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Abstract  

Robotic control policies must handle complex tasks in dynamic environments, yet 

traditional parametric and non-parametric models face significant limitations. 

Semi-parametric models combine their strengths but often struggle with multimodality, 

local discontinuities, and low-probability behaviors. This work enhances 

semi-parametric models by advancing their non-parametric components with Bayesian 

techniques to improve adaptability, accuracy and efficiency. We propose two novel 

approaches: (1) Composite Gaussian Processes Flows (CGP-Flows), which integrate 

Overlapping Mixtures of Gaussian Processes (OMGPs) and Non-Gaussian Gaussian 

Processes (NGGPs) to model multimodality. These composite distributions are 

transformed using Conditional Continues Normalizing Flows (CCNFs) to handle 

smoothness and local discontinuities, achieving a balance between computational 

efficiency and expressiveness for non-linear tasks. (2) Model Select Gaussian Processes 

Flows (MSGP-Flows), which combine Robust Gaussian Processes (RGPs) and NFs to 

assign lower weights to low-probability modes in multimodal data. This approach 

reduces the impact of rare actions while retaining diverse expert strategies, improving 

learning efficiency.  

 


