Jotm Bt A B FER B A S E

MES S A Eve T
Qi EA ) B ot (H)
RS 2411255
‘ Bt H 484 1 16H
FAERA Y1 HEE
s SO H Understanding Refactoring in Test Code: An Empirical Study
HE

Refactoring plays an important role in enhancing software quality, fundamentally restructuring code
without altering external behavior. While extensively studied in production code, refactoring in test
code, particularly test—specific refactorings that address challenges unique to test suites, such as
managing test fixtures, assertions, and overall test organization, remains underexplored. Current
automated tools offer limited support, detecting only a fraction of these practices. This study aims to
bridge this knowledge gap by comprehensively investigating the prevalence, types, and impact of test—
specific refactorings on test quality in real-world software development projects.

We conducted an empirical analysis of diverse open—source Java projects on GitHub, employing
rigorous manual inspection complemented by automated detection tools. Our methodology involved
quantifying refactoring frequencies, manually classifying test—specific refactoring types through
consensus—based annotation, and assessing their relationship with various test smells.

Our findings reveal that only around half of the test refactorings co—occurred with general refactorings.
More importantly, we identified 37 distinct types of test—specific refactorings through manual analysis,
significantly expanding beyond the 9 types supported by existing automated tools. Furthermore, while
the overall impact on test smells is specific rather than broad (85.6% of the test smell instances
remained unchanged at the file level and 91.9% at the refactoring level), certain refactorings can
significantly reduce specific test smells. In contrast, some refactorings may unintentionally introduce or
increase the number of test smells, highlighting their specific impact.




