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We present an analytical model that describes the coupling of protein fluctuations to electron transfer. The
model treats both the protein and the bulk solvent to couple to electron transfer. The protein is represented
by a low-dielectric cavity containing explicit protein atoms, and the bulk solvent is represented by a high-
dielectric continuum surrounding the cavity. Protein fluctuations are modeled by collective normal modes
with solvation energies incorporated through explicit reaction field energies. The shifts of the equilibrium
normal mode variables upon electron transfer, related to the mode-specific couplings and reorganization
energies, are calculated assuming the difference of the potential energy surfaces before and after electron
transfer by a hyper plane in the normal mode vector space. This linear coupling assumption allows only one
set of normal mode vectors to span both the reactant and product equilibrium conformations. The model is
equivalent to a reduced spin-boson formalism (protein only); however, unlike previous work within this
formalism, the bath modes are not spatially anonymous in our treatment. They are associated with unambiguous
frequency and spatial signatures allowing a spectral analysis of protein reorganization energy with one-to-
one connection with actual protein fluctuation. This aspect of our model is very crucial since it allows, for
the first time, to make a direct connection between actual protein motion and electron transfer, as demonstrated
by a simulation presented in an accompanying paper (J. Phys. Chem.1998, 102, XXX).

1. Introduction

Electron transfer (ET) is one of the most fundamental
processes in chemistry and biology, and accordingly it has
attracted significant attention from researchers in diverse
disciplines in recent years. In biological systems, there are
several classes and types of proteins that mediate ET,1 all
probably optimized via evolution for a specific purpose. To
understand how these proteins work, or how protein-mediated
ET differs from one that is not protein-mediated, a sound
understanding of the theoretical aspects of the process is needed,
especially one that can pinpoint protein involvement in the
reaction at atomic resolution. Besides, such an understanding
will also provide insights into designing artificial systems that
can act as energy transducers, including those that harness solar
energy.
Theoretical aspects of nonadiabatic ET process are well-

established within the classical, semiclassical, and quantum
mechanical framework.2-8 In all these theories the first step is
a partition of the ET rate constantkET into two factors: the
electronic factorHDA and the nuclear factor FC.

The factorHDA contains information about the total (direct
and indirect) interaction of the donor-acceptor electronic wave
functions. A major protein contribution toHDA arises through
enhancing the indirect interaction of the donor-acceptor

electronic wave functions.9 The three-dimensional skeleton of
the protein further restricts the distance and orientation of the
donor-acceptor sites, thereby affectingHDA.
The factor FC is related to the fluctuations and relaxation of

the nuclear polarization of the medium. In classical treatment
of ET, a key parameter in the FC factor is the reorganization
energy,λ, defined as the free energy change associated with
the relaxation of the entire set of nuclear coordinates surrounding
the red-ox sites as the charge distribution changes from the
reactant (R) to the product (P) state. In Figure 1 this is shown
as the free energy released as the nonequilibrium state B relaxes
to the equilibrium state C. The FC factor, with explicitλ
dependence, is given by
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Figure 1. Free energy curves before and after electron transfer as a
function of nuclear coordinates of the system.
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The involvement of the protein matrix in FC, like in the case
of HDA, is also direct and indirect. Indirectly, by keeping the
polarizable solvent (usually water) away from the immediate
vicinity of the red-ox sites, it can make FC less solvent-
dependent. Concomitantly, by actually surrounding the red-ox
sites, the protein affects the FC factor via the coupling of protein
nuclear polarization fluctuations with the change of electronic
state during ET, the electron-conformation (e-c) coupling.
In recent years a number of studies have attempted to address

the question of e-c coupling by molecular dynamics (MD)
simulation and subsequent analysis of the trajectory.10-16 The
key microscopic variable of interest in these studies is the energy
difference between the R and the P states.17 Probability
distributions of this energy difference and its autocorrelation
function serve as the starting point for a quantitative analysis
of the e-c coupling. These approaches are suitable for assessing
the total coupling of the entire nuclear degrees of freedom. For
ET in proteins, the total coupling arises from the degrees of
freedom of the protein as well as from the bulk solvent. In
terms of spatial identities of conformational fluctuations that
couple to ET, it is the protein fluctuations that are of prime
interest. In this regard it is important that a formal breakup of
the total coupling be made among the protein and the bulk
material, as was attempted earlier.18 In addition, a model that
can break down the protein coupling into a spectrum spanning
the entire conformational space of the protein atoms is desirable.
In this paper we present a model that resolves the protein
coupling into such a spectrum.
Typically a protein molecule is very large, with its tertiary

structure governed dominantly by weak nonbonded interactions.
This gives rise to several low-frequency collective breathing
modes which arise due to sampling of the soft dihedral angle
space.19,20 In the case of large macromolecules such as proteins,
a natural question is whether soft collective modes contribute
importantly to the coupling. There are other important issues
as well. Since the protein matrix is a highly heterogeneous
medium, the variation ofkET, as a function of red-ox pair
distance and disposition within the protein matrix, is quite
complex. Theoretical understanding has typically been sought
through modeling theHDA term.9,21,22 But what if changes in
the distance and disposition of the red-ox sites or mutations in
the medium also affect the soft (or, for that matter, hard) modes
whose contribution to FC is large? To have a comprehensive
understanding of all of these issues, it is extremely important
that a theoretical framework be developed that allows one to
explicitly calculate the mode-specific contributions of e-c
coupling in proteins.
In the past, the medium surrounding the red-ox sites has been

treated as a uniform continuum,4,5 as a piecewise constant
dielectric continuum,23 or as a set of quantum harmonic
oscillators (inner sphere formula3). In this paper we use a new
approach, where we carry out the natural generalization of the
inner sphere treatment to the more complex “oscillator” of the
atomistic model of a protein contained in a cavity surrounded
by a continuum dielectric (Figure 2).
Fluctuations of this atomistic protein molecule, contained in

a low-dielectric cavity and surrounded by a higher dielectric
continuum, are modeled by collective normal modes (NM)
around a minimum energy conformation (MEC). It is the
collective nature of these modes that becomes crucial in the
theory. The mode-specific couplings are related to the mode-
specific shift of the MEC upon ET. Bulk solvent contribution
to the ET is incorporated through two separate effects. The
primary effect of the bulk solvent arises from the relaxation of

the solvent nuclear polarization upon ET. The other and more
subtle effect is the equilibrium solvation energy of the protein.
While the former effect gives rise to a single reorganization
parameter, the latter effect is resolved along all the protein
collective modes through reaction field energies.
This is the first attempt that quantifies the coupling of

atomistic collective modes to ET retaining full spatial signatures
of the modes. Our model is analytic and provides important
physical insight into the problem including a redefinition of the
inner sphere and outer sphere contributions to reorganization
energy. The strength of this model lies in the fact that it is not
just phenomenological but can be accessed by molecular
simulations. In a following paper we demonstrate the ap-
plicability of this model by a simulation on Ru-modified
cytochromec.24

2. Formulation of the Problem

2.1. Description of the System.Before elaborating on the
theoretical aspects of ET and its coupling to nuclear fluctuations,
we first describe the protein-solvent system, as treated in this
paper. The protein molecule is represented by explicit atoms
whose fluctuations are modeled by normal mode analysis
(NMA). The protein molecule is composed of (M + N) atoms;
charges onM sites change with ET (denoted byQi andQi +
∆Qi), while charges onN sites do not change with ET (denoted
by qi). This atomistic protein is placed inside a spherical
dielectric cavity representing the protein shape. The spherical
cavity is surrounded by a structureless continuum dielectric
representing the bulk solvent. A schematic description of the
system is shown in Figure 2. The choice of the dielectric
constants used for the cavity and the bulk solvent, as indicated
in Figure 2, is justified in section 2.2. The primary motivation
for choosing this special model (piecewise continuous and
atomistic) is to represent the electrostatic interactions, respon-
sible for coupling of nuclear modes to ET, as realistically as
possible together with the requirement that several energy
evaluations can be performed within a reasonable amount of
time.
Protein conformational fluctuations are modeled, as described

above, by normal mode analysis in the following formulation.
Normal mode analysis is based on the assumption that the
conformational energy function is harmonic within the range

Figure 2. Schematic description of the protein-solvent system. The
bulk solvent is represented by a continuum dielectric with dielectric
constant ofDOP

blk or DS
blk, and the atomistic protein is considered to lie

within a spherical cavity with dielectric constantDOP
cav. Of the total

number of protein atoms, charges (qi) on N atoms do not change upon
ET, while the other M sites change charge on ET (Qi to Qi + ∆Qi).
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of thermal fluctuations. However, it is already known that this
assumption does not hold precisely for proteins. Even so, it is
also known that, as far as second moments of fluctuations of
atomic positions are concerned, normal mode analysis can be
extended as principal component analysis25,26 to take into
account of effects of anharmonicities. Even though the fol-
lowing formulation is developed in terms of normal mode
analysis, most of the resulting formulas can be reinterpreted as
valid also for principal component analysis. Therefore, the
formulation developed in the following is in fact effective even
when conformational fluctuations are highly anharmonic.
The simple Coulomb’s law with a uniform dielectric constant

poorly models electrostatic interactions of heterogeneous sys-
tems. Especially for large low-dielectric molecules such as
proteins, this simple expression utterly fails to represent two
salient and important features in the actual electrostatic energy.
The self-energies of the atoms, arising from the polarization
effect of the solvent, are completely ignored. These self-terms
are primarily responsible in accounting for the solvation energy.
Also, the screening of the pairwise energies due to polarization
terms is very poorly represented by the uniform or a distance-
dependent dielectric constant. There are two methods currently
available to partly overcome these deficiencies. One can either
use the microscopic PDLD approach developed by Warshel and
Levitt27,28or use a macroscopic piecewise continuous dielectric
model based on solving the Poisson-Boltzmann (PB) equation
made popular partially due to the work by Honig and co-
workers.29 Because of its simplicity and capability to perform
calculations on large systems, we employ the latter method for
this work.
The parent equation for continuum dielectric models is the

PB equation

whereΩ(r ) is the electrostatic potential,F(r ) is the free charge
density,ε(r ) is the spatially variant dielectric constant, andκj02
is related to ionic strength effects. The simplest approach to
model the functionε(r ) is to consider the protein to be a low-
dielectric cavity immersed in a high-dielectric bulk solvent. For
a realistic protein (cavity) shape, eq 3 cannot be solved
analytically due to complicated boundary conditions.
Instead, numerical solutions to eq 3 can be obtained, typically

calculated only for a single static conformation. In our model,
we need to perform energy minimization of the protein
molecule, and that requires several thousand steps of energy
and gradient evaluations. A spherical boundary for the protein
is the next practical solution since the solution to eq 3 under
this boundary condition becomes analytical. Expressions for
the spherical cavity model were first derived by Kirkwood30

and later applied to proteins by Tanford and Kirkwood (TK).31

We will neglect all ionic strength effects in this work. The
total electrostatic energy is the sum of all atomic pair terms
(i * j) and the self-reaction-field term (Bii). Direct Coulombic
self-terms (Aii) are absent. Thus it is given by

where b and a are the cavity and the ion-exclusion radii,
respectively, andei is the charge on theith site; the termAij

represents the direct Coulomb interactions; the termBij repre-
sents the reaction field effect from the solvent. The sum ofBij
andBii terms will later be written asERF. Full expressions for
theAij and theBij terms are given by

where b is the radius of the cavity,ri and rj are the radial
distances of atomi and j with chargesei andej, cosθij is the
cosine of the angle betweenrbi and rbj, andPn(cosθij) are the
Legendre polynomials of ordern.
2.2. Nuclear Relaxations upon ET. The response of the

nuclear coordinates surrounding the red-ox sites that couple to
ET is exhibited by a characteristic relaxation to a new equilib-
rium configuration upon ET. Since the only change that the
ET process brings about is a change in the charge distribution
at the red-ox sites, this relaxation occurs solely due to the
corresponding change in the electric field permeating the
medium. There are two separate origins for this relaxation: (1)
redistribution of the electron density around the medium nuclei,
represented by the change in the electronic polarizationPe, and
(2) reorientation of the permanent dipoles and mobile ions in
the medium, represented by the change in the nuclear polariza-
tionPn. Because of the time scales involved, it is assumed that
the electronic polarizationPe relaxes instantaneously with ET,
while the nuclear polarizationPn lags behind.
In continuum electrostatic models, the effect of the equilib-

rium medium polarizations is modeled through the dielectric
constant, where the high-frequency (optical) dielectric constant
represents the effect of onlyPe, while the zero-frequency (static)
dielectric constant represents the effects from bothPe andPn.
Marcus, in his original work on classical theory of ET, had
derived an expression for the nonequilibrium (with respect to
the product red-ox site charge distribution) polarizationPn
produced upon ET. This is the key equation that led Marcus4,5

to write expressions forλ as a function of both the optical and
the static dielectric constants.
One of the goals of this paper is to derive suitableλ

expressions for the entire system, as separate contributions from
the protein and the bulk solvent. We treat the bulk solvent as
a structureless continuum, and as a consequence, the treatment
of the bulk contribution toλ is similar to that of Marcus.
Expressions forλblk, as elaborated later, accordingly call for
the use of the static (DS

blk) as well as the optical (DOP
blk) dielectric

constants of the bulk solvent, as indicated in Figure 2. In
contrast, we treat the fluctuations of the permanent dipoles of
the atomistic protein explicitly by classical simulation methods,
and so the protein cavity is characterized by only the optical
dielectric constant (DOP

cav) of the cavity, also indicated in Figure
2.
2.3. Protein and Bulk Solvent Contributions. The ET

process is accompanied by the relaxation of the entire collection
of nuclear coordinates that surround the red-ox sites. Since the
protein coordinates, due to bonding and other constraints, are
much more restricted to relax than the bulk solvent coordinates,
it is natural that the two relaxations be treated separately.
Further, it is the protein relaxations whose structural signatures
have relevance to design and control of ET through special
protein architectures.

∇‚[ε(r )‚∇‚Ω(r )] - κj0
2Ω(r ) - 4πF(r ) ) 0 (3)

Eelectro)
1

2b
∑
i,j

eiej(Aij - Bij)

)
1

b
∑
i>j
eiej(Aij - Bij) -

1

2b
∑
i

ei
2Bii (4)

Aij ) b
Dinrij

Bij )
1

Din
∑
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(rirj
b2

)nPn(cosθij) (5)

2078 J. Phys. Chem. B, Vol. 102, No. 11, 1998 Basu et al.



One way to represent independent relaxations of the bulk
solvent and protein nuclear coordinates is to redraw Figure 1
as Figure 3, where, instead of free energycurVesalong only a
single nuclear coordinate (bulk solvent plus protein), free energy
surfacesare shown as contour plots along the bulk (b) and the
protein (p) nuclear coordinates. The relevant nuclear coordinates
in ET can be represented by the corresponding nuclear polariza-
tions. The points B, C, X, and Y, shown in Figure 3, lie on the
product-state free energy surface; superscripts eq and * indicate
equilibrium and nonequilibrium polarizations with respect to
the final-state charge distribution. Points B and C correspond
to B and C in Figure 1. Two new points, Y and X, have been
labeled in Figure 3; at Y the protein polarization is in equilibrium
(peq, b*), whereas at X the bulk polarization is in equilibrium
(p*, beq). According to Figure 3 the total reorganization energy
can be formally broken down as

In the next section we derive appropriate expressions for the
bulk solvent contribution to totalλ, λblk.

3. Bulk Solvent Relaxation: λblk

To estimateλblk{(p*, b*) f (p*, beq)}, one requires a
knowledge of the nonequilibrium states (p*, b*) and (p*, beq).
Although the polarizationsp* and b* are in equilibrium with
respect to the reactant charge distribution, they are nonequilib-
rium polarizations with respect to the new product charge
distribution. In this respect, they represent “special” nonequi-
librium states, and Marcus’s original work4,5 exploited this fact.
While Marcus’s canonical expression for the reorganization
energy was derived for two conducting spheres in a dielectric
continuum, later a similar approach was used to deriveλ
expressions for other geometries as well.23

Let us consider the system described in Figure 2, where the
electrostatic energy is given by eq 4. We want to write the
energy difference between points B and X in Figure 3 asλblk.
A convenient thermodynamic cycle for achieving this is the
following

whereW represents the reversible work done for processes
indicated in the subscripts; A is a state on the reactant free
energy surface immediately below the state B and is therefore
characterized by nuclear polarization (p*, b*). The electrostatic

potential for the three states can be written as23

whereej
R andej

P are the reactant and product charge distribu-
tions respectively,Fij is equal to (Aij - Bij)/b in eq 4, and the
dependence ofFij on DOP

cav is implicit. Since the protein
nuclear polarization in all three states, A, B, and X, are allp*,
the dependence ofFij on the equilibrium atomic coordinates in
the R statereq

R is also implicitly assumed. Expressions for the
reversible work can be written as23

Using eqs 7, 11, and 12, the final expression forλblk becomes

This can also be rewritten as

4. Protein Relaxation: λprot

In the previous section we derived expressions for the bulk
solvent contribution toλ (eq 14). In this section we derive the
protein contribution toλ, λprot. Unlike the bulk solvent, the
nuclear fluctuations of the protein are treated explicitly through
NMA (section 4.1). Each NM is associated with a mode-
specificλprot, λk

prot, collectively making up the protein reorga-
nization spectrum, as described in section 4.2. In section 4.3
we outline the relationship between the R and the P state
energies, used later to derive analytical expressions forλk

prot

with TK reaction field energies (section 4.4). To emphasize
the spectral analysis through NMA{λk

prot}, we call it the
normal mode reorganization energy spectrum (NMRES) model.
The NMRES model is compared with other linear models in
section 4.5, where distinguishing features of our approach are
pointed out. In section 4.6, as a natural followup of the NMRES
model, new ways to partitionλ are proposed.
4.1. Collective Mode Description of Protein Motion

through Normal Modes. The classical Hamiltonian that
determines the energy of a molecular conformation or that
dictates the time dependence of the molecule in the multidi-

Figure 3. Free energy surfaces of reactant (thin line) and product (thick
line) states along the protein and bulk nuclear polarization. Points B,
X, C, and Y lie on the product energy surface.

λ{(p*, b*) f (peq, beq)} ) λblk{(p*, b*) f (p*, beq)} +
λprot{(p*, beq) f (peq, beq)} (6)

λblk ) WXfB ) WXfA + WAfB (7)
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1

2
∑
ij
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R){Fij(DOP
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prot, DOP

blk) - ERF(∆Qi, DOP
prot, DS

blk) (14)
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mensional conformational space is quite complex. This Hamil-
tonian can be represented by an empirical energy functionE,
which is given by

We represent the electrostatic energies in eq 15,Eelectro, by
Coulombic (Aij) and reaction field terms (Bij) of eq 4. The cross
Coulombic and reaction field terms together (Bi*j and Ai*j)
represent pairwise electrostatic energies with an effective
dielectric constant, while the self-reaction-field terms (Bi)j)-
account for the solvation energies of the protein atoms. In this
sense eq 15 stands out from other standard force field energies.
In section 3 we have already provided expressions for the bulk
solvent contribution toλ through a dielectric continuum model.
However, that bulk solvent contribution should not be confused
with the electrostatic contribution to solvation energy as
incorporated in eq 15 through the reaction field terms. In terms
of Figure 3, the protein relaxation and fluctuations occur along
the horizontal XT C lines. Along this direction the bulk
solvent is always in equilibrium and contributes toward equi-
librium solvation energies.
Normal mode analysis assumes that the conformational

energyE is harmonic within the range of thermal fluctuations.
Thus in terms of the collective NM variablesσk,

whereωk is the angular frequency of thekth NM variable. In
the sense of principal component analysis,ωk is the effective
angular frequency of thekth principal component variable. This
collective variableσk, along with the NM basis vectors,Rik,
dictates the displacement of the mass-weighted Cartesian
coordinates,∆Xi (i ) 1, ..., 3(M + N)), around the MEC by

In normal mode analysis, diagonalization of the hessian
matrix,F (Fij ) ∂2E/∂xixj), evaluated at the MEC yieldsωk

2 as
the diagonal elements andRik as theikth element of the basis
setr. In principal component analysis, diagonalization of the
second moment matrix gives corresponding quantities. Each
NM variable σk therefore defines a collective motion of the
protein through eq 17 with a characteristic frequencyωk. The
time dependence ofσk is given by

whereδk is the phase andAk is the amplitude of thekth mode.
At a given temperature the classical mean-square fluctuation
(Ak2/2) of thekth mode is given by

4.2. Mode-Specific Coupling Coefficient and Reorganiza-
tion Energy. The R and the P states in ET reactions are set up

by the two different charge distributions at the red-ox sites.
Correspondingly these two potential energy surfaces (PESs)
contain two distinct MECs, MECR and MECP. In this respect,
the ET problem is different from many other protein confor-
mational studies characterized by a single PES spanning many
local MECs. Despite this difference, if the MECR and MECP
resemble each other very closely in the conformational space,
as experimentally verified for ET proteins,32,33only one set of
NM vectors will suffice to represent the dynamics around both
the MECs. This specific feature of the ET problem is analogous
to the situation in the NMA of two distinct MECs on a single
PES, although several other features of the ET problem resemble
those that are found in molecular spectroscopy.
As shown in Figure 4, the NM energies before and after ET

(R and P) can be written as

where∆σk° is the NM variable shift of MECP with respect to
MECR along thekth NM variable and∆E° is the energy
difference between the two MECs.
Equation 20 assumes that there is no frequency change

associated with the ET process and that the same set of
eigenvectors can describe fluctuations around the two MECs
before and after ET. Justification for using the same set of NM
vectors for the initial and final state comes, besides the structural
similarity of reduced and oxidized proteins, from simulation
studies which show that the low-frequency modes span the same
“important” conformational subspace around MECs that are
close to each other in the conformational space.34 The
advantage of using only one set of eigenvectors is that one can
construct a concrete reaction coordinate (in the conformational
space). As will be shown in Figure 4 of the following paper,24

the assumption embodied in eq 20 is very well satisfied in the
real system.
In analogy with the totalλ of Figure 1, one may define a

protein reorganization energyλprot as the energy associated with
the relaxation of only the protein nuclear coordinates as the
charge distribution on the red-ox sites changes. Within the NM
description this will have components along all the NM axes,
and thekth mode contribution is shown schematically in Figure
4.
From a simple geometric argument, the two parabolas of eq

19 yield the reorganization energy corresponding to thekth

E) ∑
bonds

Kr(r - req)
2 + ∑

angles

Kθ(θ - θeq)
2 + ∑

dihedrals

Vn

2
[1 +

cos(nφ - γ)] + ∑
nonbonded[ Cij

Rij
12

-
Dij

Rij
6] + Eelectro (15)

E) ∑
k)1

3(M + N)-6 1

2
ωk

2σk
2 (16)

∆Xi ) ∑
k

3(M + N)-6

Rikσk (17)

σk(t) ) Ak cos(ωkt + δk) (18)

〈∆σk
2〉classical)

kBT

ωk
2

(19)

Figure 4. Normal mode potential energy before and after ET along
the kth NM axisσk (see eq 19).

ER )
1

2
∑
k

ωk
2σk

2

EP )
1

2
∑
k

ωk
2(σk - ∆σk°)

2 - ∆E° (20)
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normal mode as

The total protein reorganization energyλprot is given by a sum
over all modes as

Equations 21 and 22 provide a means to decompose the total
protein reorganizationE energy into a spectrum which comprises
contributions from individual modes.
From an inspection of eqs 21 and 22 it is evident that the

key quantity that determines either the mode-specific coupling
coefficient or the reorganization energy is the horizontal shift
along that particular mode∆σk°. One way to calculate the set
of shifts ∆σk° is to perform two sets of NMAs around the
conformations MECR and MECP. However, as pointed out
earlier, we propose to carry out only one set of NMA and
directly determine the shifts∆σk°. The energy difference
between the R and the P states at a given protein conformation
can be written as

An expression for∆σk° follows from eq 23 as

Even though it is possible to derive an analytic expression
of ∆σk° from eq 24 by using an explicit expression of
electrostatic energy for the R and P states, it is more practical
to calculateER andEP numerically for a given values ofσk and
carry out the differentiation of eq 24 numerically. This method
is employed in the accompanying paper.24

Equation 23 also serves as the definition for the mode-specific
e-c coupling coefficient. The energy difference∆E({σk}),
given by a linear combination of the NM variables{σk}, is a
convenient representation of the generalized reaction coordinate
for the ET reaction.17 Thus, the linear coupling coefficientsck
are given by

Use of a simple continuum dielectric to represent the bulk
solvent through the TK model is an important part our model.
Despite the simplifications and assumptions that this representa-
tion carries, it has advantages too. Use of the TK reaction field
energies allows the model to incorporate ionic strength effects
on the mode coupling strengths in a straightforward manner.
The analytical form of reaction field energies that we employ
in this work contains individual terms (direct and reaction field
arising between and among the protein and red-ox site atoms)
with clear physical meanings. The simple model used in this
work can be extended by packing the spherical cavity with a
finite number of solvent molecules.35

4.3. Comparison of NMRES Model with Other Linear
Models. In the present work protein fluctuation is represented
by collective NM variables, and the coupling of these collective

modes to ET is brought in through the fluctuations of the energy
difference of the initial and final states. This energy difference
is approximated by a hyper plane (eq 23) and reduces the theory
to the case of “linear coupling”.
Many elaborate theories have been developed in solid-state

physics based on a linear coupling assumption at the outset,
such as the spin-boson (SB) model, an approximation that still
leaves a tremendous amount of physically interesting behavior.
The SB Hamiltonian, which models the electronic degrees of
freedom as a spin (two-state Hamiltonian) coupled to a medium
comprising a large number of independent harmonic oscillators
(the bosonic bath), is given by

If the bath oscillators are identified with only the protein
modes,ER andEP in eq 26 become identical toERandEP defined
in eq 20. For this reduced bath (protein only), the Hamiltonian
can be elaborated as

whereσz andσx are Pauli spin matrices. The first two terms in
eq 27 represent the electronic part of the Hamiltonian;HDA and
∆E° have already been defined in eqs 1 and 19, respectively.
The third term represents the harmonic bath, whereYj are the
mass-weighted bath coordinates ()σk - ∆σk°/2) andωj are the
corresponding frequencies. The fourth term in eq 27 is part of
the Hamiltonian that represents the coupling of ET to the
harmonic bath. Eachjth bath mode, with frequencyωj, linearly
couples to ET through a coupling coefficientcj already
introduced in eq 25.
Once the coupling coefficientscj are known, one can construct

the spectral functionJ(ω)

A knowledge of the spectral functionJ(ω), the energy
difference ∆E°, and the electronic coupling elementHDA

completely determines the dynamics of the system, including
ways to determine the rate constants. Various ways to obtain
ET rates in the framework of the multimode SB Hamiltonian
are discussed extensively by Schulten and co-workers, and we
refer the interested reader to their work and references therein.10-13

A detailed review on the SB model has been presented by
Leggett et al.36 The idea of employing the SB formalism to
ET is not new. Extensive applications of the SB Hamiltonian
to study the problem of ET have been done by Onuchic,37-39

Chandler,40,41 Schulten,11-13 and their co-workers. The dis-
persed polaron approach used by Warshel and co-workers15 can
also be shown to be an approximation of the SB model at high
temperatures. Among these approaches, Schulten’s work comes
closest to what we present here. Schulten, like us, used a
multimode Hamiltonian which allows inclusion of contributions
arising from all modes. However, there are important differ-
ences between the present work and Schulten’s. The difference
primarily lies in the fact that we use a reduced bath, and more
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importantly, the bath modes are not spatially anonymous in our
work: this point is elaborated below.
Another difference is that we treat the system classically.

Extension of our treatment to a quantum system can be done,
for example, by using the method proposed by Shulten.11-13

In Figure 5, we schematically show how our work fits in
with other approaches. The starting point of our simulations,
the frequency domain, is highlighted for clarity in Figure 5.
Unlike the present work, all other models start from an MD
simulation in the time domain. This yields free energy curves
of Figure 1 through probability distributions of∆E(r [t]),16 or
alternatively, the spectral functionJ(ω), defined by eq 28, can
be obtained by the Fourier transform of the∆E autocorrelation
function.11 The latter method makes the bath modes anonymous
as far as the associated atomic fluctuations go, which we call
“spatial-anonymity”. This spatial-anonymity is different from
the following “frequency-anonymity”. As far as the computa-
tion of the rate constant goes, the former is totally irrelevant,
while the latter is tolerable only for the low-frequency classical
modes.
The important characteristic here is that for a given temper-

ature the high-frequency modes must be treated individually,
each possessing their individual characteristic frequencyωk, and
their individual couplings to the state change at the red-ox site,
captured in the reorganization energy parametersλk. On the
other hand, for modes of sufficiently low frequency, their
respective reorganization energies can be summed together and
the aggregate coupling described by a singleλ (λout) corre-
sponding to a single classical oscillator.
This simplification arises from the irrelevance of the fre-

quencyωk to the thermal excitation of a classical oscillator,
hence the frequency-anonymity of the low-frequency classical
modes as far as the FC is concerned. WhenJ(ω) is obtained
by a Fourier transform from the time domain, the modes are
assigned a frequency signature. Nevertheless, whether low
frequency and not-low frequency, all modes still have individual
spatial signatures, useful in the spatial examination of the e-c
coupling. This spatial characteristic of the modes is lost unless
either an NM analysis is performed as we propose here or the
MD simulation data are analyzed by a principal component
analysis.25 Our model enjoys all the advantages that the SB
formalism offers, yet it is this inclusion of the spatial signatures
of the modes where it stands out from other models that also
employ the multimode Hamiltonian model.
As a direct consequence of the spatial information of the bath

modes, a series of structural analyses can be performed. For
example, given a set of modes that couple most to ET, we can
identify parts of the polypeptide chain, the cofactors, or the

bound solvent molecules whose fluctuations are important. It
is to be noted that since the fluctuations are modeled to be
collective, even long-range spatial couplings will show up.
4.4. A NewWay of Partitioning Total λ. As a consequence

of using a reduced bosonic bath (reduced because it lacks one
degree of freedom originating from the solvent) for representing
the protein system and treating the bulk solvent contribution
separately, we have effectively expressed the totalλ as

In contrast to this, the usual way to decomposeλ is the
following:3

where the solvent contributions make up a singleλout and the
high-frequency skeletal vibrations of the red-ox center make
up λin through expressions similar to eqs 21 and 22. When
applied to ET in ions and small molecules, this is a reasonable
breakup.
However, eq 30 becomes unsuitable whenλ is estimated for

protein ET. Not only the solvent but also the protein matrix
contribute significantly toλout, as

Estimation of the totalλout, as proposed in eq 31, was performed
in an earlier work.18 However, what we propose here (eq 29)
is not merely a calculation of the protein and bulk solvent
contributions separately, but in our treatment, the protein
contribution is explicitly spread over all the collective modes
including the high-frequency modes that contribute toλin.
Because through eqs 21 and 22 we calculate the entire protein
λ spectrum,λin can be estimated as a sum over all modes above
a certain cutoff frequency (say 150 cm-1), whereas the remain-
ing low-frequency modes would account for the protein
contribution inλout.

This is a more natural way of analyzingλ in protein ET.
Note that since we include self-energies in the NM energies,
high-frequency skeletal vibrations of the same red-ox skeleton
(heme, for example) will contribute differently toλin depending
upon whether it is at the core of a protein or it is solvent
exposed.

5. Summary

Although several theoretical approaches are available to gauge
the role of protein medium in controlling ET, in terms of
addressing certain questions at the molecular level, such as
whether some specific structural fluctuations are essential for
controlling ET or not, there was a gap between the existing
theories and their applicability to experimental systems. To
bridge this gap and in continuation of our efforts to model
protein structure and function from a collective motion view-
point, we have presented a model that quantitatively connects
collective protein fluctuation to ET.
Both the bulk solvent and the protein are treated to couple to

ET. The bulk solvent is represented by a structureless dielectric

Figure 5. Schematic comparison of various treatments of coupling of
ET to medium nuclear fluctuations.
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continuum within which the protein molecule is contained in a
separate low-dielectric cavity. Protein fluctuations are modeled
by collective NM vectors, which include equilibrium solvation
effects through reaction field terms. While the coupling of bulk
solvent and ET is expressed through a single parameter,λblk,
the protein component of the coupling is expressed as a spectrum
spanning all the NM axes. The primary aim of formulating
this model was not to calculate rate constants or provide insights
into any new physics, but rather we wanted to assign functional
importance to specific NM fluctuations, and this is reflected in
the λprot spectrum. In our model, the implicit assumption of
linear coupling to ET makes it equivalent to a reduced SB
formalism where the reduced bosonic bath is represented by
the harmonic protein NMs. The SB model has been applied to
the problem of ET by others in previous studies. However,
there are several new aspects that our work brings out.
Previously Schulten and co-workers had used a multimode

Hamiltonian to describe the photosynthetic reaction center. Their
starting point, like others, was a molecular dynamics simulation
in the time domain which was used to access the spectral
function J(ω) crucial in determining the ET rate by a Fourier
transform of the energy-energy correlation function. Contrary
to their work, our starting point is the NM analysis in the
frequency domain. This allows our model to structurally
identify all the bath modes inJ(ω). This is important if one
wants to correlate specific structural fluctuations of the protein
to ET coupling. Thus our model has all the advantages of a
SB model (connection to rate constants) with the added
advantage that the individual bath modes are no longer spatially
anonymous. The present analysis is not just restricted to
harmonic NMs, but instead one can use data from an MD run
and through a principal component analysis construct collective
modes that represent the bath oscillators.
In the present work since all the protein atoms, including the

red-ox sites, were allowed to fluctuate, we did not calculate the
totalλ as is usually done by calculating its components,λin and
λout. Instead the totalλ is a combination ofλprot andλblk. The
λprot term is a sum of contributions from all the individual protein
NMs including ones that contribute toλin. The equilibrium
solvent contribution toλ gets partitioned onto each mode
depending upon how much that particular mode fluctuation, as
the charge distribution changes, couples to the solvent outside
the cavity. This a more natural way of breaking up the totalλ
and the first time that a breakup in this manner has been
presented. Churg et al.18 had earlier attempted to resolve the
total λ as contributions from the protein and the bulk solvent,
but theλprot was never resolved into a spectrum as we do here.
Future work will involve improving both our model and its

application to systems that have been experimentally studied.
There are two obvious ways in which the present model can be
extended. The first is by replacing the NM vectors by principal
components,34 and the second is by using a more realistic shape
of the protein while calculating the reaction field energies. While
the first is straightforward, the latter could be computationally
too demanding. One possibility would be to use approximations
as was used by Beglov and Roux35 in calculating reaction field
energies. They calculate the configuration-dependent solvation
free energy of an effective cluster containing an arbitrarily
shaped solute and a finite number of explicit solvent molecules
placed inside a hard sphere which is surrounded by a continuum
dielectric. To demonstrate the applicability of the present model,
we present simulation results on His33-modified cytochromec
in an accompanying paper.24

Finally, we would like to point out how, as a novel
application, the present model can allow analysis of pressure
effects on ET rates. Theoretical studies of pressure effects on
NMs were studied by Yamato et al.42 Experiment data of
pressure effects on rates of ET exist for cytochromec.43 Data
from this study have been analyzed exclusively by considering
the effect of packing (as a function of pressure) on the electronic
matrix elementHDA. With the present model, one can analyze
how the reorganization energyλ changes with pressure by
combining our model with the work of Yamato et al.42

Acknowledgment. This work was supported by funds
provided by the Ministry of Education and Culture, Japan, the
Japanese Society for Promotion of Science (JSPS), and the
Human Frontier Science Program Organization (HFSPO). A part
of the computation was done at computer centers of the Institute
for Molecular Science and of the Japan Atomic Energy Research
Institute. G.B. was a recipient of PD fellowships from HFSPO
and JSPS and acknowledges continued support from CSIR,
India. We thank Prof. K. Schulten for making a preprint (ref
13) available to G.B.

References and Notes

(1) Vervoort, J.Curr. Opin. Struct. Biol.1991, 1, 889-894.
(2) DeVault, D.Quantum-Mechanical Tunneling in Biological Systems;

Cambridge University Press: London, 1981.
(3) Marcus, R. A.; Sutin, N.Biochim. Biophys. Acta1985, 811, 265-

322.
(4) Marcus, R. A.J. Chem. Phys.1956, 24, 966-978.
(5) Marcus, R. A.J. Chem. Phys.1956, 24, 979-989.
(6) Hopfield, J. J.Proc. Natl. Acad. Sci. U.S.A.1974, 71, 3640-3644.
(7) Dogonadze, R. R.; Kuznetsov, A. M.; Vorotyntsov, M. A.Phys.

Status Solidi B1972, 54, 425-433.
(8) Kestner, N. R.; Logan, J.; Jortner, J.J. Phys. Chem.1974, 78,

2148-2166.
(9) Kuki, A. Electron Tunneling Paths in Proteins. InLong-Range

Electron Transfer in Biology; Palmer, G., Ed.; Springer-Verlag: Berlin,
1991; Vol. 75; pp 49-83.

(10) Nonella, M.; Schulten, K.J. Phys. Chem.1991, 95, 2059-2067.
(11) Schulten, K.; Tesch, M.Chem. Phys.1991, 158, 421-446.
(12) Xu, D.; Schulten, K. Multi-mode coupling of protein motion to

electron transfer in the photosynthetic reaction center: spin-boson theory
based on a classical molecular dynamics simulation. InThe Photosynthetic
Bacterial Reaction Center II; Breton, J., Vermeglio, A., Eds.; Plenum
Press: New York, 1992; pp 301-312.

(13) Xu, D.; Schulten, K.Chem. Phys.1994, 182, 91-117.
(14) Zheng, C.; McCammon, J. A.; Wolynes, P. G.Chem. Phys.1991,

158, 261-270.
(15) Warshell, A.; Chu, Z. T.; Parson, W. W.Science1989, 246, 112-

116.
(16) Marchi, M.; Gehlen, J. N.; Chandler, D.; Newton, M.J. Am. Chem.

Soc.1993, 115, 4178-4190.
(17) Warshell, A.; Parson, W. W.Annu. ReV. Phys. Chem.1991, 42,

279-309.
(18) Churg, A. K.; Weiss, R. M.; Warshel, A.; Takano, T.J. Phys. Chem.

1983, 87, 1683-1694.
(19) Noguti, T.; Go, N.Nature1985, 296, 776.
(20) Go, N.; Noguti, T.; Nishiwaka, T.Proc. Acad. Sci. U.S.A.1983,

80, 3696-3700.
(21) Gruschus, J. M.; Kuki, A.J. Phys. Chem.1993, 97, 5581-5593.
(22) Onuchic, J. N.; Beraton, D. N.; Winkler, J. R.; Gray, H. B.Annu.

ReV. Biophys. Biomol. Struct.1992, 21, 349-377.
(23) Brunschwig, B. S.; Ehrenson, S.; Sutin, N.J. Phys. Chem.1986,

90, 3657-3668.
(24) Basu, G.; Kitao, A.; Kuki, A.; Go, N.J. Phys. Chem. B1988, 102,

2085.
(25) Kitao, A.; Hirata, H.; Go, N.Chem. Phys.1991, 158, 447-472.
(26) Hayward, S.; Kitao, A.; Hirata, F.; Go, N.J. Mol. Biol.1993, 234,

1207-1217.
(27) Warshel, A.; Levitt, M.J. Mol. Biol. 1976, 103, 227-249.
(28) Warshel, A.; Russel, S. T.Q. ReV. Biophys.1984, 17, 283-422.
(29) Sharp, K. A.; Honig, B.Annu. ReV. Biophys. Biophys. Chem.1990,

19, 301-332.
(30) Kirkwood, J. G.J. Chem. Phys.1934, 2, 351-361.

Protein Electron Transfer. 1 J. Phys. Chem. B, Vol. 102, No. 11, 19982083



(31) Tanford, C.; Kirkwood, J. G.J. Am. Chem. Soc.1957, 79, 5333-
5339.

(32) Berghuis, A. M.; Brayer, G. D.J. Mol. Biol.1992, 223, 959-976.
(33) Takano, T.; Dickerson, R. E.Proc. Natl. Acad. Sci. U.S.A.1980,

77, 6371-6375.
(34) Hayward, S.; Go, N.Annu. ReV. Phys. Chem.1995, 46, 223-250.
(35) Beglov, D.; Roux, B.J. Phys. Chem.1994, 100, 9050-9063.
(36) Leggett, S.; Chakravarty, A. T.; Dorsey, A. P. A.; Fisher, A.; Garg,

A.; Zwerger, W.ReV. Mod. Phys.1987, 59, 2.
(37) Garg, A.; Onuchic, J. N.; Ambegaokar, V.J. Chem. Phys.1985,

83, 4491-4503.

(38) Onuchic, J. N.; Beraton, D. N.; Hopfield, J. J.J. Phys. Chem.1986,
90, 3707-3721.

(39) Onuchic, J. N.J. Chem. Phys.1987, 86, 3925-3943.
(40) Bader, J. S.; Kuharski, R. A.; Chandler, D.J. Chem. Phys.1990,

93, 230-236.
(41) Chandler, D. Theory of quantum processes in liquids. InLiquids,

Freezing and Glass Transition; Hansen, J. P., Levesque, D., Zinn-Justin,
J., Eds.; Elsevier: New York, 1991; pp 193-285.

(42) Yamato, T.; Higo, J.; Seno, Y.; Go, N.Proteins: Struct. Funct.
Genet.1993, 16, 327-340.

2084 J. Phys. Chem. B, Vol. 102, No. 11, 1998 Basu et al.


