Graduate School of Science and Technology Master’s Thesis Abstract

Laboratory name Software Engineering
(Supervisor) (Ken—ichi Matsumoto (Professor ))
Student ID 2311335
Submission date 2025 /1/ 21
Name INDIRA FEBRIYANTI

Comparing the Maintainability Between Different Code Proficiencies in PyPI

Thesis title Projects

Abstract

Python’ s popularity stems from its ease of learning and a supportive community, fostering diverse
contributions to reusable codebases that require active maintenance. As a vital resource for the Python
community, PyPI offers an extensive repository of Python packages supporting diverse applications.
However, the growing demand for rapid software development has led developers to increasingly
modify existing frameworks rather than build new code. Despite the community’ s emphasis on
simplicity in code structure, ensuring proficiency in contributed code remains challenging, particularly
as structural complexities emerge during maintenance. This study explores the correlation between
proficiency levels and maintainability in Python projects. It analyzes 312 Python projects, comprising
371,369 Python files and 940,205 code snippets, classified by proficiency and maintenance levels (high
and low), using metrics such as cyclomatic complexity, Halstead, lines of code, and readability. The
research addresses two questions: (1) What is the proficiency of safe and risky code? (2) What
proficient code elements are more likely to be risky? The study finds that while proficient-rated Python
code is generally low risk, high-risk cases persist across all proficiency levels due to structural
complexities. Commonly observed code elements, such as Simple List Comprehensions, Generator
Expressions, “Enumerate” Call Functions, “Zip” Call Functions, and List Comprehensions with 1 If
Statement, frequently appear in both safe and risky code, with their maintainability significantly
influenced by their context within classes, functions, or methods. The results provide insights into when
using different code proficiencies can lead to different maintenance efforts, and that using proficient
code does not always result in low maintenance.




