¥¼¥ß¥Ê¡¼¥ëȯɽ

Æü»þ: 12·î7Æü¡Ê·î¡Ë3¸Â (13:30-15:00)


²ñ¾ì: L1

»Ê²ñ¡§Æ£ß· À¿
ÃæÀî ã͵ ÏÀÍýÀ¸Ì¿³Ø ÃÓÅÄ Ï»Ê
ȯɽÂêÌÜ¡§¥í¥Ü¥Ã¥È¤Ë¤è¤ëÆ»¶ñÍøÍѤΤ¿¤á¤Î¼«¸Ê¥â¥Ç¥ëÊÑ´¹¤òÄ̤¸¤¿Æ»¶ñ¿ÈÂβ½¥â¥Ç¥ë
ȯɽ³µÍס§ ¶áǯ¡¤¥í¥Ü¥Ã¥È¤Î¼Ò²ñ¿Ê½Ð¤¬ÌܳФ·¤¯¡¤ ²È»ö¥í¥Ü¥Ã¥È¤Ê¤É¤ÎÅоì¤Ë¤è¤ê¡¤²ð¸î¤ä°åÎŤθ½¾ì¤Ç¤Î³èÌö¤â´üÂÔ¤µ¤ì¤ë¡¥ À¸³è¶õ´Ö¤Ë¤ª¤¤¤Æ¤Ï¡¤¥í¥Ü¥Ã¥È¤Ë¤ÏÍÍ¡¹¤ÊʪÂΤòÆ»¶ñ¤È¤·¤Æ°·¤¦Ç½ÎϤ¬É¬Íפˤʤ롥 ¥í¥Ü¥Ã¥È¤Ë¤è¤ëÆ»¶ñÍøÍѤˤÏ, Æ»¶ñ¤Îǧ¼±¤È¥¿¥¹¥¯Ã£À®¤Î¤¿¤á¤ÎÆ°ºî¤ÎÀ¸À®¤ÎÆó¤Ä¤ÎÌäÂê¤ò²ò·è¤¹¤ëɬÍפ¬¤¢¤ë. ¿Í¤ÏÆ»¶ñ¤ò»È¤¦¤È¤­¡¤¤¢¤¿¤«¤â¤½¤ì¤ò¼«¿È¤Î¿ÈÂΤαäĹ¤Î¤è¤¦¤Ë´¶¤¸¤ë ¡ÖÆ»¶ñ¿ÈÂβ½¡×¤ÎǽÎϤò»ý¤Á, ¤½¤ì¤¬Æ»¶ñÍøÍѤ˽ÅÍפÀ¤È¤¤¤¦À¸Êª³ØŪ¤ÊÃ諤¬ÆÀ¤é¤ì¤Æ¤¤¤ë. ¤³¤Î¤³¤È¤«¤é, Æ»¶ñ¤ò¿ÈÂΤΰìÉô¤È¤·¤Æǧ¼±¤¹¤ë¤³¤È¤Ç, ²áµî¤Î·Ð¸³¤Ë¤â¤È¤Å¤¤¤ÆÆ°ºî¤¬À¸À®²Äǽ¤Ë¤Ê¤ë¤È ¹Í¤¨¤é¤ì¤ë. ËÜȯɽ¤Ç¤Ï, Æ»¶ñ¿ÈÂβ½¤Î¥â¥Ç¥ë¤ò¹½ÃÛ¤·, ¥¿¥¹¥¯Ã£À®¤Î¤¿¤á¤ÎÆ°ºî¤òÀ¸À®¤¹¤ë¼êË¡¤òÄó°Æ¤¹¤ë.
 
Ȫ¡¡¾æÃÒ À¸Ì¿µ¡Ç½·×¬³Ø Ì« ¾®ÂÀϺ
ȯɽÂêÌÜ¡§ÀÔÄÇÀÚºï¼ê½Ñ¤òÂоݤȤ·¤¿¥ê¥¢¥ë¥¿¥¤¥à±þÎϲòÀÏ

ȯɽ³µÍס§ÀÔÄÇÀÚºï½Ñ¤Ç¤Ï¡¢ÇصͤäÄÇ´ÖÈĤòÉôʬŪ¤ËÀںÀÚ½ü¤¹¤ë¤³¤È¤Ç¿À·Ð¤Ø¤Î°µÇ÷¤ò½ü°µ¤ò¹Ô¤¦¡£
ÀÚºïÈϰϤ¬Â礭¤¤¤Û¤É¡¢½Ñ¸å¤ÎÀÔÄǤؤÎÉéô¤¬Â礭¤¯¤Ê¤ë¤¿¤á¡¢ÌÊÌ©¤Ê·×²è¤äÀÚºï¸å¤Î¶¯ÅÙɾ²Á¤¬Ë¾¤Þ¤ì¤Æ¤¤¤ë¡£
Ëܸ¦µæ¤Ç¤Ï¡¢Æü¾ïÀ¸³è¤ÇÀÔÄÇÀ¸¤¸¤ë±þÎϤò¼ê½Ñ·×²è»þ¤Ë±þÎÏʬÉۤȤ·¤Æɽ¼¨¤·¡¢°å»Õ¤¬ÀÚºïÈϰϤò·×²è¡¦É¾²Á¤Ç¤­¤ë¤è¤¦»Ù±ç¤¹¤ë¤¿¤á¤Î¥·¥¹¥Æ¥à³«È¯¤òÌܻؤ¹¡£
 
úðÅÄ¡¡·° ¥Ç¥¸¥¿¥ë¥Ò¥å¡¼¥Þ¥ó³Ø¡Ê¥í¥Ü¥Æ¥£¥¯¥¹¡Ë ¾®³Þ¸¶ »Ê
ȯɽÂêÌÜ¡§¼¼Æâ°ÜÆ°¥í¥Ü¥Ã¥È¤Î¤¿¤á¤Î´Ä¶­ÃϿޤκîÀ®
ȯɽ³µÍס§¶áǯ²ÈÄí¤ä¥ª¥Õ¥£¥¹¤Ç°ÆÆâ¡¢·ÙÈ÷¤Ê¤É¤Î¥µ¡¼¥Ó¥¹¤ò¹Ô¤¦¥í¥Ü¥Ã¥È¤ÎƳÆþ¤¬¿Ê¤á¤é¤ì¤Æ¤¤¤ë¡£¤½¤Î¤è¤¦¤Ê¥µ¡¼¥Ó¥¹¥í¥Ü¥Ã¥È¤ËɬÍפÊÍ×Áǵ»½Ñ¤È¤·¤Æ°ÂÁ´¤Ê·ÐÏ©·×²è¡¢Êâ¹Ô¼Ô²óÈòÅù¤Î¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£½¾Í踦µæ¤Ç¤Ï¾ã³²Êª¤ò²óÈò¤·ÌÜŪÃϤòÌܻؤ¹·ÐÏ©·×²è¡¢¾×Æͤ·¤½¤¦¤Ë¤Ê¤Ã¤¿¤È¤­¤ÎÊâ¹Ô¼Ô²óÈòÅù¤Î¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤­¤¿¡£Ëܸ¦µæ¤Ç¤Ï¡¢Êâ¹Ô¼Ô¤ÎÆ°Àþ¤«¤é´Ä¶­Ãæ¤Î°ÜÆ°Îΰè¤äÊâ¹Ô¼Ô¤Î°ÜÆ°Êý¸þ¤ò»ý¤Ã¤¿´Ä¶­ÃÏ¿Þ¤òºîÀ®¤òÄó°Æ¤¹¤ë¡£¤½¤·¤Æ¡¢¤½¤ì¤ò¸µ¤Ë¿Í¤Î·è¤á¤¿°ÜÆ°²ÄǽÎΰ衢ÉÔ²ÄǽÎΰè¤ò°Õ¼±¤·¤¿¡¢°ÂÁ´¤Ç¿Í¤Ë¾×Æͤ·¤Ë¤¯¤¤·ÐÏ©·×²è¤ò¹Ô¤¦¤³¤È¤òÌܻؤ¹¡£
 
Æü±ÊÅÄ¡¡Í¤²ð ¥í¥Ü¥Æ¥£¥¯¥¹ ¾®³Þ¸¶ »Ê
ȯɽÂêÌÜ¡§Æ°Åª´Ä¶­²¼¤ËŬÍѲÄǽ¤ÊÃÏ¿Þ¾ðÊó¤Î¥×¥ê¥ß¥Æ¥£¥Ö·Á¾õ¶á»÷¤Ë¤è¤ëSLAM
ȯɽ³µÍס§¶áǯ¡¤¿Í¤Èºî¶È¶õ´Ö¤ò¶¦Í­¤¹¤ë¥í¥Ü¥Ã¥È¤Î¸¦µæ³«È¯¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¤¬¡¤¿Íº®¤ß¤Î¤è¤¦¤ÊÊѲ½¤Î¤á¤Þ¤°¤ë¤·¤¤Æ°Åª´Ä¶­¤Ç¤ÏSimultaneous Localization and Mapping(SLAM)¤òÍѤ¤¤¿¼þ°Ï´Ä¶­¤Î¥â¥Ç¥ë²½¤Ïº¤Æñ¤Ç¤¢¤ë¡¥
¤½¤³¤Ç¡¤ËÜȯɽ¤Ç¤ÏưŪ´Ä¶­²¼¤Ç¤ÎSLAM¤Ë´Ø¤¹¤ë¸¦µæ¤Î¾Ò²ð¤ò¹Ô¤¤¡¤¤è¤ê¥»¥ó¥·¥ó¥°¤¬º¤Æñ¤ÊưŪ´Ä¶­²¼¤Ç´Ä¶­¥â¥Ç¥ë¤ò¼èÆÀ¤¹¤ë¼êË¡¤È¤·¤Æ¡¤ÃÏ¿Þͽ¬¤ò¹Ô¤¦¤³¤È¤ÇÌäÂê¤Î²ò·è¤òÌܻؤ¹¡¤ÃÏ¿Þ¾ðÊó¤Î¥×¥ê¥ß¥Æ¥£¥Ö·Á¾õ¶á»÷¤Ë¤è¤ëSLAM¥·¥¹¥Æ¥à¤òÄó°Æ¤¹¤ë¡¥
 
Ê¿¸¶¡¡Íµµ® ÃÎǽ¾ðÊó½èÍý³Ø ÌڸͽРÀµåë
 
Ê¡Åè À¿ ·×»»¿À·Ð²Ê³Ø¡ÊÏÀÍýÀ¸Ì¿³Ø¡Ë ÃÓÅÄ Ï»Ê
ȯɽÂêÌÜ¡§»þ´Ö¹´Â«¾ò·ïÉÕ¤­Ç¾ÆâÅÅή¸»¿äÄꥢ¥ë¥´¥ê¥º¥à¤Î³«È¯
ȯɽ³µÍס§¥Ò¥ÈǾ³èÆ°¤òÈ󿯽±Åª¤ÊÊýË¡¤Ç´Ñ¬¤¹¤ë¿®¹æ¤Î°ì¤Ä¤È¤·¤ÆMEG¡ÊǾ¼§¿Þ¡Ë¤¬¤¢¤ê¡¤¿À·Ð³èÆ°¤ò¥ß¥êÉÃñ°Ì¤Î»þ´Öʬ²òǽ¤Ç·×¬¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥¤·¤«¤·Ç¾³èÆ°¤ò¥ß¥ê¥á¡¼¥È¥ë¤Î¶õ´Öʬ²òǽ¤Çµá¤á¤ë¾ì¹ç¤Ë¤Ï¡¤¿ôÉ´¸Ä¤Î¥»¥ó¥µ¡¼¤«¤é¿ôËü¸Ä¤ÎÈé¼ÁĺÅÀ¾å¤Î³èÆ°¶¯ÅÙ¤ò¿äÄꤷ¤Ê¤±¤ì¤Ð¤Ê¤é¤º¡Ê¶¯¤¤ÉÔÎÉÀßÄêÀ­¡Ë¡¤²¿¤é¤«¤Î¹´Â«¾ò·ï¤ò²Ã¤¨¤Ê¤±¤ì¤Ð¿äÄê²ò¤ò°ì°Õ¤ËÄê¤á¤ë¤³¤È¤¬¤Ç¤­¤Ê¤¤¡¥²æ¡¹¤Î¸¦µæ¼¼¤Ç¤Ï¤³¤ÎÌäÂê¤ËÂФ·¤Æ¡¤¶áǯµ¡³£³Ø½¬¤ÎʬÌî¤ÇÀ¹¤ó¤Ë¸¦µæ¤µ¤ì¤Æ¤¤¤ë¥Ù¥¤¥º¿äÄê¤òŬÍѤ·¡¤»öÁ°³ÎΨ¤Î·Á¤Ç¶õ´ÖŪ¤Ê¹´Â«¾ò·ï¤ò²Ã¤¨¤¿³¬Áإ٥¤¥º¿äÄêË¡(Sato et al. 2004)¤ò³«È¯¤·¤¿¡¥¤¿¤À¤·¤³¤Î¼êË¡¤Ç¤Ï¡¤´Ñ¬¥Ç¡¼¥¿¤ª¤è¤ÓǾ³èÆ°»þ·ÏÎ󤬻þ´ÖŪ¤ËÆÈΩ¤Ç¤¢¤ë¤³¤È¤ò²¾Äꤷ¤¿¥â¥Ç¥ë²½¤ò¹Ô¤Ã¤Æ¤¤¤ë¤¿¤á¡¤¥Ç¡¼¥¿¤Î»þ´Ö¾ðÊó¤òÍѤ¤¤¿¿äÄ꤬¤Ç¤­¤Ê¤¤¡¥¤½¤³¤ÇËܸ¦µæ¤Ç¤Ï¡¤³¬Áإ٥¤¥º¿äÄêË¡¤ò¾õÂÖ¶õ´Ö¥â¥Ç¥ë¤Ø¤È³ÈÄ¥¤·¡¤¶õ´Ö¹´Â«¾ò·ï¤Î¤ß¤Ê¤é¤º»þ´Ö¹´Â«¾ò·ï¤Þ¤ÇÍѤ¤¤¿¿·¤¿¤Ê¿äÄꥢ¥ë¥´¥ê¥º¥à¤òÄó°Æ¤¹¤ë¡¥¤Ê¤ªº£²ó¤Ï¤½¤ÎÂè°ìÃʳ¬¤È¤·¤Æ¡¤»þ´ÖϢ³¾ò·ï¤òÍѤ¤¤¿Ç¾³èÆ°¿äÄê¤Î¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¥Ç¡¼¥¿¤Ø¤ÎŬÍѤò»î¤ß¤¿¡¥
 

²ñ¾ì: L2

»Ê²ñ¡§ÂçÃÝ Å¯»Ë
¿¹¡¡¹ÀÂç ¥³¥ó¥Ô¥å¡¼¥Æ¥£¥ó¥°¡¦¥¢¡¼¥­¥Æ¥¯¥Á¥ã ÃæÅç ¹¯É§
ȯɽÂêÌÜ¡§ÏÀʸ¾Ò²ð ¡ÈA Coarse-Graind Array Accelerator For Software-Defined Radio Baseband Processing¡É
ȯɽ³µÍס§¶áǯ̵Àþµ¬³Ê¤¬Â¿ÍͲ½¤·¤Æ¤¤¤ë¡¥¤½¤³¤Ç¡¤¥½¥Õ¥È¥¦¥§¥¢¥ì¥Ù¥ë¤Ç̵Àþµ¬³Ê¤òÊѹ¹²Äǽ¤È¤·¤Ä¤Ä¡¤Äã¾ÃÈñÅÅÎϤò¼Â¸½¤¹¤ë¥½¥Õ¥È¥¦¥§¥¢ÌµÀþ¤Î¤¿¤á¤Î¥×¥é¥Ã¥È¥Õ¥©¡¼¥à¤Î³«È¯¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡¥¥½¥Õ¥È¥¦¥§¥¢ÌµÀþ¤Ç¤Ï¡¤½èÍý»þ´Ö¤ÎÂçÉôʬ¤ò¡¤Ì¿ÎáÊÂÎóÀ­¤È¥Ç¡¼¥¿ÊÂÎóÀ­¤¬¹â¤¤¥ë¡¼¥×½èÍý¤¬Àê¤á¤ë¡¥¤³¤ì¤Þ¤Ç¤ËÄó°Æ¤µ¤ì¤Æ¤¤¤¿´û¸¥×¥é¥Ã¥È¥Õ¥©¡¼¥à¤Ï¡¤¤½¤ì¤¾¤ì°Û¤Ê¤Ã¤¿ÍøÅÀ¤ò»ý¤Ä¤È¤È¤â¤Ë°Û¤Ê¤ë·çÅÀ¤¬Â¸ºß¤·¤¿¡¥¤½¤³¤ÇËÜÏÀʸ¤Ç¤Ï¡¤´û¸¥×¥é¥Ã¥È¥Õ¥©¡¼¥à¤Î¤½¤ì¤¾¤ì¤ÎÍøÅÀ¤ò·ë¹ç¤·¤¿¥Ï¥¤¥Ö¥ê¥Ã¥É¤Ê¥¢¥¯¥»¥é¥ì¡¼¥¿¤òÄó°Æ¤·¤Æ¤¤¤ë¡¥ 5¼ï¤Î¥Ù¥ó¥Á¥Þ¡¼¥¯¤Ë¤è¤ëËÜ¥¢¥¯¥»¥é¥ì¡¼¥¿¤ÎÊ¿¶Ñ¾ÃÈñÅÅÎϤÏ225-333mW¤Ç¤¢¤ê¡¤Äã¾ÃÈñÅÅÎϤ«¤Ä¿ÍͤÊ̵Àþµ¬³Ê¤Ø¤ÎÂбþ¤ò¼Â¸½¤·¤¿¡¥ËÜȯɽ¤Ç¤Ï½é¤á¤ËÏÀʸ¾Ò²ð¤ò¹Ô¤¤¡¤ºÇ¸å¤Ëº£¸å¤Î¸¦µæÊý¿Ë¤ò½Ò¤Ù¤ë¡¥
 
ÅÏî´ ÀµÎ´ ¥½¥Õ¥È¥¦¥§¥¢¹©³Ø ¾¾ËÜ ·ò°ì
ȯɽÂêÌÜ¡§²áµî¤Î¥Ð¡¼¥¸¥ç¥ó¤Î¥Ð¥°¤ÎÃê¾Ý²½¤Ë¤è¤ë¥Á¥§¥Ã¥¯¥ê¥¹¥È¤ÎºîÀ®
ȯɽ³µÍס§¥½¥Õ¥È¥¦¥§¥¢¥ì¥Ó¥å¡¼¤ä¥Æ¥¹¥È¤Ë¤ª¤¤¤Æ¥Á¥§¥Ã¥¯¥ê¥¹¥È¤¬ÍѤ¤¤é¤ì¤Æ¤¤¤ë¡¥Ä̾¥Á¥§¥Ã¥¯¥ê¥¹¥È¤Ï²áµî¤Î·Ð¸³¤Ë¤â¤È¤Å¤¤¤Æ¡¤¥¨¥­¥¹¥Ñ¡¼¥È¤¬ºî¤ë¤³¤È¤¬°ìÈÌŪ¤Ç¤¢¤ë¤¬¡¤ºîÀ®¤¬¥¨¥­¥¹¥Ñ¡¼¥È¤Ë¸ÂÄꤵ¤ì¤ë¤È¤¤¤¦ÌäÂêÅÀ¤¬¤¢¤Ã¤¿¡¥Ëܸ¦µæ¤Ç¤Ï¡¤¥¨¥­¥¹¥Ñ¡¼¥È°Ê³°¤Ç¤â¸ú²ÌŪ¤Ê¥Á¥§¥Ã¥¯¥ê¥¹¥È¤òºîÀ®¤¹¤ë¤³¤È¤òÌÜŪ¤È¤·¡¤¥Á¥§¥Ã¥¯¥ê¥¹¥È¤ò¥·¥¹¥Æ¥Þ¥Á¥Ã¥¯¤ËºîÀ®¤¹¤ëÊýË¡¤òÄó°Æ¤¹¤ë¡¥
 
ÅÏî´¡¡ÎÉÆó ¥³¥ó¥Ô¥å¡¼¥Æ¥£¥ó¥°¡¦¥¢¡¼¥­¥Æ¥¯¥Á¥ã ÃæÅç ¹¯É§
ȯɽÂêÌÜ¡§Â¿½Å²½ÅÙÊѹ¹²Äǽ¤Ê¥Ñ¥¤¥×¥é¥¤¥ó¤òÍøÍѤ·¤¿¥¹¡¼¥Ñ¥¹¥«¥é¡¦¥×¥í¥»¥Ã¥µ¤Î¹½À®
ȯɽ³µÍס§¶áǯ¡¤È¾Æ³ÂÎ¥×¥í¥»¥¹¤ÎÈùºÙ²½¤Ë¤è¤Ã¤Æ¡¤²óÏ©¤Î°ì»þŪ¤Ê¸Î¾ã¤Ç¤¢¤ë¥½¥Õ¥È¡¦¥¨¥é¡¼¡¤¤ª¤è¤Ó±Êµ×Ū¤Ê¸Î¾ã¤Ç¤¢¤ë¥Ï¡¼¥É¡¦¥¨¥é¡¼¤ÎȯÀ¸¤¬ÁýÂ礹¤ë¤³¤È¤¬·üÇ°¤µ¤ì¤Æ¤¤¤ë¡¥¤½¤³¤Ç¡¤¤³¤ì¤Þ¤Ç¤Ë¥½¥Õ¥È¡¦¥¨¥é¡¼¡¤¥Ï¡¼¥É¡¦¥¨¥é¡¼¤ò²óÈò¤¹¤ë¤¿¤á¤Ë²óÏ©¤ò¿½Å²½¤¹¤ë¤Ê¤É¤Î¼êË¡¤¬¤È¤é¤ì¤Æ¤­¤¿¤¬¡¤²óÏ©ÌÌÀѤä¾ÃÈñÅÅÎÏ¥ª¡¼¥Ð¥Ø¥Ã¥É¤¬Â礭¤¤¤È¤¤¤¦ÌäÂ꤬¤¢¤ë¡¥¤½¤³¤Ç¡¤Í׵ᤵ¤ì¤ë¿®ÍêÀ­¤äÆ°ºî¾õ¶·¤Ë¤ª¤¤¤Æ¿½Å²½ÅÙ¤òÊѲ½¤µ¤»¡¤¿®ÍêÀ­¤ò³ÎÊݤ·¤¿¾å¤Ç¡¤Ê¿¶Ñ¤Î²óÏ©ÌÌÀÑ¥³¥¹¥È¤ä¾ÃÈñÅÅÎÏ¥³¥¹¥È¤òºï¸º¤Ç¤­¤ë¥Þ¥ë¥Á¥³¥¢¡¦¥×¥í¥»¥Ã¥µ¤¬Äó°Æ¤µ¤ì¤Æ¤¤¤ë¡¥ËÜȯɽ¤Ç¤Ï¡¤¤Þ¤º¡¤Àè¹Ô¸¦µæ¤È¤·¤Æ¿½Å²½ÅÙÊѹ¹²Äǽ¤Ê¹â¿®Íê¥×¥í¥»¥Ã¥µ¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡¥¤½¤Î¸å¡¢Àè¹Ô¸¦µæ¤Î¥×¥í¥»¥Ã¥µ¤Ë¤ª¤¤¤Æ¡¤Â¿½Å²½¤Î¼Â¸½¤Î¤¿¤á¤Ë¼ÂÁõ¤µ¤ì¤Æ¤¤¤ëÄÌ¿®¥Ý¡¼¥È¤Ê¤É¤Î»ñ¸»¤òήÍѤ¹¤ë¤³¤È¤Ë¤è¤ê¡¤¶Ï¤«¤ÊÉղòóÏ©¤Ç¥¹¡¼¥Ñ¥¹¥«¥é¼Â¹Ô¤Ë¤è¤ë½èÍýÀ­Ç½¤Î¸þ¾å¤¬¼Â¸½²Äǽ¤Ç¤¢¤ë¤³¤È¤Ë¤Ä¤¤¤Æ¤â¾Ò²ð¤¹¤ë¡¥
 
Oyunbileg Chingun¡¡ ¥½¥Õ¥È¥¦¥§¥¢Àß·×³Ø ÈÓÅÄ ¸µ

ȯɽÂêÌÜ¡§ÏÀʸ¾Ò²ð ¡ÉDesign Pattern Density Defined¡É

ȯɽ³µÍס§In this paper, there newly defined the metric ¡ÇDesign Pattern Density¡Ç and it would measure how much of an object-oriented design can be understood and represented as instances of design patterns. Expert developers have long believed that a high design pattern density implies a high maturity of the design under inspection. This paper presents a quantifiable and observable definition of this metric. The metric is illustrated and qualitatively validated using 4 real-world case studies.  It presents also several hypotheses of the metric¡Çs meaning and their implications, including the one about design maturity. The paper proposes that the design pattern density of a maturing framework has a fixed point and it shows that if software design patterns make learning frameworks easier, a framework¡Çs design pattern density is a measure of how much easier it will become.

 
Marcos Daniel Villagra ¥³¥ó¥Ô¥å¡¼¥Æ¥£¥ó¥°¡¦¥¢¡¼¥­¥Æ¥¯¥Á¥ã ÃæÅç ¹¯É§
ȯɽÂêÌÜ¡§Quantum Walks: Introductory Overview and Ongoing Research
ȯɽ³µÍס§The design of quantum algorithms is nowadays one of the major problems in the quantum computing community. An emergent alternative for the design of algorithms is quantum walks. A quantum walk is the quantum counter-part of classical random walks. Results in this field showed that quantum walks can outperform its classical counterpart by exploiting quantum effects such as interference and superposition, giving an exponential speedup for certain types of graphs, and polynomial speedup for some practical applications. In this research, a study on quantum walks on the line is presented. The walk is defined using a coin operator with phase parameters. These parameters are in charge of tuning the standard deviation of the walk, this way the walk can be adapted according to the structure of the search space. Closed-form formulas for the state of the quantum walk are deducted using Fourier analysis and the steepest descent method for asymptotic approximation.