\$G=\$;NO@J8!&2]Bj8&5f(B \$BEE;R%U%!%\$%k\$HF1\$8>l=j\$KCV\$\$\$F2<\$5\$\$!#\$h\$m\$7\$/\$*4j\$\$\$7\$^\$9!#(B -> NAIST-IS-MT9551051: Tsukasa Sugita

## Tsukasa Sugita (9551051)

Abstract
This presentation shows some good results on the split weight distributions of Reed-Muller codes. The first part of the presentation shows formulas for the split weight distributions of Reed-Muller codes for the weights less than twice the minimum weight dmin. A canonical form for all the relevant Boolean polynomials is derived. In the second part, a method for computing the split weight distributions of Reed-Muller code is presented. By using this method, the split weight distribution of the third order Reed-Muller code of length 512 is computed. As a consequence, the weight distributions of the third and the fifth order Reed-Muller codes of length 512 are also computed.

## \$B?yED(B \$B;J(B (9551051)

\$BFbMF9<35(B
\$BK\H/I=\$G\$O!"(BReed-Muller\$BId9f\$NJ,3d=E\$_J,I[\$K4X\$9\$k4v\$D\$+\$N7k2L\$r<(\$9!#(B \$B\$^\$:!"A0H>\$G\$O(BReed-Muller\$BId9f\$NJ,3d=E\$_J,I[\$N\$&\$A!"(B \$B:G>.=E\$_(Bdmin\$B\$N(B2\$BG\\$h\$j>.\$5\$\$Id9f8l\$K4X\$9\$kJ,3d=E\$_J,I[\$rM?\$(\$k8x<0(B \$B\$r<(\$9!#\$^\$?!"\$=\$l\$K4XO"\$7\$?%V!<%kB?9`<0\$NI8=`7A\$NF3=PJ}K!\$K\$D\$\$\$F\$b=R\$Y\$k!#(B \$B8eH>\$G\$O!"(BReed-Muller\$BId9f\$NJ,3d=E\$_J,I[\$r7W;;\$9\$k(B1\$B\$D\$NJ}K!\$r<(\$7!"(B \$B