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Abstract 
Robotic  control  policies  must  handle  complex  tasks  in  dynamic  environments,  yet
traditional parametric and non-parametric models face significant limitations. Semi-
parametric  models  combine  their  strengths  but  often  struggle  with  multimodality,
local  discontinuities,  and  low-probability  behaviors.  This  work  enhances  semi-
parametric  models  by  advancing  their  non-parametric  components  with  Bayesian
techniques  to improve adaptability,  accuracy and efficiency.  We propose two novel
approaches: (1)  Composite Gaussian Processes Flows (CGP-Flows), which integrate
Overlapping  Mixtures  of  Gaussian  Processes  (OMGPs)  and  Non-Gaussian  Gaussian
Processes  (NGGPs)  to  model  multimodality.  These  composite  distributions  are
transformed  using  Conditional  Continues  Normalizing  Flows  (CCNFs)  to  handle
smoothness  and  local  discontinuities,  achieving  a  balance  between  computational
efficiency  and  expressiveness  for  non-linear  tasks.  (2)  Model  Select  Gaussian
Processes Flows (MSGP-Flows),  which  combine Robust  Gaussian Processes (RGPs)
and NFs to assign lower weights to low-probability modes in multimodal data. This
approach reduces the impact of rare actions while retaining diverse expert strategies,
improving learning efficiency. 


