7

Figure 1 Development Flow with Java Query SDK

Java Query API is a development environment that allows developers to
build database access applications which are based purely on Java, without
having any other language embedded. By “pure Java,” we mean that the
Java Query API API, unlike the JDBC API, does not require the client to
explicitly insert SQL statements to access relational databases.

The Java Query API is a stand-alone system based on J2SE technology,
being composed of Java Bean, JDBC, and relational database table schema.

A relational database is composed of data stored in tables as records, which
are traditionally accessed and manipulated using Structure Query Language
(SQL). SQL commands are often executed interactively through console
applications such as Oracle SQL*Plus.

To process SQL statements from within a programming logic, many current
programming languages provide an application programmer’s interface to
databases. Java Database Connectivity (JDBC), which enables Java
programs to access and manipulate data stored in databases, is an example
of such an interface. The traditional application programmer’s interfaces to

 8

databases, however, require developers to have sufficient knowledge of SQL
and to express statements explicitly within the source code. JDBC is no
exception: the source code of JDBC consists of a mixture of Java language
and SQL statements (see Figure 2, below, for a JDBC code snippet).

As shown in Figure 2, Java programmers embed a string literal representing
an SQL statement to be executed. That is, a JDBC programmer must write
SQL statements in Java. A crucial point for this discussion is that Java and
SQL, two clearly different languages, are commingled in one source code.
Java is a third generation, object-oriented language, while SQL is a fourth
generation, record-oriented language.

Figure 2 JDBC Code Snippets

 9

3. Terminology List

3-1. Structured Query Language (SQL)

SQL is an ANSI (American National Standards Institute) standard
computer language for accessing and manipulating database systems.
SQL statements are used to retrieve and update data in a
database…Unfortunately, there are many different versions of the SQL
language, but to be in compliance with the ANSI standard, they must
support the same major keywords in a similar manner (such as SELECT,
UPDATE, DELETE, INSERT, WHERE, and others) [1].

3-2. SQL Statements

The following is a list of SQL statements that are most relevant to the
discussion of this thesis. The description of the functionality of each
statement indicates a generic usage of the statement; you may find more
usages (please consult the manual of the database that you will be using
for the complete reference of usages).
l SELECT retrieves a record or multiple records from a single table or

combination (join) of tables based on the selective condition, if any,
specified in the statement’s WHERE clause.

l DELETE removes a record or multiple records from a table.
l INSERT inserts a record into a table.
l UPDATE updates a record or multiple records already in a table.
l ROLLBACK is a command to “undo” a previous transaction.
l COMMIT is a command to “make permanent” a previous transaction.

That is, ROLLBACK will not be able to undo a committed
transaction.

l JOIN is a special usage of SELECT statement to retrieve records
from a combination of multiple tables.

 10

3-3. SQL Dialect Problem

But note that despite a long history of standardization, setting a common
language for RDBMS has not necessarily been outstandingly
successful…the bottom line is though SQL has the very same intent,
functionality, and general purpose across database vendors - users have
had to get used to working in dialects. SQL interoperability is
problematical [2].

3-4. Java 2 Platform

The "Write Once, Run Anywhere" Java 2 Platform is a safe, flexible, and

complete cross-platform solution for developing robust Java applications
for the Internet and corporate intranets. The open and extensible Java
Platform APIs are a set of essential interfaces that enable developers to
build their Java applications and applets. The Java 2 Platform provides
uniform, industry-standard, seamless connectivity and interoperability
with enterprise information assets [3].

3-5. Java Database Connectivity (JDBC)

JDBC technology is an API that lets you access virtually any tabular
data source from the Java programming language. It provides
cross-DBMS connectivity to a wide range of SQL databases [4].

JDBC programmers write SQL statements within Java programs in
order to communicate with a database.

 11

3-6. Java Internationalization

Internationalization is the process of designing an application so that it
can be adapted to various languages and regions without engineering
changes [5].
For example, suppose there is an internationalized Java application for
Japanese and English that outputs a greeting message. When the
application is used in a Japanese environment, the internationalization
technology will incorporates a property file containing a key-value pair
(e.g. evening=”こんばんは ”) to let the program output in a proper

language. When used in an English environment, the property file will
be switched to that for English, containing a value of “Good Evening” for
the same “evening” key to make a proper output.

 12

4. Motivating Issues

The following three issues, in particular, motivated us into working on this
research project.

4-1. SQL Learning Cost

The first issue to introduce is the cost for JDBC programmers of learning
SQL so that they can explicitly write SQL statements (see the Activity
Diagram of JDBC programmers in Figure 3, below).

It is not reasonable to assume that all Java programmers have expertise in
manipulating SQL-based databases. Therefore, those Java programmers
who are not used to writing SQL must spend time and labor on acquiring
sufficient proficiency in SQL. In addition, as mentioned earlier, SQL syntax
is quite different from that of Java and other object-oriented programming
languages, so the cost of learning SQL may be considerable. In short, the
mixture of Java and SQL can put an extra burden on JDBC application
developers.

Figure 3 Activity diagram of the JDBC programmers

 13

4-2. Source Code Inconsistency

The second issue is the inconsistency of the application source code, also
caused by the mixture of Java and SQL. Two different concepts, the
object-oriented concept and the record-oriented, represented respectively by
Java and SQL, are mixed in the process of achieving the goal of building
database access applications. Therefore, the mixture of the two languages
not only imposes a syntactical inconsistency, as discussed in the previous
paragraph, but also a conceptual inconsistency.

4-3. Low Reusability

The final issue regarding features of the JDBC technology arises because
SQL is not completely standardized (see the section entitled “SQL Dialect
Problem”). SQL syntax differs slightly between one vendor’s database and
another. The implication of the SQL difference is that one JDBC
application developed specifically for one database may not be reusable for
another database. As acknowledged by the Zope Community: We were
hoping to have one code base support multiple database vendors' products
but as it turned out the differences in SQL implementations between
vendors is large enough to make life extremely difficult [7].

Java has become very popular thanks to its cross-platform neutrality, “write
once, run anywhere,” feature. When we incorporate SQL technology
explicitly into Java language, however, Java is forced to be dependent on
databases. It is true that Java integrates itself with the power of SQL by
literally including SQL statements, but we should note that this
methodology comes with the significant cost of losing Java code neutrality
and reusability.

 14

4-4. Proposed Solution

As a solution to the issues discussed above, we have explored the possibility
of generating a methodology which will enable programmers to concentrate
on a single language and hence a single concept during the development of
database-related applications. As the product of our exploration, we
developed software which we name the Java Query System Development Kit
(Java Query SDK). The Java Query SDK development mechanisms are
described in detail in the next section.

 15

5. Solution

5-1 Overview

5-1.1 Java Query System Development Kit (Java Query SDK)

The Java Query System development process with the Java Query SDK
consists of three key components: the input is Java Query System
Generation Script (SG Script), the processor is the Just-in-time Implementer,
and the output is an immediately deployable Java Query System
Environment (Java Query API). These three components are individually
explained in detail in the following sections.

5-1.2 System Generation Script (SG Script)

When a table is required, a user will specify the table requirements in SG
Script, whose syntax is based purely on Java. This step requires only a
basic knowledge of Java (by “basic,” we mean the scope of Java 2 Standard
Edition) and of the structure of database tables.

Figure 4 System Generation Script (sample)

 16

As can be seen in Figure 4, Java Query SDK allows users to specify the
system requirements in SG Script format (see the section entitled
“Specification” for detailed description of the SG Script syntax). The Java
Query SDK user starts development by writing SG Script, whose only
requirements are the class name and property list, with other available
syntax options. The user is presented with syntax options for defining
default values, setting read/write/both permission levels, and
Event-Condition-Action rules for triggers (see the section entitled “Features”
for a description of Active Databases).

5-1.3 Just-in-time Implementer

The Just-in-time Implementer analyses an SG Script and generates an
environment where the user can express commands to query and manipulate
the data via statements based purely on Java. This software implements
the cross-database, Java query system ‘just in time’ to meet the needs of the
user, as described in the SG Script.

The activity diagram for Java Query SDK developers in Figure 5, shown
below, indicates the responsibility of the Just-in-time Implementer. As can
be seen, the Just-in-time Implementer takes much of the programming
burden off the developer.

 17

Figure 5 Activity Diagram of Java Query SDK Developer

5-1.4 Java Query System Environment (Java Query API)

Java Query API, the output of the Just-in-time Implementer, is composed of
three components: Java Bean, JDBC code, and relational stable schema
definition, all of which are automatically generated by the Just-in-time
Implementer. The Java Bean serves as the interface for database
application developers; that is, programmers will manipulate the data in the
target database via the methods provided by the Java Bean. The
complexity of SQL handling is processed by JDBC code generated behind the
scenes. In short, the Java Query System encapsulates SQL-based access to
the relational database and provides developers with a purely Java-based,
object-oriented programming interface. For a more detailed description of
Java Query API usages, please refer to the section entitled “Tutorial” below.

 18

5-2 Tutorial

Suppose there is a need to develop a database application to manage
corporate data. Suppose, for a simple tutorial example, that two database
tables are required to store Employee data and Departmental data,
respectively.

Step 1. Write SG Script

Suppose that the Employee data are specified in the following SG Script.

class: Employee
int id rw
String firstName rw
String lastName rw
String rank rw
int age rw if(age <=18 || age >= 60) throw new

IllegalArgumentException(“The age entry is out of
bounds.”);

double salary rw if(salary > 1000000) throw new
IllegalArgumentException(“The salary entry is over the
permitted upper limit.”);

#PRIMARY KEY (id)

The above SG Script sample indicates that the Employee table has several
fields (id, first name, last name, rank, age, and salary), with corresponding
Java types specified for all those fields. The letters “rw” indicate that the
fields are accessible (r) and modifiable (w); that is, the to-be-generated Java
Bean code will be equipped with both setters and getters for these fields.

Note also that triggers are specified for two fields, age and salary. Here,
assume that the company has a business policy that employment age ranges
from 18 to 60, and that the salary must not exceed $1,000,000. Although

 19

any legal Java statement or function may be specified as a trigger, however
long it may be, the specification of this tutorial simply throws an exception.

The last line of the SG Script indicates that we want to make the id field as
the Primary Key for the to-be-generated table schema.

The following is an SG Script for Departmental data.

Class: Department
int managerID rw
int numWorkers rw
String deptName rw
int deptID rw
#PRIMARY KEY(deptID), FOREIGN KEY (managerID)
REFERENCES Employee(id)

We keep the schema simple for the tutorial. An important point to note
about the SG Script for Departmental data is that the constraint specified in
the last line includes that for a Foreign Key.

Step 2. Auto-generate Java Query API with Just-in-time
Implementer

The step of generating Java Query API is automated. At a command
prompt of a console window, type as follows:

%> javaq Employee

Messages and the Java source files and API documentation of Employee and
EmployeeQuery class are auto-generated by the Just-in-time Implementer.

Next, repeat for Departmental data.

 20

%> javaq Department

The above will generate additional Java source files: Department.java and
DepartmentQuery.java.
Java Query API is now generated and ready for use. We will now move on
to the next step.

Step 3. Developing DB Applications in Java Query API

Assume, for this tutorial, that the target database system is a MySQL
database. First of all, connection to the target database must be
established. To make the connection, write a code as follows (using the
correct username and password as parameters to the constructor):

In the case of developing Java Query API applications by creating a new
table, start from Step 3-1. If working with an existing database table, skip
Step 3-1 and start from Step 3-2. Users may secure a password however
they wish, instead of explicitly writing it in the code. The above code is
only an example, for tutorial purposes, and security issues should be
evaluated by individual Java programmers.

Step 3-1. Creating database tables (if not already in existence)

Write the following code to create table in the target database:

 21

It is recommended, but not required, that Java Query API developers
separate instances of Java Bean class (i.e. Employee class in this tutorial):
one for the table management object that is used for table-level transaction
controls, such as table creation, and others for manipulating table record
objects representing records stored in the database. This coding style may
enhance the readability of the Java Query API program.

Step 3-2. Processing SQL-equivalent actions

l Inserting
The following code snippet inserts the records of newly hired employees, here
Tom Smith and John Dow, into the database table. The attributes of the
two employees are to be specified in the arguments to the constructor.

l Deleting

The following code snippet shows how to delete an employee’s record (here,
the employee whose id is equal to 1001). The condition passed to the fetch()
method is used to specify the records to be extracted. The records are
extracted in the form of a bundle stored in ArrayList class. Thus, invoke
get() method of ArrayList to obtain the record object to be deleted, then cast
its type to Employee type, and finally call die() method, which will delete the
record corresponding to the invoking object. The parameter to the get()
method here is 0, which is the index of the list, containing a single employee
record object whose id is 1001, returned by the fetch() method.

 22

l Update
The following code updates the salary to $78,000 for the employee whose id is
equal to 1000. All the setter methods of Java Bean are used to update the
attribute values of the record stored in the database which the invoking
object represents.

 23

5-3 Features

5-3.1. Synchronizing Accesses with Table-level Lock Granularity

In the Java Query API, an auto-generated “executed-behind-the-scenes”
JDBC class is the only access gateway to the corresponding table (e.g. for
Employee data, the auto-generated JDBC class which gives access to the
Employee table is named EmployeeQuery). The Java Query System makes
use of this feature and provides the client with a exclusive access capability
by locking the JDBC class, which we call the Table Accessor in this context.
Note that each Java instance, including that of java.lang.Class class loaded
by Java Virtual Machine (JVM) for each Java class, comes with a single lock.
Since there is only a single instance of java.lang.Class for each class loaded
by JVM for the EmployeeQuery class, the client can specify the guarded
region by locking on that java.lang.Class instance for the EmployeeQuery
class.

Table-level manipulations, including SELECT, are done via the JDBC class.
Methods for table-level operations are described in detail later. Each record
of the database table, on the other hand, is accessible and modifiable by way
of instances of the corresponding Java class.

 24

Figure 6 Synchronization with Lock on Table Accessor Class

5-3.2. Dynamic SQL Dialect Composer

Another important feature of the Java Query API, in addition to its purely
Java-based syntax, is that it enables Java Query System clients to switch
databases dynamically without having to modify the SQL statements
embedded in the auto-generated code. The Java Query API makes use of
Java Internationalization technology (see the section entitled “Terminology
List” for Java Internationalization) to resolve the problem of SQL dialects.

The Java Query System incorporates multiple property files which define the
core SQL syntax and data types that are employed by the group of target
databases. The system switches the property files and dynamically
generates a proper SQL statement according to the database that the
program is currently working on.

For example, suppose a Java Query API Application first accesses the
MySQL database (see line 4 of the sample code snippet shown below), and
then the program switches its connection and redirects its access to Oracle
database (see line 24 of the sample code snippet shown below). As
discussed earlier, without any modification, the SQL difference (such as a
difference in supported data types) could cause the program to halt. Java
Query API automatically and dynamically modifies the to-be-executed SQL
statements, without the Java Query API Application programmers’ knowing.
The mechanism is illustrated below.

First, the Java Query API allows the Java Query API Application to talk
with MySQL, by dynamically composing proper SQL statements with
MySQL data types (see Figure 7).

 25

 26

Figure 7 Java Query API Dynamically Composing MySQL SQL Statements

Figure 8 Java Query API Dynamically Composing Oracle Statements

Next, when the program redirects its connection to the Oracle database,
Java Query API applies Java Internationalization technology to solve the
SQL dialect issue. Note that in Figure 8, as shown above, the property file
has been switched to that for Oracle.

 27

This Java Query API mechanism utilizes Java Internationalization
technology and ensures that the client Java Query API Application will be
free from any unexpected application failure due to syntax errors of SQL
statements when the application is used against multiple, heterogeneous
databases.

5-3.3. Pooling of Connection

Establishing a connection to databases is a costly operation, and we should
try to keep the connection state alive, and hence reusable, throughout the
period in which the client application is still considered in the session. The
term ‘session’ used here is very similar to that used in the context of web
applications, in which the server maintains the state with individual users
during a specified period.

Our definition of the term session is as follows: the Java Query System
Session starts for a client when the client connects for accessing one table via
the corresponding instance of the Java Bean. The connection to the
database for this client is kept alive until the Session ends for that client, i.e.
when the client disconnects from all the instances for which the client built
connections.

The benefit of keeping the database connection for the duration of the
session is that the client applications avoid unnecessary reconnections that
can be a considerable performance overhead. The Java Query System
manages the session automatically, leaving the developers free of session
management responsibilities. As soon as the user disconnects from the last
connected instance, the Java Query System automatically terminates the
connection and ends the session for the user.

As can be seen in Figure 9, a connection router routes client requests to a
proper database.

 28

Figure 9 Dynamic Connection Router

 29

5-3.4. Simple API for Data Loading

Commercial products, such as Oracle SQL Loader, are available for
transferring all the data in one table into another table. The Java Query
System provides the client with this transport capability through its API.
While some commercial products specifically developed for this purpose
require users to learn to write a detailed script for transportation, the Java
Query System requires only a call to a single method, “transfer,” defined in
its auto-generated API. The functionality of the transfer method is shown
in Figure 10.

Figure 10.

Figure 10 Data Loading Capability of Java Query API

 30

5-3.5. Active Database Features

In the syntax for system generation scripts, Java Query SDK users can also
specify triggers for the to-be-generated system. The Java Query System
imitates and simulates the trigger functionality offered by certain relational
databases, specifically those called Active Databases. The trigger
functionality can be any Java statement or expression, however long and
complex it may be. The user can, of course, integrate the Java technologies
of Graphical User Interface, Mailing, or any other complex processing. Note
also that the triggers are furnished within the application logic, being
embedded in the implementation of the Java Query API.

In traditional Active Databases, the trigger can be fired only when a
triggering event is detected by the database itself. In contrast, the Java
Query System detects triggering events within the to-be-executed SQL
statements before the statements reach the database (see Figure 11). This
mechanism of application logic triggering is provided as part of the efforts to
avoid bottlenecks on the database server.

In addition, any complex Java Boolean expression can be used as the trigger
condition and any Java statement or expression can be specified as the
trigger action. Thus, the triggers can be more flexible and powerful than
those offered by Active Databases.

It is notable that some relational databases are not “active,” in the sense that
they do not support trigger functionality. The application logic triggers
offered by the Java Query System, therefore, can encapsulate and “make
active” even non-Active Databases (i.e. equip them with trigger capability),
providing an illusion that a non-active relational database is active.

Furthermore, even with originally Active Databases, it should not be
assumed that the database server administrator will integrate the trigger
specification for all the requests of each client. Individual clients can have
many business policies that they wish to be enforced by a database using
trigger specifications. The database administrator must, however, keep the
database tuned and may choose not to implement any requested trigger that

 31

might cause a performance decline. Here again, the application logic
trigger, enabling each client to specify triggers at the cost of the client
machine’s performance, should be a solution.

Figure 11 Application Level Trigger

 32

6 Merits and Originalities

The following is a list of merits and originalities of the proposed solution.

6-1 A Basic Knowledge of Java Is All That Is

Needed

First, and most importantly, the merit of the proposed solution is that a Java
Query API client has only to know basic Java for building database access
applications. Therefore, unlike the JDBC technology, which requires the
developers to explicitly write SQL statements mixed with Java language, the
Java Query API application code is consistent both in its syntax and in its
concept.

6-2 Stand-alone on J2SE Platform

The originality of Java Query API is that it is a stand-alone J2SE software
component during the deployment phase, unlike Enterprise Java Beans
(EJB), which can run only on a Java 2 Enterprise Edition-compliant EJB
Container. Therefore, although the goals of using Java Query API and EJB
may be similar, the Java Query API holds its originality in the way it is to be
deployed.

6-3 Automatic Code Generation

Furthermore, both as a merit and as originality, the Java Query SDK
auto-generates the source codes for the three components of Java Query API,
namely, the codes of Java Bean, JDBC, and Table Schema. The resulting
three components of Java Query API are already linked together, such that

 33

the Java Bean methods are designed to invoke the corresponding JDBC
methods, which in turn execute the corresponding SQL statements against
the target database.

6-4 Simple SG Script Results in a Deployable

System

Users of Java Query SDK, as explained earlier, will start by writing an SG
Script. The Just-in-time Implementer, a core part of Java Query SDK, will
then auto-generate all the necessary components for the cross-database,
Java-based query system. Indeed, only a handful of lines of code in the SG
Script are sufficient for Java Query SDK users to build an entire API for
Java Query.

6-5 Code Simplicity

Although performance may be slightly degraded compared to the equivalent
JDBC programs (see the following comparisons between the code snippets of
JDBC and those of Java Query API), the Java Query API applications can
manipulate databases using codes which are simpler than those of JDBC
applications. .

Suppose there are two tasks, one for retrieving a record with id equal to 1001
and another for retrieving records with id greater than 1242.

JDBC SELECT

With JDBC technology, codes like the snippet shown below must be written.
The JDBC code, as discussed, contains both Java and SQL.

 34

Compare the above JDBC code with the equivalent Java Query API code,
listed below.

 35

Java Query API SELECT

All that needs to be written is a single line of code for each task, i.e. line 54
for the first task and line 58 for the second, as shown in the following code
snippet.

Now suppose that there is another task of inserting records, say, of two
newly hired company employees.

JDBC INSERT

A proper SQL insert statement must be embedded within a Java code, as
shown in the following code fragment.

 36

Compare the JDBC code above with that of Java Query API, listed below.

Java Query API INSERT

The last comparison between JDBC and Java Query API is for the task of
deleting records. The codes required by the two technologies are listed
below.

 37

JDBC DELETE

Java Query API DELETE

Now assume that there is a need to update the salary of the employee whose
id is equal to 1000 to $78,000.

JDBC UPDATE

 38

Java Query API UPDATE

As can be seen in the above comparisons, the Java Query API application can
achieve the same SQL effects using the same or a smaller number of lines.

 39

7. Query Performance Test Result

7-1. Performance Comparison (Java Query API vs.

JDBC)

The performance of the queries against a sample Employee table was tested
using JDBC and Java Query. The response time taken by each of the two
technologies to extract records is shown in Figure 12.

Figure 12 Query Performance Result

Each point represents the average value from five measurements.

As can be seen in the above figure, Java Query API shows a performance
overhead. Response times for both Java Query API and JDBC increase in
linear fashion. Since we have no control over when JVM runs background
processes such as the Garbage Collector, minor variations in the response
time were expected.

 40

7-2. Thoughts on Java Query API Performance

Overhead

The response time difference between Java Query API and JDBC does not
exceed 300 milliseconds for any sample size, from 2000 to 20000 records, that
was extracted.

We believe the performance difference is subtle and hence negligible enough
for Java Query API to be used in applications for various purposes. For
time-critical applications that require millisecond accuracy, however, users
may consider the average number of records that are to be queried, and
decide whether to use Java Query API or JDBC.

8. References

 41

[1] Introduction to SQL http://www.w3schools.com/sql/sql_intro.asp

[2] SQL Overview http://www.w3schools.com/sql/sql_intro.asp

[3] The JDBC API http://java.sun.com/products/jdbc/overview.html

[4] JDBC Data Access API http://java.sun.com/products/jdbc/

[5] The Java Tutorial
 http://java.sun.com/docs/books/tutorial/i18n/intro/index.html

[6] Migrating to Oracle from MySQL
 http://www.zope.org/Members/peterb/mysql_to_oracle

