計算モデル論 Computation Models
◇ 担当教員:関 浩之(せき ひろゆき)
◇ 単位数:2 ◇開講時期:V期 月曜1時限・木曜2時限 ◇講義室:L2
◇ 講義目的:
授業の前半では、「計算機で問題を解くときの、問題の難しさをはかる尺度はあるのだろうか」という観点から、逐次計算モデルにおける基本的で重要な考え方であるNP完全性について説明する。また、逐次計算モデルの状態遷移においてランダム性を導入する、状態を木構造に拡張する、超並列性を導入することにより、それぞれ、ランダム計算、項型計算、分子計算のモデルが得られる。授業の後半では、これらの計算モデルを紹介する。
◇ 講義内容:
1.逐次計算モデルにおける計算量理論
・NP完全性の定義
・Cookの定理
・還元による証明法
2.ランダム計算モデル
・確率チューリング機械
・クラスPP、 BPP、ZPP、R
・暗号理論との関連
3.項型計算モデル
・項書換え系と木オートマトン
・合流性、停止性、書換え戦略
4.分子計算モデル
・DNA計算の考え方
◇ 教科書 :
なし。
◇ 参考書 :
授業中に紹介する。
◇ 前提とする知識(受講要件ではない):
アルゴリズムとデータ構造(アルゴリズム概論)
形式言語理論、計算可能性(計算理論I)
一階述語論理 (人工知能基礎論)
◇ 成績評価:
レポート(20〜30%)、試験(70〜80%)。