¥¼¥ß¥Ê¡¼¥ëȯɽ

Æü»þ: 11·î22Æü¡Ê·î¡Ë3¸Â (13:30-15:00)


²ñ¾ì: L1

»Ê²ñ¡§Ãæ¼ ÆàÈþ
·¬Â¼¡¡¸÷ÃË ÃÎǽ¾ðÊó½èÍý³Ø ÌڸͽС¡Àµåë
ȯɽÂêÌÜ¡§¥í¥Ü¥Ã¥È¤È¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤ÎÊÂÎó½èÍý¤Ë¤è¤ë¹â®±¿Æ°¥¹¥­¥ë³Ø½¬
ȯɽ³µÍס§¶áǯ¡¤¶¯²½³Ø½¬¤Ë¤è¤ë¥í¥Ü¥Ã¥È¤Î±¿Æ°¥¹¥­¥ë³Ø½¬¤¬À¹¤ó¤Ë¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡¥¤³¤ÎÏÈÁȤߤǤϡ¤¥¿¥¹¥¯¤Ø¤ÎãÀ®ÅÙ¤òɽ¤¹Êó½·ÃͤΤߤò¼ê¤¬¤«¤ê¤È¤·¡¤¥í¥Ü¥Ã¥È¤¬»î¹Ôºø¸íŪ¤Ë±¿Æ°¥¹¥­¥ë¤ò³ÍÆÀ¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥¤·¤«¤·¤Ê¤¬¤é¡¤°ìÈ̤˶¯²½³Ø½¬¤Ë¤ÏËÄÂç¤Ê³Ø½¬»Ü¹Ô²ó¿ô¤¬Í׵ᤵ¤ì¤ë¤È¤¤¤¦ÌäÂ꤬¤¢¤ë¡¥¤½¤Î¤¿¤á¡¤¼Âµ¡¤Ø¤Î¶¯²½³Ø½¬¤ÎŬÍѤÏ̤¤Àº¤Æñ¤Ç¤¢¤ë¡¥Ëܸ¦µæ¤Ç¤Ï¡¤¥í¥Ü¥Ã¥È¤È¥·¥ß¥å¥ì¡¼¥¿¤ÎÊÂÎó½èÍý¤Ë¤è¤Ã¤Æ¤³¤ÎÌäÂê¤Î²ò·è¤Ë¼è¤êÁȤࡥ¶ñÂÎŪ¤Ë¤Ï¡¤¼Âµ¡¤Ë¤è¤ë³Ø½¬¤ÈÊÂÎ󤷤ơ¤Îà»÷¤¹¤ë¥À¥¤¥Ê¥ß¥¯¥¹¤òÍ­¤¹¤ë¿¿ô¤ÎʪÍý¥·¥ß¥å¥ì¡¼¥¿¤Ë¤è¤ë³Ø½¬¤ò¼Â¹Ô¤¹¤ë¡¥¤½¤·¤Æ¡¤¼Âµ¡³Ø½¬¤Ë¥·¥ß¥å¥ì¡¼¥¿Åù¤Ç¤Î¥Ç¡¼¥¿¤òÍ­¸úÍøÍѤ¹¤ë¤³¤È¤Ç¡¤¼Âµ¡³Ø½¬¤ËÍפ¹¤ë»î¹Ô²ó¿ô¤ÎÂçÉý¤Êºï¸º¤¬´üÂԤǤ­¤ë¡¥ËÜȯɽ¤Ç¤Ï¡¤Ëܸ¦µæ¤ÎÇطʤȳµÍפˤĤ¤¤Æ½Ò¤Ù¤ë¡¥
 
ºäËÜ¡¡¿­±Ñ ¥·¥¹¥Æ¥àÀ©¸æ¡¦´ÉÍý À¾Ã«¡¡¹É°ì
ȯɽÂêÌÜ¡§¥¹¥¿¥Ã¥¯·¿¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤ÎÊĺɥץ졼¥È¸¡½ÐË¡
ȯɽ³µÍס§¶áǯ¡¤ ²½³ØÈ¿±þ¥×¥í¥»¥¹¤È¤·¤Æ¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤òÍѤ¤¤¿¸¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¡¥ ¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤ÏÀºÌ©Î®Æ°À©¸æ¡¦ÀºÌ©²¹ÅÙÀ©¸æ¤¬²Äǽ¤Ç¤¢¤ë¤¿¤á½¾Íè¤Î¥×¥é¥ó¥È¤Ç¤Ï¤Ç¤­¤Ê¤¤¤è¤¦¤Ê²½³ØÈ¿±þ¤ò´üÂÔ¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥ ¤Þ¤¿¡¤ ¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤ò¥Ê¥ó¥Ð¥ê¥ó¥°¥¢¥Ã¥×¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¿Î̤ÎÀ¸À®Êª¤òÆÀ¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥ ¤·¤«¤·¤Ê¤¬¤é¡¤ ¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤Ïήϩ·Â¤¬¾®¤µ¤¤¤¿¤áÊĺɤ¬À¸¤¸À¸»ºÀ­¤¬°­²½¤¹¤ë¤È¤¤¤¦ÌäÂêÅÀ¤¬¤¢¤ë¡¥ ¤½¤Î¤¿¤á¡¤ ¥Þ¥¤¥¯¥í¥×¥é¥ó¥È¤Î¼ÂÍѲ½¤Ë¤Ï¤Þ¤À¤Þ¤Àº¤Æñ¤ÊÅÀ¤¬Â¿¤¤¡¥ Ëܸ¦µæ¤Ç¤Ï¥¹¥¿¥Ã¥¯·¿¥Þ¥¤¥¯¥í¥ê¥¢¥¯¥¿¤ÎÊĺɥץ졼¥È¤ò°µÎÏ¥»¥ó¥µ¤òÍѤ¤¤Æ¸¡½Ð¤¹¤ë¤³¤È¤Ë¼è¤êÁȤࡥ ËÜȯɽ¤Ç¤Ï¡¤ Ëܸ¦µæ¤ÎÇطʤÈÀè¹Ô¸¦µæ¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
 
ß·Ìî¡¡·øÂÀ ±þÍÑ¥·¥¹¥Æ¥à²Ê³Ø ¿ùËÜ¡¡¸¬Æó
ȯɽÂêÌÜ¡§[ÏÀʸ¾Ò²ð]Random Access Game and Medium Access Control Design
ȯɽ³µÍס§¶áǯ¡¤ÌµÀþLAN¤Î¥Í¥Ã¥È¥ï¡¼¥¯Æâ¤ÇȯÀ¸¤¹¤ë¶¥¹ç¤ò²ò·è¤¹¤ë¤¿¤á¤Ë¡¤ÍÍ¡¹¤ÊÇÞÂÎ¥¢¥¯¥»¥¹À©¸æ¤¬¹Í°Æ¤µ¤ì¤Æ¤¤¤ë¡¥¤·¤«¤·¡¤¤½¤Î¤Û¤È¤ó¤É¤¬´û¸¤ÎÇÞÂÎ¥¢¥¯¥»¥¹À©¸æ¤Ë²þÎɤò²Ã¤¨¤¿¤â¤Î¤Ç¤¢¤ë¡¥ËÜÏÀʸ¤Ï¡¤ÌµÀþLAN¤ÎÇÞÂÎ¥¢¥¯¥»¥¹À©¸æ¤È¥²¡¼¥àÍýÏÀ¤Î´ØÏ¢À­¤ËÃåÌܤ·¡¤¥²¡¼¥àÍýÏÀ¤òÍѤ¤¤¿ÇÞÂÎ¥¢¥¯¥»¥¹À©¸æ¤ÎÀß·×ÊýË¡¤òÄó°Æ¤¹¤ë¡¥ÇÞÂÎ¥¢¥¯¥»¥¹À©¸æ¤ÎÀ߷פˤϥé¥ó¥À¥à¥¢¥¯¥»¥¹¥²¡¼¥à¤È¸Æ¤Ð¤ì¤ë̵Àþ£Ì£Á£ÎÍѤ˹ͰƤµ¤ì¤¿¥²¡¼¥à¤òÍѤ¤¤ë¤³¤È¤Ë¤è¤ê¡¤¥Ç¡¼¥¿Å¾Á÷Î̤θþ¾å¡¤Ã¼Ëö¤Î¸øÊ¿À­¤äº¹Ê̲½¤ò²Äǽ¤È¤¹¤ë¡¥ËÜȯɽ¤Ç¤Ï¡¤¤³¤ÎÏÀʸ¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡¥
 
ÎëÌÚ¡¡Î´Íµ ¥í¥Ü¥Æ¥£¥¯¥¹ ¾®³Þ¸¶¡¡»Ê
ȯɽÂêÌÜ¡§»ØÀèÀÜ¿¨Ì̤γê¤êÎÌÀ©¸æ¤È¿¶Æ°¤òÍѤ¤¤¿ ½ÅÎÌ¡¤Ë໤¡¤¹ÅÆð´¶Ä󼨥ǥХ¤¥¹
ȯɽ³µÍס§ ¶áǯ¡¤¥í¥Ü¥Ã¥È¤Î±ó³ÖÁà½Ä¤òÌÜŪ¤È¤·¤¿¥Ï¥×¥Æ¥£¥Ã¥¯Ä󼨵»½Ñ¤¬ÃíÌܤµ¤ì¤Æ¤¤¤ë¡¥ÆäËʪÂÎÇÄ»ý¤Ë¤ª¤¤¤Æ¤ÏʪÂΤνŤµ¡¤³ê¤ê¤ä¤¹¤µ¡¤½À¤é¤«¤µ¤È¤¤¤Ã¤¿´¶³Ð¤¬½ÅÍפˤʤë¤È¹Í¤¨¤é¤ì¤ë¡¥²æ¡¹¤ÏʪÂÎÇÄ»ý¤Ë¤ª¤¤¤Æ½ÅÍפȤµ¤ì¤Æ¤¤¤ë½é´ü³ê¤ê¤òÀÜ¿¨Ì̲èÁü¤òÍѤ¤¤Æ·×¬¤·¤Ê¤¬¤é¡¤½Å¤µ¤ä³ê¤ê¤ä¤¹¤µ¤òÄ󼨤¹¤ë¼êË¡¤òÄó°Æ¤·¤Æ¤­¤¿¡¥°ìÊý¤Ç»ØÀè¤ËÄã¼þÇÈ¿¶Æ°¤òÉղ乤뤳¤È¤Ç¡¤½À¤é¤«¤µ¤òÄ󼨤¹¤ë¼êË¡¤¬Äó°Æ¤µ¤ì¤Æ¤¤¤ë¡¥¤½¤³¤ÇËܸ¦µæ¤Ç¤Ï´û¸¤Î½Å¤µ¡¤³ê¤ê¤ä¤¹¤µÄ󼨥ǥХ¤¥¹¤Ë¿¶Æ°¤òÉղ乤뤳¤È¤Ç¡¤½À¤é¤«¤µ¤âÄ󼨤Ǥ­¤ë¥Ç¥Ð¥¤¥¹¤òÄó°Æ¤¹¤ë¡¥ËÜȯɽ¤Ç¤Ï¡¤´ØÏ¢¸¦µæ¤Ê¤é¤Ó¤ËËܸ¦µæ¤Î²ÝÂêÅÀ¡¤¸¦µæÊý¿Ë¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
 
üâÅÄ¡¡¹¨ÌÀ ÃÎǽ¾ðÊó½èÍý³Ø ÌڸͽС¡Àµåë
ȯɽÂêÌÜ¡§ºÇŬÀ©¸æ¤Ë¤è¤ëưŪ´Ä¶­²¼¤Ë¤ª¤±¤ëÅþ㱿ư¤Î¼Â¸½
ȯɽ³µÍס§ ¶áǯ¡¤¥í¥Ü¥Ã¥È¤Ï¿Í¤È¶¦¤ËÊë¤é¤¹¥Ò¥å¡¼¥Þ¥Î¥¤¥É¤È¤·¤Æ¤Î³èÌö¤¬´üÂÔ¤µ¤ì¤Æ¤¤¤ë¡¥ ¥Ò¥å¡¼¥Þ¥Î¥¤¥É¤Î±¿Æ°¤òÀ¸À®¤¹¤ë¤Ë¤¢¤¿¤Ã¤Æ¡¤µ°Æ»·×²è¡¦ºÂɸÊÑ´¹¡¦À©¸æ¤Î£³¤Ä¤Î¥×¥í¥»¥¹¤¬É¬ÍפǤ¢¤ê¡¤½¾Íè¼êË¡¤Ç¤Ï¤³¤ì¤é¤Î¥×¥í¥»¥¹¤ò¥È¥Ã¥×¥À¥¦¥ó¤Ë½èÍý¤·¤Æ¤¤¤¿¡¥¤·¤«¤·¡¤¤³¤ÎÊýË¡¤Î¾ì¹ç¡¤´ØÀá³Ñ¸Â³¦¤ò¹Íθ¤·¤¿µ°Æ»·×²è¤ä¡¤½ÐÎϥȥ륯¤òºÇ¾®¤Ë¤¹¤ë¤è¤¦¤Ê±¿Æ°¤òÀ¸À®¤¹¤ë¤Î¤ÏÆñ¤·¤¤¡¥ ºÇŬÀ©¸æ¤Ç¤Ï¡¤ÌÜŪ´Ø¿ô¤ò´ð½à¤Ëµ°Æ»·×²è¡¦ºÂɸÊÑ´¹¡¦À©¸æ¤Î£³¤Ä¤Î¥×¥í¥»¥¹¤òƱ»þ¤Ë½èÍý¤¹¤ë¡¥À¸À®¤µ¤ì¤ë±¿Æ°¤ÏÀ߷פ·¤¿ÌÜŪ´Ø¿ô¤Ë±è¤Ã¤¿¤â¤Î¤Ë¤Ê¤ê¡¤Î㤨¤Ð¡¤ÌÜŪ´Ø¿ô¤È¤·¤Æ¥¨¥Í¥ë¥®¡¼¤Î¹à¤òÀßÄꤹ¤ë¤È¡¤¾ÃÈñ¥¨¥Í¥ë¥®¡¼¤¬ºÇ¾®¤Ë¤Ê¤ë¤è¤¦¤Ê̵Â̤Τʤ¤±¿Æ°¤òÀ¸À®¤Ç¤­¤ë¡¥¤Þ¤¿¡¤£³¤Ä¤Î¥×¥í¥»¥¹¤òƱ»þ¤Ë½èÍý¤¹¤ë¾å¤Ç¡¤´ØÀá¸Â³¦¡¦¥È¥ë¥¯¸Â³¦¤ò¹Íθ¤·¤Ä¤Ä¡¤±¿Æ°¤òÀ¸À®¤¹¤ë¤¿¤á¡¤¤Ç¤­¤¿±¿Æ°¤Ï¼Â¹Ô²ÄǽÀ­¤Î¹â¤¤¤â¤Î¤È¤Ê¤ë¡¥ ºÇŬÀ©¸æ¤ò¥Ò¥å¡¼¥Þ¥Î¥¤¥É¤Î±¿Æ°À¸À®¤ËŬÍѤ¹¤ë¾å¤Ç¡¤¼Â»þ´ÖÀ­¡¦¥â¥Ç¥ë²½¸íº¹¡¦³°Íð¡¦ÌÜɸÅÀ¤ÎÊѹ¹¤Ë¼å¤¤¤Ê¤É¤Î²ÝÂ꤬¤¢¤ë¡¥Àè¹Ô¸¦µæ¤Ë¤ª¤¤¤Æ¡¤¤½¤ì¤¾¤ì¤ÎÌäÂê¤ò²ò·è¤¹¤ë¼êË¡¤¬Äó°Æ¤µ¤ì¤Æ¤¤¤ë¤¬¡¤¤½¤ì¤éÁ´¤Æ¤ò°·¤Ã¤¿¸¦µæ¤Ï¤Ê¤¤¡¥Ëܸ¦µæ¤Ç¤Ï¤³¤ì¤é¤Î²ÝÂê¤ò²ò·è¤·¡¤Æ°Åª´Ä¶­²¼¤ÇÆ°¤¯¥Ò¥å¡¼¥Þ¥Î¥¤¥É¤ÎÀ©¸æË¡¤ò³ÎΩ¤¹¤ë¤³¤È¤òÌÜŪ¤È¤¹¤ë¡¥ ËÜȯɽ¤Ç¤ÏºÇŬÀ©¸æ¤ò¥Ò¥å¡¼¥Þ¥Î¥¤¥É¤ËŬÍѤ·¤¿Àè¹Ô¸¦µæ¤ò´Ê·é¤Ë¾Ò²ð¤·¡¤¤³¤ì¤«¤é¤ÎͽÄê¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
 

²ñ¾ì: L2

»Ê²ñ¡§¾®ÎÓ ÏÂÉ×
µÈÅÄ¡¡¾°¿Í ¿À·Ð·×»»³Ø ÃÓÅÄ¡¡Ï»Ê
ȯɽÂêÌÜ¡§[ÏÀʸ¾Ò²ð]Robust Population Coding in Free-Energy-Based Reinforcement Learning
ȯɽ³µÍס§¼«Á³³¦¤Ë¤ª¤¤¤Æưʪ¤Ï»î¹Ôºø¸í³Ø½¬¤òÄ̤·¤Æ¹ÔÆ°¤ò³Ø½¬¤·¤Æ¤æ¤¯¤³¤È¤¬¹­¤¯ÃΤé¤ì¤Æ¤¤¤ë¡¥¤³¤Î¤è¤¦¤Ê»î¹Ôºø¸í³Ø½¬¤òɽ¸½¤¹¤ëÍýÏÀŪÏÈÁȤߤȤ·¤Æ¡¤¶¯²½³Ø½¬ÍýÏÀ¤¬Â¸ºß¤¹¤ë¡¥ËÜÏÀʸ¤Ï½¾Íè¤Î¼êË¡¤Ç¤Ï³Ø½¬¤Îº¤Æñ¤Ç¤¢¤Ã¤¿Â礭¤Ê¾õÂÖ¶õ´Ö¤òÍ­¤¹¤ë¥¿¥¹¥¯¤Ë¤ª¤¤¤Æ¡¤Restricted Boltzmann Machine¤Ë´ð¤Å¤¯¼êË¡¤òÍѤ¤¤ë¤³¤È¤Ç¹â®¤Ë³Ø½¬¤ò¹Ô¤¦¤³¤È¤¬²Äǽ¤È¤Ê¤ë¤³¤È¤ò¤·¤á¤¹¡¥
 
Dy,Mary-Clare Clarin À¸Ì¿µ¡Ç½·×¬³Ø Ì«¡¡¾®ÂÀϺ
Title:Integration of Axial Displacement in Optical Tweezers
Abstract:Optical Tweezers is an optical manipulation technique that allows the user to trap and move small particles. It has been used in applications such as cell biology and single-molecule research, wherein its greatest contribution is the ability to measure the pico-Newton forces of cells. Recent developments of Optical Tweezers include the incorporation of axial displacement. In this presentation, a basic introduction of Optical Tweezers and its applications will be given, as well as the background information about axial displacement, and its problems. A journal paper will also be discussed to show how a membrane deformable mirror may be incorporated in the present Optical Tweezers setup to enable axial displacement.
 
½©ÍÕ¡¡Àµµ£ Èæ³Ó¥²¥Î¥à³Ø ¶âë¡¡½Åɧ
ȯɽÂêÌÜ¡§microRNA¤Ë¤è¤ëÂÐΩ°äÅÁ»ÒÀ©¸æ¤ÎÌÖÍåŪ²òÀÏ
ȯɽ³µÍס§À¸Êª¤ÏDNA¤È¤¤¤¦À߷׿ޤò¸µ¤ËRNA¡¤¥¿¥ó¥Ñ¥¯¼Á¤È°äÅÁ¾ðÊó¤ÎÅÁã¤ò¹Ô¤¤¡¤À¸Ì¿³èÆ°¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£¶áǯ¤Î¸¦µæ¤«¤é¡¤¥¿¥ó¥Ñ¥¯¼Á¤ËËÝÌõ¤µ¤ì¤Ê¤¤RNA¡Ênon-cordingRNA:ncRNA¡Ë¤¬¤³¤ÎÅÁã·ÐÏ©¤ËÍÍ¡¹¤ÊÀ©¸æ¤Ë´ØÍ¿¤¹¤ë¤³¤È¤¬Ê¬¤«¤Ã¤Æ¤­¤¿¡£ÆäËÍ¥À­¡¦ÎôÀ­°äÅÁ¤ÎÀ©¸æ¤ËncRNA¤Î1¤Ä¤Ç¤¢¤ëmicroRNA¤¬´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£ Ëܸ¦µæ¤Ç¤Ï¡¤ microRNA¤¬ÂÐΩ°äÅÁ»Ò¤ËÂФ·¤Æ°ú¤­µ¯¤³¤¹°äÅÁ»Òȯ¸½À©¸æ¤ÎÌÖÍåŪ¤Ê²òÀϤòÌÜŪ¤È¤¹¤ë¡£
 
¶áÆ£¡¡ÎÉ ÏÀÍýÀ¸Ì¿³Ø ÃÓÅÄ¡¡Ï»Ê
ȯɽÂêÌÜ¡§EEG¤Ë¤è¤ëľ´¶¤Î²òÌÀ
ȯɽ³µÍס§¶áǯ¡¤Ç¾³èÆ°¤òEEG¤äECoG¤Ê¤É¤Ç·×¬¤·ÆÀ¤é¤ì¤¿¥Ç¡¼¥¿¤òµ¡³£³Ø½¬¤Î¼êË¡¤Ê¤É¤Ë¤è¤ê²òÀϤ¹¤ë¤È¤¤¤¦Ç¾¾ðÊó²Ê³Ø¤Î¸¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤ª¤ê¡¤¤½¤Î¸¦µæ·ë²Ì¤Ï¥Ö¥ì¥¤¥ó¡¦¥Þ¥·¥ó¡¦¥¤¥ó¥¿¥Õ¥§¡¼¥¹(BMI)¤Îµ»½Ñ»Ù±ç¤ä¿Í¤Î¿´ÍýŪµ¡Ç½¤Î²òÌÀ¤Ê¤É¤Ë±þÍѤµ¤ì¤Æ¤¤¤ë¡¥Ëܸ¦µæ¤Ç¤Ï¸å¼Ô¡¤¤Ä¤Þ¤ê¤ËǾ³èÆ°¤È¿Í¤Î¿´ÍýŪµ¡Ç½¤ËÃíÌܤ·¡¤¿Í¤Î¡Öľ´¶¡×¤È¤¤¤¦¸½¾Ý¤Î²òÌÀ¤Ë¼è¤êÁȤࡥ¡Öľ´¶¡×¤Ï¿Í¤Îºî¶È¸úΨ¤Ë±Æ¶Á¤¹¤ë¡¥ËÜȯɽ¤Ç¤Ï¡¤´ØÏ¢¸¦µæ¤Î¾Ò²ð¤ÈËܸ¦µæ¤ÎÊý¿Ë¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
 
ÉþÉô¡¡ÍºÂÀ Èæ³Ó¥²¥Î¥à³Ø ¶âë¡¡½Åɧ
ȯɽÂêÌÜ¡§ÂçIJ¶Ý¤Ë¤ª¤±¤ëÆÃÀ­ÊѲ½¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤Îõº÷
ȯɽ³µÍס§¾åµ­¤Î¤È¤ª¤ê»ä¤Î¥Æ¡¼¥Þ¤ÏÂçIJ¶Ý¡ÊEscherichia coli¡Ë¤òÍѤ¤¤¿¡¢¤½¤Î¼ï¤´¤È¤ÎÆÃÀ­ÊѲ½¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤Îõº÷¤Ç¤¢¤ë¡£Ëܸ¦µæ¤ÇÍѤ¤¤ëÂçIJ¶Ý¤Ï¡¢¤½¤Î̾¤Î¤È¤ª¤êºÇ½é¤ÏÂçIJ¤«¤éºÎ¼è¤µ¤ì¤¿¡£¤·¤«¤·¡¢Ëܺٶݤϡ¢ÂçIJ¤Î¤ß¤Ê¤é¤º¡¢¿å°è¤Ê¤ÉÍÍ¡¹¤Ê´Ä¶­¤Ë¤â¸ºß¤·¤Æ¤¤¤ë¡£¤Þ¤¿¡¢ÂçIJ¶ÝO-157¤Ê¤É¡¢À¤´Ö¤òÁû¤¬¤»¤¿É¸¶ºÙ¶Ý¤È¤·¤Æ¸ºß¤¹¤ë¤â¤Î¤â¤¤¤ë¡£Ëܸ¦µæ¤Ç¤Ï¡¢¤³¤ì¤é¤ÎÀ­¼Á¤Î°ã¤¤¤Ï°äÅÁ»ÒŪ¤Ë¸«¤Æ¤É¤³¤¬°ã¤¦¤Î¤«¤òÄ´¤Ù¤ë¡£ËÜȯɽ¤Ç¤Ï¡¢¤³¤ÎÇطʤȸ½ºß¹Í¤¨¤Æ¤¤¤ë¸¦µæ¼êË¡¤òȯɽ¤¹¤ë¡£
 
Ê¡»³¡¡Àµ¿Í Èæ³Ó¥²¥Î¥à³Ø ¶âë¡¡½Åɧ
ȯɽÂêÌÜ¡§Â絬Ìϥǡ¼¥¿¤Ë´ð¤Å¤¯´ÁÊýÀ¸Ìô¤ÎŬÍѤ˴ؤ¹¤ëʬÎà
ȯɽ³µÍס§´ÁÊýÌô¤Ï¡¢´µ¼Ô¤Î¾É¾õ¤Ë¹ç¤ï¤»¤ÆÊ£¿ô¤ÎÅ·Á³Êª¤Ç¤¢¤ëÀ¸Ìô¤òÁȤ߹ç¤ï¤»¤¿½èÊý¤Ç¤¢¤ê¡¢Ìó1500ǯÁ°¤ËÃæ¹ñ¤«¤éÆüËܤؤÈÅÁÍ褷¡¢È¯Å¸¤·¤Æ¤­¤¿¡£´ÁÊýÌô¤Ï¿·Ìô¤È¤Ï°Û¤Ê¤ê¡¢ÆÃÄê¤Î¾É¾õ¤ËÂФ·¤Æ½èÊý¤µ¤ì¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢Ê£¿ô¤Î¾É¾õ¤ËÂФ·¤Æ¼«Á³¼£ÌþÎϤò¹â¤á¤Ä¤Ä¿ÈÂΤβþÁ±¤òÌܻؤ¹¤â¤Î¤Ç¤¢¤ë¡£¤½¤Î¤³¤È¤«¤é¡¢´ÁÊýÌô¤ª¤è¤ÓÀ¸Ìô¤ÎŬÍѤÏÊ£»¨¤Ç¤¢¤ê·ÏÅýΩ¤Ã¤¿À°Íý¤Ï¹Ô¤ï¤ì¤Æ¤¤¤Ê¤¤¡£Ëܸ¦µæ¤Ç¤Ï¡¢´ÁÊýÌô¤ÎÀ¸Ìô¤È¤½¤Î¾É¾õ¤ò´ØÏ¢ÉÕ¤±¤ë¥Ç¡¼¥¿²òÀϤò¹Ô¤¤¡¢À¸Ìô¤È¾É¾õ¤Î´Ø·¸¤òɽ¤¹ºÇŬ¤Ê¥â¥Ç¥ë¤«¤é·ÏÅý²½¤òÌÜŪ¤È¤¹¤ë¡£²òÀϼêË¡¤Ë¤Ï1960ǯÂå¤ËH. Wold¤Ë¤è¤Ã¤Æ·×Î̷кѳؤμêË¡¤È¤·¤Æ³«È¯¤µ¤ì¤¿Partial Least Squares (PLS)²òÀϤòÍѤ¤¤ëͽÄê¤Ç¤¢¤ë¡£¤³¤Î¼êË¡¤ÎÆÃħ¤È¤·¤Æ¡¢°ø»Ò¤È±þÅú¤Î̤ÃΤδط¸¤ª¤è¤Ó¶¦ÀþÀ­¤Ø¤ÎÂбþ¤¬µó¤²¤é¤ì¤ë¡£ËÜȯɽ¤Ç¤Ï¡¢PLS²òÀϤǤÎÀ¸Ìô¤È¾É¾õ¤Î´Ø·¸¤òɽ¤¹¥â¥Ç¥ë¤òÀâÌÀ¤¹¤ë
 

²ñ¾ì: L3

»Ê²ñ¡§ÀîÇÈ ¹°Æ»
Èøùõ¡¡ÃһΠ´Ä¶­ÃÎǽ³Ø ÇëÅÄ¡¡µªÇî
ȯɽÂêÌÜ:[ÏÀʸ¾Ò²ð]Robot Exercise Instructor: A Socially Assistive Robot System to Monitor and Encourage Physical Exercise for the Elderly
ȯɽ³µÍס§À¤³¦¤Î¿Í¸ý¤Ï¹âÎ𲽤˸þ¤«¤Ã¤Æ¤¤¤ë¡¥¤½¤Î°Ù¡¤¥Ò¥È¤Î²ð¸î¤òɬÍפȤ·¤Ê¤¤¹âÎð¼Ô¤òÁý¤ä¤¹°Ù¤Ë¼Ò²ñ»Ù±ç¥í¥Ü¥Ã¥È¤¬ÃíÌܤµ¤ì¤Æ¤¤¤ë¡¥ËÜÏÀʸ¤Ç¤Ï¡¤ÏÓ¤ÎÆ°ºî¤ò»Ù±ç¤¹¤ë¥í¥Ü¥Ã¥È¥·¥¹¥Æ¥à¤ÎÀ߷פȼÂÁõ¤ò¹Ô¤¦¡¥¤½¤Î¥·¥¹¥Æ¥à¤Ï¥í¥Ü¥Ã¥È¤È¥Ò¥È¤Î¥¤¥ó¥¿¥é¥¯¥·¥ç¥ó¤òÄ̤·¤¿¥È¥ì¡¼¥Ë¥ó¥°¤ò¹Ô¤¦¤³¤È¤Ç¡¤¹âÎð¼Ô¤ÎÏÓ¤òÆ°¤«¤½¤¦¤È¤¹¤ë°Õ»×¤Î¸þ¾å¤òÌÜŪ¤È¤·¤Æ¤¤¤ë¡¥¤³¤Î¥·¥¹¥Æ¥à¤ÎÍ­¸úÀ­¤È¼Â¸½²ÄǽÀ­¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤¹¤ë¡¥
 
¾®ÅÄ¡¡ÍµÌé À¸Ì¿µ¡Ç½·×¬³Ø Ì«¡¡¾®ÂÀϺ
ȯɽÂêÌÜ¡§´Î¡ÉôʬÀÚ½ü½Ñ¤Ë¤ª¤±¤ëÆâÉô·ì´É¹½Â¤¤Î¿äÄê¤È²Ä»ë²½
ȯɽ³µÍס§´Î¡¤¬¤ó¤Î³°²ÊÎÅË¡¤È¤·¤Æ¡¤¤¬¤ó¤ò´Þ¤à´Î¡¤Î°ìÉô¤òÀÚ½ü¤¹¤ë´ÎÀÚ½ü½Ñ¤¬¤¢¤ë¡¥´ÎÀÚ½ü½Ñ¤Ï¤¬¤ó¤Î¼£ÎŤˤϰìÈÖÍ­¸ú¤Ê¼êÃʤǤ¢¤ë¤¬¡¤¿ÈÂΤؤο¯½±¤¬Â礭¤¯¡¤´Î¡ÆâÉô¤òÁö¹Ô¤¹¤ëÊ£¿ô¤ÎÌ®´É¤Ë¤è¤ê¼ê½Ñ¤ÎÆñ°×Å٤Ϲ⤤¡¥¤Þ¤¿¡¤´Î¡¤¬¤ó¤Ï¾¤ÎÉô°Ì¤Ëž°Ü¤·¤ä¤¹¤¤¤¿¤á¡¤ÀÚ½ü¤Î°ÂÁ´À­¤ÈƱ»þ¤Ëº¬¼£À­¤¬µá¤á¤é¤ì¤ë¡¥¤·¤¿¤¬¤Ã¤Æ¡¤ÌÊÌ©¤Ê½ÑÁ°·×²è¤¬É¬ÍפȤʤ롥¤½¤³¤Ç¡¤Ëܸ¦µæ¤Ç¤Ï¼ê½ÑÃæ¤Î´Î¡ÆâÉô¤Î·ì´É¹½Â¤¤ò½ÑÁ°¤ª¤è¤Ó½ÑÃæ¤ËÇÄ°®¤¹¤ë¤¿¤á¤Ë¡¤´ÎÀÚ½ü½Ñ¤Î¼ê½Ñ¥×¥í¥»¥¹¤ò¥·¥ß¥å¥ì¡¼¥È¤Ç¤­¤ë¥Õ¥ì¡¼¥à¥ï¡¼¥¯¤Î³«È¯¤òÌܻؤ¹¡¥ËÜȯɽ¤Ç¤Ï¡¤¸¦µæÇطʤȳµÍפʤé¤Ó¤Ë½¾Í踦µæ¤ÈËܸ¦µæ¤Î²ÝÂê¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡¥
 
¾®Ìî¡¡¾Í ¥¤¥ó¥¿¥é¥¯¥Æ¥£¥Ö¥á¥Ç¥£¥¢Àß·×³Ø ²ÃÆ£¡¡Çî°ì
 
³Þ¸¶¡¡À¿»Ê ¼«Á³¸À¸ì½èÍý³Ø ¾¾ËÜ¡¡Íµ¼£
ȯɽÂêÌÜ¡§Â絬Ìϥǡ¼¥¿¤òÍѤ¤¤¿Åý·×ŪÆüËܸ칻Àµ
ȯɽ³µÍס§Ê¸²Ê¾Ê¤Îα³ØÀ¸£²£°Ëü¿Í·×²è¤Ê¤É¤Ë¤è¤êÆüËܸì³Ø½¬¼Ô¤ÎÁý²Ã¤¬Í½ÁÛ¤µ¤ì¡¢ÆüËܸ칻Àµ¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Î¼ûÍפϹâ¤Þ¤Ã¤Æ¤¤¤ë¡£°ìÊý¤Ç¡¢¸½ºß»È¤ï¤ì¤Æ¤¤¤ë¥ï¡¼¥×¥í¥½¥Õ¥È¤Ê¤É¤Ï¡¢½õ»ì¤ä¥³¥í¥±¡¼¥·¥ç¥ó¤Î¸í¤ê¤ò¸«Æ¨¤·¤¬¤Á¤Ç¤¢¤ê¡¢¼«Á³¤Êɽ¸½¤ò³Ø½¬¤·¤¿¤¤¤È¤¤¤¦¥Ë¡¼¥º¤òËþ¤¿¤·¤Æ¤¤¤Ê¤¤¡£¤½¤³¤Ç¡¢¶áǯ¸ø³«¤µ¤ì¤¿200²¯Ê¸¤È¤¤¤¦Â絬ÌϤʥǡ¼¥¿¤òÍøÍѤ·¤¿¹»Àµ¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤òºîÀ®¤¹¤ë»ö¤Ç¡¢¤è¤ê¹âÀºÅ٤ǽÀÆð¤Ê¹»Àµ¤òÌܻؤ¹¡£
 
²Ã¼¡¡æÆÊ¿ À¸Ì¿µ¡Ç½·×¬³Ø Ì«¡¡¾®ÂÀϺ
ȯɽÂêÌÜ¡§ÇÙ´â¤Ë¤ª¤±¤ë»°¼¡¸µ¾ðÊó¤Ë´ð¤Å¤¯²èÁü¿ÇÃÇ
ȯɽ³µÍס§º£Æü¤Î°åΟ½¾ì¤Ë¤ª¤¤¤Æ¡¢°åÎŵ¡´ï¤Î¹âµ»½Ñ²½¤Ëȼ¤¤¡¢CT¸¡ºº¤Ê¤É¤Î¤è¤¦¤Ë¡¢ÂÎÆâ¤ÎÍͻҤò¤ï¤º¤«¿ô¥ß¥ê´Ö³Ö¤ÇÎØÀÚ¤ê¤Ë¤·¤¿²èÁü¤ÇÆÀ¤é¤ì¤ë¤è¤¦¤Ë¤Ê¤ê¡¢ÂÎÆâ¤Îɵ¤¤ò¤è¤ê¹âÀºÅÙ¤Ëȯ¸«¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£¤·¤«¤·¤½¤ÎÈ¿ÌÌ¡¢ÆÀ¤é¤ì¤ë¸¡ºº·ë²Ì²èÁü¤Ï¡¢1¿Í¤Î´µ¼Ô¤µ¤óÅö¤¿¤êÌó400¡Á600Ëç¤Ë¤â¤ª¤è¤Ó¡¢¤½¤ì¤é¤Î²èÁüÁ´¤Æ¤òÆɱƤ·¡¢ÉÂ̾¤ò·èÄꤹ¤ë°å»Õ¤ËÂФ·¤ÆÂ礭¤ÊÉéô¤¬³Ý¤«¤Ã¤Æ¤¤¤ë¤È¤¤¤Ã¤¿ÌäÂêÅÀ¤¬¤¢¤ë¡£¤½¤³¤Ç¡¢Ëܸ¦µæ¤Ç¤Ï¡¢CT²èÁü(2¼¡¸µÃÇÁزèÁü)¤ËÂФ·¤Æ¥Ü¥ê¥å¡¼¥à¥ì¥ó¥À¥ê¥ó¥°¤ò¹Ô¤¤¡¢3¼¡¸µÉ½¼¨¤ÇÆɱƲÄǽ¤Ë¤¹¤ë»ö¤ò¹Í¤¨¤ë¡£¤³¤Îµ»½Ñ¤ò¼Â¸½¤¹¤ë»ö¤Ç¡¢°å»Õ¤ÎÉéô·Ú¸º¤ÈÆɱÆ®Å٤θþ¾å¤¬´üÂÔ¤µ¤ì¤ë¡£ËÜȯɽ¤Ç¤Ï¡¢¤³¤ì¤«¤é¤³¤Î¸¦µæ¤ò¿Ê¤á¤Æ¤¤¤¯¾å¤Ç¤ÎÌäÂêÅÀ¤ä²ÝÂê¤Ë¤Ä¤¤¤Æ½Ò¤Ù¤ë¡£
 
´ßËÜ¡¡¿¿Í³Èþ ²»¾ðÊó½èÍý³Ø ¼¯Ìî¡¡À¶¹¨
ȯɽÂêÌÜ¡§Åý·×Ū̵¹¢Æ¬²»À¼¶¯Ä´¤Ë¤ª¤±¤ë³Ø½¬¥Ç¡¼¥¿¤Î¸¡Æ¤
ȯɽ³µÍס§»ö¸Î¤äɵ¤¤Ê¤É¤ÇÀ¼ÂÓ¤ò´Þ¤à¹¢Æ¬ÎΰèÁ´ÂΤòŦ½Ð¤·¤¿¹¢Æ¬Å¦½Ð¼Ô¤Ï¡¢À¼ÂÓ¿¶Æ°¤òÍѤ¤¤¿È¯À¼¤¬ÉÔ²Äǽ¤Ç¤¢¤ë¡£¤½¤Î¤¿¤á¡¢À¼ÂӰʳ°¤Î´ï´±¤äµ¡´ï¤òÍѤ¤¤Æ²»¸»¤òÀ¸À®¤·¡¢Ìµ¹¢Æ¬²»À¼¤òȯÀ¼¤¹¤ë¡£¤·¤«¤·¡¢Ìµ¹¢Æ¬²»À¼¤Ï·ò¾ï¼Ô¤Î²»À¼¤ÈÈæ³Ó¤¹¤ë¤È²»¼Á¤ÏÄ㤯¡¢ÏüԤˤè¤é¤º»÷¤¿À¼¼Á¤È¤Ê¤êÏüÔÀ­¤¬Îô²½¤¹¤ë¡£¤³¤ì¤Þ¤Ç¡¢Ìµ¹¢Æ¬²»À¼¶¯Ä´¤Î¤¿¤á¤Ë¡¢¸ÇÍ­À¼ÊÑ´¹¤Ë´ð¤Å¤­Ìµ¹¢Æ¬²»À¼¤«¤é·ò¾ï¼Ô²»À¼¤ØÊÑ´¹¤¹¤ë¼êË¡¡ÊAlaryngeal speech to speech: AL-to-Speech¡Ë¤¬Äó°Æ¤µ¤ì¤Æ¤ª¤ê¡¢¤½¤ÎÍ­¸úÀ­¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ËÜȯɽ¤Ç¤Ï¡¢AL-to-Speech¤Ë¤ª¤±¤ë¸ÇÍ­À¼¤Ë´ð¤Å¤¯º®¹çÀµµ¬Ê¬ÉÛ¥â¥Ç¥ë(Eigenvoice Gaussian Mixture Model: EV-GMM)¤Î³Ø½¬¤ËÃåÌܤ·¡¢³Ø½¬¥Ç¡¼¥¿¤ÎÎ̤ä³Ø½¬¥Ç¡¼¥¿¤ÎÆâÍƤΰ㤤¤¬AL-to-Speech¤ÎÉʼÁ¤ËÍ¿¤¨¤ë±Æ¶Á¤òÄ´ºº¤¹¤ë¡£