

Available online at www.sciencedirect.com





## Sequence and Structure Patterns in Proteins from an Analysis of the Shortest Helices: Implications for **Helix Nucleation**

### Lipika Pal<sup>1</sup>, Pinak Chakrabarti<sup>1\*</sup> and Gautam Basu<sup>2,3\*</sup>

<sup>1</sup>Department of Biochemistry Bose Institute P-1/12 CIT Scheme VIIM Calcutta 700 054, India

<sup>2</sup>Department of Biophysics Bose Institute P-1/12 CIT Scheme VIIM Calcutta 700 054, India

<sup>3</sup>Graduate School of Information Science Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-01, Japan

The shortest helices (three-length  $3_{10}$  and four-length  $\alpha$ ), most abundant among helices of different lengths, have been analyzed from a database of protein structures. A characteristic feature of three-length 3<sub>10</sub>-helices is the shifted backbone conformation for the C-terminal residue ( $\phi,\psi$  angles:  $-95^{\circ},0^{\circ}$ ), compared to the rest of the helix ( $-62^{\circ}, -24^{\circ}$ ). The deviation can be attributed to the release of electrostatic repulsion between the carbonyl oxygen atoms at the two C-terminal residues and further stabilization (due to a more linear geometry) of an intrahelical hydrogen bond. A consequence of this non-canonical C-terminal backbone conformation can be a potential origin of helix kinks when a 310-helix is sequence-contiguous at the  $\alpha$ -helix N-terminal. An analysis of hydrogen bonding, as well as hydrophobic interactions in the shortest helices shows that capping interactions, some of them not observed for longer helices, dominate at the N termini. Further, consideration of the distribution of amino acid residues indicates that the shortest helices resemble the N-terminal end of  $\alpha$ -helices rather than the C terminus, implying that the folding of helices may be initiated at the N-terminal end, which does not get propagated in the case of the shortest helices. Finally, pairwise comparison of  $\beta$ -turns and the shortest helices, based on correlation matrices of sitespecific amino acid composition, and the relative abundance of these short secondary structural elements, leads to a helix nucleation scheme that considers the formation of an isolated  $\beta$ -turn (and not an  $\alpha$ -turn) as the helix nucleation step, with shortest 310-helices as intermediates between the shortest  $\alpha$ -helix and the  $\beta$ -turn. Our results ascribe an important role played by shortest 310-helices in proteins with important structural and folding implications.

© 2003 Elsevier Science Ltd. All rights reserved

\*Corresponding authors

*Keywords:*  $3_{10}$ -helix;  $\alpha$ -helix;  $\beta$ -turn; protein folding; protein modeling

### Introduction

The shortest  $\alpha$ -helix consists of four contiguous core residues and two flanking residues that participate in two consecutive hydrogen bonds of type  $5 \rightarrow 1$  (Figure 1). Similarly the shortest 3<sub>10</sub>-helix contains three core and two flanking residues and the hydrogen bonds are of the type  $4 \rightarrow 1$ . Of all the helix lengths the two shortest categories are the most abundant (Figure 2). These helices can be considered as extensions of an  $\alpha$ -turn<sup>1</sup> and a  $\beta$ -turn<sup>2-4</sup> respectively.  $\beta$ -Turns are the most common form for the reversal of polypeptide chain direction. However, instead of occurring in isolation, in 58% of cases they occur as multiple turns, with two overlapping type I turns being the most common.<sup>5</sup> While type III turns share identical backbone dihedral angles  $(-60^\circ, -30^\circ)$  with  $3_{10}$ --helices, they are also conformationally very similar to type I turns.<sup>6</sup> The shortest 3<sub>10</sub>-helix, therefore, can be considered to be a special case of multiple turns, stabilized by a pair of backbone hydrogen bonds, where the chain trajectory follows a regular helical pattern. This implies that the occurrence of a large number of multiple  $\beta$ -turns and the shortest helices may be related phenomena. In this context, the shortest helices may have features of both turns as well as helices and it would be of interest to compare the amino

Abbreviations used: DSSP, Define Secondary Structure of Proteins; PDB, Protein Data Bank.

E-mail addresses of the corresponding authors: pinak@boseinst.ernet.in; gautam@is.aist-nara.ac.jp



acid distribution in these helices with both the categories of the secondary structures.

To improve our understanding of protein folding and design, it is necessary to establish rules relating sequence and structure. An important signature of  $\alpha$ -helix in the polypeptide sequence is the repeat *PPHHPP* of hydrophobic (*H*) and polar (*P*) residues<sup>7-10</sup> in the main body of the helix. However, more specific patterns of the use of polar, hydrophobic and conformationally unique residues (Gly and Pro) are found at the two terminal turns of the helix and the immediately surround-ing positions.<sup>11-16</sup> This is because the backbone N-H and C=O groups at the initial and final turns of the helix cannot partake in normal intrahelical hydrogen bonding and need to be "capped"



Figure 2. Length distribution of 310-helices and  $\alpha$ -helices in proteins.

Figure 1. Schematic representations of (a) three-length (marked GGG) 310-helix with two consecutive  $4 \rightarrow 1$  hydrogen bonds and (b) four-length (marked HHHH)  $\alpha$ -helix with two consecutive  $5 \rightarrow 1$ hydrogen bonds. Helical residues are flanked by two capping residues Nc and Cc. In (a) the removal of the second hydrogen bond produces a  $\beta$ -turn structure involving four residues (*i* to i + 3).

by alternative hydrogen bond patterns involving residues beyond the helix, which is also normally accompanied by a hydrophobic interaction between apolar residues in the helix and its flanking turn.<sup>17</sup> Like  $\alpha$ -helices, the 3<sub>10</sub>-helices also exhibit similar features of residue distribution.18 Given this background, the shortest helix offers a unique structure to address a few interesting questions. As a single turn of a helix the choice of residues and their interactions with the flanking groups may either resemble the N-terminal or the C-terminal turn of a long helix or may even be different from either. Here we analyze the shortest helices and local determinants of the stabilization of their backbone conformation, their capping motifs and location in the tertiary structure. The results provide an insight into how the code for a particular local structure is distributed along the sequence.

### Results

In our database of 1085 polypeptide chains, there are 7548  $\alpha$ -helices of which 822 (~11%) are of length four residues (Figure 2). The figures for  $3_{10}$ helices are 3004 overall, 2366 of length three  $(\sim 79\%)$  and 396 of length four  $(\sim 13\%)$ . Here, we have considered only those short  $3_{10}$ -helices (2140) in number) for which the backbone conformation of all the residues lie in the typical right-handed helical region of the Ramachandran plot;<sup>19</sup> the remaining are variants of  $3_{10}$ -helices as they contain at least one residue with non-standard  $\phi_{,\psi}$  angles.<sup>20</sup> There are 6500 cases of isolated type I  $\beta$ -turns.

#### Backbone conformation at different positions in helices

The distributions of  $\phi, \psi$  angles in the two types of helices (Figure 3(a) and (b)) show that compared to  $\alpha$ -helices the angles are extended to more negative  $\phi$  and positive  $\psi$  values in 3<sub>10</sub>-helices. A closer



look at the distribution revealed the presence of position-specific shift in the backbone dihedral angles (Figure 3(c) and (e)). As one moves from N1 to N2 to N3 there is a clear shift in the  $\phi$  and  $\psi$ values, the change being the most prominent for the angle  $\phi$  between N2 and N3 positions. The average  $\phi, \psi$  angles are at N1:  $-57(9)^{\circ}$ ,  $-32(12)^{\circ}$ ; N2:  $-67(9)^{\circ}$ ,  $-16(12)^{\circ}$ ; N3:  $-95(16)^{\circ}$ ,  $0(6)^{\circ}$ . The average of the angles at N1 and N2,  $-62(10)^\circ$ ,  $-24(14)^\circ$ , can be considered as the representative backbone torsion angles in a  $3_{10}$ -helix. The  $\phi,\psi$  angles in  $\alpha$ -helices (Figure 3(b), (d) and (f)) is more evenly distributed around the average value, especially in  $\psi$ . Although there is some shift in the peak of the  $\phi$  angles towards a more negative value as one moves from N1 to N3, the trend is reversed for N4. The average  $\phi, \psi$  angles at the four positions are: N1:  $-57(9)^{\circ}$ ,  $-38(12)^{\circ}$ ; N2:  $-63(8)^{\circ}$ ,  $-32(14)^{\circ}$ ; N3:  $-82(17)^{\circ}$ ,  $-35(13)^{\circ}$ ; N4:  $-79(21)^{\circ}$ ,  $-26(17)^{\circ}$ . While all the distributions of  $\phi$  and  $\psi$  angles are symmetric, for N3 and N4 positions, these are asymmetric (with a negative skewness).

We wanted to see if the shift in  $\phi,\psi$  angles observed at the N3 position of three-length 3<sub>10</sub>-helices is restricted only to the short helices or

**Figure 3.** The distribution of  $\phi, \psi$  angles (degrees) for residues in (a) 3-length 3<sub>10</sub>-helices and (b) 4-length α-helices. Frequency of occurrence along the  $\phi$  direction at (c) the three positions of 3-length 3<sub>10</sub>-helices and (d) the four positions of 4-length α-helices; (e) and (f) are the equivalent plots along the  $\psi$  axis.

if it is a general phenomenon to be found at the last position of longer  $3_{10}$ -helices<sup>21</sup> also. The terminal position of longer helices has average  $\phi,\psi$  values of  $-93(23)^\circ,0(19)^\circ$ , suggesting that when the  $\phi,\psi$  angles of a residue in a  $3_{10}$ -helix are shifted by about  $-35^\circ$  and  $25^\circ$  from the average helical values of  $-62^\circ$  and  $-24^\circ$ , the helix cannot continue any further.

#### Origin of the irregularity in 3<sub>10</sub>-helices

To understand the reason why the N3 position of the shortest (or the C-terminal position, in general)  $3_{10}$ -helices adopts a large deviation in the  $\phi,\psi$ angles, we constructed two models. The first is the ideal  $3_{10}$ -helix, with all helical positions with  $\phi,\psi$ angles of ( $-60^\circ$ ,  $-30^\circ$ ) and the second represents the real (the terminology "real" and "ideal" are invoked in the spirit of ideal and real gases)  $3_{10}$ -helix, with  $\phi,\psi$  values set to observed position specific average values, as shown in Figure 4. The distance between the carbonyl oxygen atoms at N2 and N3 increases from 3.6 Å in the ideal helix to 4.5 Å in the real helix, with a simultaneous increase in the N–H···O angle (connecting groups at Cc and N1 positions) from 139° to 151°. The



Figure 4. Molecular plots of (a) an ideal and (b) a real  $\hat{3}_{10}$ -helix. The ideal helix is built using the average  $(\phi,\psi)$  values of  $(-60^\circ, -30^\circ)$  in all the three helical positions. The real helix has the average values of the  $(\phi,\psi)$  angles as observed in these positions: N1  $(-57^\circ, -32^\circ)$ , N2  $(-67^{\circ}, -16^{\circ})$  and N3  $(-95^{\circ}, 0^{\circ})$ . An extended conformation has been used for Nc and Cc positions. The distance between the carbonyl oxygen atoms at N2 and N3 and the  $N-H \cdots O$  angle involving the N-Hgroup at Cc (the proton is shown only for this residue) and the oxygen of N1 are shown. The superimposition (using N1, N2 and N3 positions) of the two helices (the ideal in gray) is shown in (c). (d) A real  $\alpha$ -helix with average  $\phi,\psi$ angles at different position: N1  $(-57^{\circ}, -38^{\circ}), N2$  $(-63^{\circ}, -32^{\circ}),$ N3 (-82°, -35°), (-79°, -26°); the and N4 intrahelical hydrogen bond between N1 and Cc is shown.

superimposition of the two helices shows that the difference in the  $\phi, \psi$  angles at N3 has the effect of rotating the peptide plane linking N3 and Cc. Thus a change from the ideal to the real structure has two stabilizing consequences: the carbonyl group at N3 is moved away from the helix axis, resulting in lesser electrostatic repulsion between oxygen atoms at N2 and N3, and the linearity of an intrahelical hydrogen bond improves, giving a more favorable hydrogen bond energy. Various parameters for the real 3<sub>10</sub>-helix match quite well with those obtained by averaging the values over all the structures (Table 1). It can be seen (Figure 5) that the  $O \cdots O$  distance is linearly related to both the  $\phi, \psi$  angles over the range of the backbone angles observed in different  $3_{10}$ -helices.

A similar exercise was done to examine why the last position in the equivalent  $\alpha$ -helices does not show any shift in backbone dihedral angles. Towards this goal a real  $\alpha$ -helix (with average position-specific  $\phi, \psi$  angles) was generated (Figure 4(d)), along with a chimeric helix, which had the  $\phi,\psi$  angles at the N4 position replaced by those at the N3 position of the real  $3_{10}$ -helix. Table 1 shows that though the O···O distance between N3 and N4 residues increases in the chimeric structure, relative to the real  $\alpha$ -helix, the N1–Cc hydrogen bond is essentially broken (N-H···O angle  $\approx 100^{\circ}$ ), while a new one between N2 and Cc is also not formed (N···O distance  $\approx 3.8$  Å). Thus the structure does not gain any extra stability by mimicking the changes at the C-terminal residue

**Table 1.** Selected values of distance  $(O \cdots O, N \cdots O)$  and angles  $(N-H \cdots O)$  in shortest helices

| (A) 3 <sub>10</sub> -Helix<br>Ideal<br>Real<br>Average | O· · · (              | O (Å)                 | Ν                                         |                                           |                               |
|--------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------|-------------------------------------------|-------------------------------|
|                                                        | N1-N2                 | N2-N3                 | N3–Nc                                     | Cc-N1                                     |                               |
|                                                        | 3.6<br>3.9<br>3.9 (2) | 3.6<br>4.5<br>4.4 (3) | 3.0, 139<br>2.8, 144<br>3.0 (7), 157 (11) | 3.0, 139<br>3.0, 151<br>3.2 (3), 160 (11) |                               |
| (B) α-Helix<br>Real<br>Chimeric                        | N2–N3<br>3.9<br>3.9   | N3-N4<br>3.5<br>4.4   | N4–Nc<br>2.9, 151<br>2.9, 151             | Cc–N1<br>3.0, 156<br>2.5, 101             | Cc–N2<br>3.9, 118<br>3.8, 143 |

Ideal and real  $3_{10}$ -helices are displayed in Figure 4(a) and (b) and real  $\alpha$ -helix in Figure 4(d). The chimeric  $\alpha$ -helix has all the  $\phi_i \psi$  angles of the real  $\alpha$ -helix, but the  $\phi_i \psi$  angles of N3 of  $3_{10}$ -helix grafted at N4. Distance and angles in the row corresponding to average  $3_{10}$ -helix were obtained by averaging (with standard deviations in parenthesis) over all three-length  $3_{10}$ -helices in the database.



**Figure 5.** (a)  $\phi$  (°) and (b)  $\psi$  (°) of N3 plotted against the O···O distance (Å) between the carbonyl oxygen atoms at N2 and N3. The correlation coefficients between the two sets of parameters are -0.9 and 0.9 respectively; the equations of the least-squares lines are also shown.

observed in the  $3_{10}$ -helix. The slight shift in  $\phi$  angle that was observed at the N3 position relative to N2 (Figure 3(d)) results in a small increase (by 0.3 Å) in the O···O distance between N2 and N3 positions as compared to the normal value of ~3.6 Å between the oxygen atoms of neighboring residues in an  $\alpha$ -helix.

#### Positional potentials in shortest helices

The propensity and z-value of 20 amino acid residues to occupy each position in three-length  $3_{10}$ -helices and four-length  $\alpha$ -helices were calculated (Table 2). While Karpen et al.<sup>18</sup> calculated position-specific amino acid distribution based on 77 three-residue 3<sub>10</sub>-helices only, our values using a database of 2140 helices are much more robust. Compared to the earlier values there have been a few changes in the individual values. Among all the residues, Asp, Glu, His, Ile, Asn, Pro and Val stand out, being either over or under-represented in four out of the five (Nc to Cc) positions, the representation of Arg being the most neutral. Likewise, for the shortest  $\alpha$ -helices, Gly, Asn, Pro and Glu show strong positive or negative preferences in five out of six positions (Nc to Cc). For both the helices Pro has very high propensities at Nc and N1, but is totally absent at the last two positions. At the Nc position, the propensities decrease in the order Asp > Pro > Asn > His > Ser in  $3_{10}$ -helix and Asp > Ser=Pro > Thr=Asn in  $\alpha$ -helix. It should be noted that unlike the shortest helices, when all helices are considered with no regard to high propensities at Nc.<sup>22</sup>

the length, Gly is also found among residues with

# Comparison of percentage occurrences of residues in different helices to $\beta$ -turn and terminal turns of long helices

We wanted to see if the shortest helices resemble one or the other of the terminal turns of long helices and also find out the similarity to type I  $\beta$ -turns. For this the correlation coefficients between the percentage compositions of different residues at each position in the shortest helices and the equivalent numbers at a given position in another secondary structure were calculated. The largest values in Table 3(B) occur when the position Nc in four-length  $\alpha$ -helix is compared to Nc in long  $\alpha$ -helix, N1 (i.e. N1/C4) with N1, N2 to N2 and so on. When compared to the other end of long  $\alpha$ -helices it is found that there is no systematic trend, with only the N4 position in the four-length helix showing rather high values with three C-terminal positions of long helices. Similarly, when three-length 3<sub>10</sub>-helices are compared to long  $\alpha$ -helices (Table 3(A)) the correlation is much better at the N-terminal end of the latter (Nc matching with Nc, N1 with N1, N2 with N2). Thus both types of shortest helices correlate better with the N-terminal rather than the C-terminal turn of long  $\alpha$ -helix. Between the two types of  $\alpha$ -helices the match is also good at Cc.

Correlation between the three-length  $3_{10}$ -helix and the type I  $\beta$ -turn is shown in Table 3(C). A

|                                                                                                                                                    |                                                                                                                                          | Nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |                                                                                                                                                | N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | N2                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                                    | Cc                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Res                                                                                                                                                | Ν                                                                                                                                        | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ζ                                                                                                                                                                                                                                                | Ν                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν                                                                                                                   | Р                                                                                                                                                                                                                     | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ν                                                                                                                                | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζ                                                                                                                                                                                                                                | Ν                                                                                                                                  | Р                                                                                                                                                                                                                     | Ζ                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| (A) T                                                                                                                                              | hree-len                                                                                                                                 | $s_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -helix                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Ala                                                                                                                                                | 128                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.1                                                                                                                                                                                                                                             | 241                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210                                                                                                                 | 1.2                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.3                                                                                                                                                                                                                             | 134                                                                                                                                | 0.7                                                                                                                                                                                                                   | -3.7                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Cys                                                                                                                                                | 29                                                                                                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.3                                                                                                                                                                                                                                             | 28                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                  | 0.6                                                                                                                                                                                                                   | -2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                                                                                                                                                                                                                              | 47                                                                                                                                 | 1.5                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Asp                                                                                                                                                | 316                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.1                                                                                                                                                                                                                                             | 90                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234                                                                                                                 | 1.8                                                                                                                                                                                                                   | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                              | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2                                                                                                                                                                                                                             | 68                                                                                                                                 | <u>0.5</u>                                                                                                                                                                                                            | -5.5                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Glu                                                                                                                                                | 74                                                                                                                                       | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.4                                                                                                                                                                                                                                             | 149                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 305                                                                                                                 | 2.3                                                                                                                                                                                                                   | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 169                                                                                                                              | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                              | 58                                                                                                                                 | 0.4                                                                                                                                                                                                                   | -6.9                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Phe                                                                                                                                                | 73                                                                                                                                       | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.2                                                                                                                                                                                                                                             | 67                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                  | 0.5                                                                                                                                                                                                                   | -4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                                                                                                                              | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                              | 141                                                                                                                                | 1.7                                                                                                                                                                                                                   | 6.4                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Gly                                                                                                                                                | 156                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.8                                                                                                                                                                                                                                             | 62                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                 | 0.6                                                                                                                                                                                                                   | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7.8                                                                                                                                                                                                                             | 189                                                                                                                                | 1.1                                                                                                                                                                                                                   | 1.9                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| His                                                                                                                                                | 82                                                                                                                                       | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7                                                                                                                                                                                                                                              | 27                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                                                                                                  | 1.3                                                                                                                                                                                                                   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                                                                                                                                                                              | 36                                                                                                                                 | 0.7                                                                                                                                                                                                                   | -1.9                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Ile                                                                                                                                                | 51                                                                                                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.5                                                                                                                                                                                                                                             | 110                                                                                                                                            | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                  | 0.2                                                                                                                                                                                                                   | -8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.9                                                                                                                                                                                                                             | 218                                                                                                                                | 1.8                                                                                                                                                                                                                   | 9.3                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Lys                                                                                                                                                | 90                                                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.3                                                                                                                                                                                                                                             | 111                                                                                                                                            | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                 | 1.2                                                                                                                                                                                                                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161                                                                                                                              | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                                                                                                                                                                              | 100                                                                                                                                | 0.8                                                                                                                                                                                                                   | -2.4                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Leu                                                                                                                                                | 132                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.9                                                                                                                                                                                                                                             | 187                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                  | 0.4                                                                                                                                                                                                                   | -8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196                                                                                                                              | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                              | 302                                                                                                                                | 1.7                                                                                                                                                                                                                   | 9.2                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Met                                                                                                                                                | 28                                                                                                                                       | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.8                                                                                                                                                                                                                                             | 49                                                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                  | 0.5                                                                                                                                                                                                                   | -3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                              | 55                                                                                                                                 | 1.2                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Asn                                                                                                                                                | 173                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                                                              | 38                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 129                                                                                                                 | 1.3                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177                                                                                                                              | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.3                                                                                                                                                                                                                              | 86                                                                                                                                 | 0.9                                                                                                                                                                                                                   | -1.2                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Pro                                                                                                                                                | 235                                                                                                                                      | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.9                                                                                                                                                                                                                                             | 391                                                                                                                                            | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                 | 1.0                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10.2                                                                                                                                                                                                                            | 0                                                                                                                                  | 0.0                                                                                                                                                                                                                   | -10.2                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Gln                                                                                                                                                | 55                                                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.9                                                                                                                                                                                                                                             | 53                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                  | 1.0                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6                                                                                                                                                                                                                              | 70                                                                                                                                 | 0.9                                                                                                                                                                                                                   | -1.2                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Arg                                                                                                                                                | 92                                                                                                                                       | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.1                                                                                                                                                                                                                                             | 93                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                                                                                                                  | 0.9                                                                                                                                                                                                                   | -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                              | 97                                                                                                                                 | 1.0                                                                                                                                                                                                                   | -0.6                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Ser                                                                                                                                                | 164                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2                                                                                                                                                                                                                                              | 134                                                                                                                                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 262                                                                                                                 | 2.0                                                                                                                                                                                                                   | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7                                                                                                                                                                                                                             | 107                                                                                                                                | 0.8                                                                                                                                                                                                                   | -2.0                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Thr                                                                                                                                                | 118                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.4                                                                                                                                                                                                                                             | 74                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91                                                                                                                  | 0.7                                                                                                                                                                                                                   | -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.0                                                                                                                                                                                                                             | 94                                                                                                                                 | 0.8                                                                                                                                                                                                                   | -2.7                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Val                                                                                                                                                | 70                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.7                                                                                                                                                                                                                                             | 133                                                                                                                                            | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                                  | 0.3                                                                                                                                                                                                                   | -9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7.9                                                                                                                                                                                                                             | 204                                                                                                                                | 1.4                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Trp                                                                                                                                                | 23                                                                                                                                       | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.4                                                                                                                                                                                                                                             | 36                                                                                                                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43                                                                                                                  | 1.4                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                              | 36                                                                                                                                 | 1.2                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| Tyr                                                                                                                                                | 49                                                                                                                                       | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.2                                                                                                                                                                                                                                             | 64                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48                                                                                                                  | 0.6                                                                                                                                                                                                                   | -3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3                                                                                                                                                                                                                              | 96                                                                                                                                 | 1.3                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
|                                                                                                                                                    |                                                                                                                                          | Nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |                                                                                                                                                | N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | N2                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                                    | N4                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |
|                                                                                                                                                    | Ν                                                                                                                                        | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ζ                                                                                                                                                                                                                                                | Ν                                                                                                                                              | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν                                                                                                                   | Р                                                                                                                                                                                                                     | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ν                                                                                                                                | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζ                                                                                                                                                                                                                                | Ν                                                                                                                                  | Р                                                                                                                                                                                                                     | Ζ                                                                                                                                                                                                                                | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ζ                                                                                                                                                        |
| Kes                                                                                                                                                |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| (B) $Fa$                                                                                                                                           | our-leng                                                                                                                                 | th α-h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | elix                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |
| (B) Fo<br>Ala                                                                                                                                      | our-leng<br>52                                                                                                                           | gth α-h<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elix<br>—2.1                                                                                                                                                                                                                                     | 74                                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76                                                                                                                  | 1.1                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63                                                                                                                               | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.7                                                                                                                                                                                                                             | 94                                                                                                                                 | 1.4                                                                                                                                                                                                                   | 3.3                                                                                                                                                                                                                              | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                      |
| (B) Fo<br>Ala<br>Cys                                                                                                                               | our-leng<br>52<br>16                                                                                                                     | gth α-h<br>0.8<br><b>1.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{-2.1}{1.3}$                                                                                                                                                                                                                               | 74<br>11                                                                                                                                       | 1.1<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7 - 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76<br>8                                                                                                             | 1.1<br>0.7                                                                                                                                                                                                            | 1.0 - 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63<br>15                                                                                                                         | 0.9<br><b>1.3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.7 \\ 1.0$                                                                                                                                                                                                                    | 94<br>25                                                                                                                           | 1.4<br>2.2                                                                                                                                                                                                            | 3.3<br>4.0                                                                                                                                                                                                                       | 76<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 - 0.2                                                                                                                                                |
| (B) Fo<br>Ala<br>Cys<br>Asp                                                                                                                        | our-leng<br>52<br>16<br>115                                                                                                              | gth α-h<br>0.8<br><b>1.4</b><br><b>2.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | elix<br><u>-2.1</u><br>1.3<br><b>9.9</b>                                                                                                                                                                                                         | 74<br>11<br>39                                                                                                                                 | 1.1<br>1.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7 - 0.2 - 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76<br>8<br>73                                                                                                       | 1.1<br>0.7<br><b>1.5</b>                                                                                                                                                                                              | 1.0 - 1.0<br>3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>15<br>63                                                                                                                   | 0.9<br>1.3<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.7<br>1.0<br><b>2.2</b>                                                                                                                                                                                                        | 94<br>25<br>45                                                                                                                     | 1.4<br>2.2<br>0.9                                                                                                                                                                                                     | <b>3.3</b><br><b>4.0</b><br>- 0.5                                                                                                                                                                                                | 76<br>11<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1<br>1.0<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 - 0.2 - 2.4                                                                                                                                          |
| (B) Fa<br>Ala<br>Cys<br>Asp<br>Glu                                                                                                                 | our-leng<br>52<br>16<br>115<br>37                                                                                                        | gth α-h<br>0.8<br><b>1.4</b><br><b>2.4</b><br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{r} elix \\ \underline{-2.1} \\ 1.3 \\ 9.9 \\ -2.0 \end{array} $                                                                                                                                                                  | 74<br>11<br>39<br>32                                                                                                                           | 1.1<br>1.0<br>0.8<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7 - 0.2 - 1.4 - 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76<br>8<br>73<br>130                                                                                                | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b>                                                                                                                                                                                | 1.0<br>- 1.0<br><b>3.7</b><br><b>11.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63<br>15<br>63<br>91                                                                                                             | 0.9<br>1.3<br>1.3<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.7<br>1.0<br><b>2.2</b><br><b>5.8</b>                                                                                                                                                                                          | 94<br>25<br>45<br>30                                                                                                               | <b>1.4</b><br><b>2.2</b><br>0.9<br>0.6                                                                                                                                                                                | <b>3.3</b><br><b>4.0</b><br>- 0.5<br>- 3.0                                                                                                                                                                                       | 76<br>11<br>32<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1<br>1.0<br>0.7<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0<br>- 0.2<br>- 2.4<br>- 0.7                                                                                                                           |
| (B) Fa<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe                                                                                                          | our-leng<br>52<br>16<br>115<br>37<br>19                                                                                                  | gth α-h<br>0.8<br><b>1.4</b><br><b>2.4</b><br>0.7<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} -2.1 \\ \hline 1.3 \\ 9.9 \\ -2.0 \\ \hline -2.3 \end{array} $                                                                                                                                                                | 74<br>11<br>39<br>32<br>35                                                                                                                     | $1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76<br>8<br>73<br>130<br>23                                                                                          | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b><br>0.7                                                                                                                                                                         | 1.0 - 1.0<br>3.7<br>11.5<br>-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>15<br>63<br>91<br>43                                                                                                       | 0.9<br>1.3<br>1.3<br>1.8<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7<br>1.0<br>2.2<br>5.8<br>2.1                                                                                                                                                                                                 | 94<br>25<br>45<br>30<br>35                                                                                                         | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1                                                                                                                                                                  | 3.34.0-0.5-3.0 $0.7$                                                                                                                                                                                                             | 76<br>11<br>32<br>46<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 - 0.2<br>-2.4 - 0.7<br>3.4                                                                                                                           |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly                                                                                                   | our-leng<br>52<br>16<br>115<br>37<br>19<br>62                                                                                            | $\begin{array}{c} gth \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{r} elix \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \end{array} $                                                                                                                                                              | 74<br>11<br>39<br>32<br>35<br>34                                                                                                               | $ \begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ 0.5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76<br>8<br>73<br>130<br>23<br>39                                                                                    | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b><br>0.7<br>0.6                                                                                                                                                                  | $1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ -3.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>15<br>63<br>91<br>43<br>24                                                                                                 | 0.9<br>1.3<br>1.3<br>1.8<br>1.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.7<br>1.0<br>2.2<br>5.8<br>2.1<br>-5.1                                                                                                                                                                                         | 94<br>25<br>45<br>30<br>35<br>16                                                                                                   | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br>0.3                                                                                                                                                           | 3.3 4.0 - 0.5 -3.0 0.7 -6.1                                                                                                                                                                                                      | 76<br>11<br>32<br>46<br>50<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \end{array} $                                                                   |
| (B) Fa<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His                                                                                            | <i>our-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22                                                                               | $\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} elix \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \end{array} $                                                                                                                                                       | 74<br>11<br>39<br>32<br>35<br>34<br>12                                                                                                         | $ \begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ \underline{0.5} \\ 0.7 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7 - 0.2 - 1.4 - 2.7 - 0.7 - 3.8 - 1.5 - 1.5 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 - 0.7 | 76<br>8<br>73<br>130<br>23<br>39<br>20                                                                              | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b><br>0.7<br><u>0.6</u><br>1.1                                                                                                                                                    | $ \begin{array}{r} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63<br>15<br>63<br>91<br>43<br>24<br>13                                                                                           | $0.9 \\ 1.3 \\ 1.3 \\ 1.8 \\ 1.4 \\ 0.4 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 $ | -0.7<br>1.0<br>2.2<br>5.8<br>2.1<br>-5.1<br>-1.3                                                                                                                                                                                 | 94<br>25<br>45<br>30<br>35<br>16<br>18                                                                                             | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0                                                                                                                                             | 3.3 4.0 -0.5 -3.0 0.7 -6.1 -0.1                                                                                                                                                                                                  | 76<br>11<br>32<br>46<br>50<br>110<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b><br><b>1.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ \end{array} $                                                         |
| (B) FC<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile                                                                                     | <i>our-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19                                                                         | $\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} elix \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \end{array} $                                                                                                                                               | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49                                                                                                   | $ \begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ \underline{0.5} \\ 0.7 \\ 1.1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7 - 0.2 - 1.4 - 2.7 - 0.7 - 3.8 - 1.5 - 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27                                                                        | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b><br>0.7<br><u>0.6</u><br>1.1<br>0.6                                                                                                                                             | $ \begin{array}{r} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ -2.8 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53                                                                                     | 0.9<br><b>1.3</b><br><b>1.3</b><br><b>1.8</b><br><b>1.4</b><br><u>0.4</u><br><u>0.7</u><br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.7<br>1.0<br>2.2<br>5.8<br>2.1<br>-5.1<br>-1.3<br>1.2                                                                                                                                                                          | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56                                                                                       | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b>                                                                                                                               | 3.3  4.0  - 0.5  - 3.0  0.7  - 6.1  - 0.1  1.7                                                                                                                                                                                   | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b><br><b>1.4</b><br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ -2.5 \\ \end{array} $                                                 |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys                                                                              | <i>bur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24                                                                   | $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} elix \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \end{array}$                                                                                                                                         | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39                                                                                             | $ \begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ \underline{0.5} \\ 0.7 \\ 1.1 \\ 0.8 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7 - 0.2 - 1.4 - 2.7 - 0.7 - 3.8 - 1.5 - 0.6 - 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48                                                                  | 1.1<br>0.7<br><b>1.5</b><br><b>2.6</b><br>0.7<br><u>0.6</u><br>1.1<br><u>0.6</u><br>1.0                                                                                                                               | $ \begin{array}{r} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55                                                                               | 0.9<br><b>1.3</b><br><b>1.3</b><br><b>1.8</b><br><b>1.4</b><br><u>0.4</u><br>0.7<br>1.2<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.7<br>1.0<br><b>2.2</b><br><b>5.8</b><br><b>2.1</b><br>-5.1<br>-1.3<br>1.2<br>1.2                                                                                                                                              | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31                                                                                 | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7                                                                                                                        | 3.3  4.0  - 0.5  -3.0  0.7  -6.1  -0.1  1.7  -2.4                                                                                                                                                                                | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b><br><b>1.4</b><br><u>0.6</u><br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ \underline{-2.5} \\ 1.0 \\ \end{array} $                              |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu                                                                       | <i>bur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49                                                             | $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} elix \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \end{array}$                                                                                                                                 | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100                                                                                      | 1.1<br>1.0<br>0.8<br><u>0.6</u><br>1.1<br><u>0.5</u><br>0.7<br>1.1<br>0.8<br><b>1.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7 - 0.2 - 1.4 -2.7 0.7 -3.8 -1.5 0.6 -1.2 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53                                                            | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \end{array}$                                                                                             | $ \begin{array}{r} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ -2.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66                                                                         | 0.9<br><b>1.3</b><br><b>1.3</b><br><b>1.4</b><br><u>0.4</u><br><u>0.7</u><br>1.2<br>1.2<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.7<br>1.0<br><b>2.2</b><br><b>5.8</b><br><b>2.1</b><br>-5.1<br>-1.3<br>1.2<br>1.2<br>-0.4                                                                                                                                      | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128                                                                          | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b>                                                                                                          | 3.3  4.0  - 0.5  -3.0  0.7  -6.1  -0.1  1.7  -2.4  7.5                                                                                                                                                                           | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1 \\ 1.0 \\ 0.7 \\ 0.9 \\ 1.6 \\ 1.8 \\ 1.4 \\ 0.6 \\ 1.1 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 $ | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ \underline{-2.5} \\ 1.0 \\ 0.3 \\ \end{array} $                       |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met                                                                | <i>bur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10                                                       | $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ | $\begin{array}{r} \text{elix} \\ \underline{-2.1} \\ 1.3 \\ 9.9 \\ \underline{-2.0} \\ \underline{-2.3} \\ -0.1 \\ 0.8 \\ \underline{-4.0} \\ \underline{-3.5} \\ \underline{-2.5} \\ -1.9 \end{array}$                                          | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9                                                                                 | 1.1<br>1.0<br>0.8<br><u>0.6</u><br>1.1<br><u>0.5</u><br>0.7<br>1.1<br>0.8<br><b>1.5</b><br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 - 0.2 - 1.4 -2.7 0.7 -3.8 -1.5 0.6 -1.2 3.9 -2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7                                                       | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \\ 0.4 \end{array}$                                                                                      | $1.0 - 1.0 \\ 3.7 \\ 11.5 - 1.5 \\ -3.1 \\ 0.3 \\ -2.8 \\ 0.1 \\ -2.0 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\ -2.6 \\$ | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15                                                                   | 0.9<br><b>1.3</b><br><b>1.3</b><br><b>1.4</b><br><u>0.4</u><br><u>0.7</u><br>1.2<br>1.2<br>1.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.7 1.0 2.2 5.8 2.1 $-5.1$ $-1.3$ 1.2 1.2 $-0.4$ $-0.7$                                                                                                                                                                         | 94<br>25<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21                                                                          | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2                                                                                                   | 3.3 4.0 - 0.5 -3.0 0.7 -6.1 - 0.1 1.7 -2.4 7.5 0.8                                                                                                                                                                               | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54<br>71<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b><br><b>1.4</b><br><u>0.6</u><br>1.1<br>1.0<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{r} 1.0 \\ -0.2 \\ \underline{-2.4} \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ \underline{-2.5} \\ 1.0 \\ 0.3 \\ -0.7 \\ \end{array} $               |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn                                                         | <i>bur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59                                                 | $\begin{array}{c} th \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \\ 1.2 \\ \underline{0.4} \\ \underline{0.5} \\ 0.7 \\ \underline{0.6} \\ 1.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \begin{array}{c} -2.1 \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \\ -1.9 \\ 3.8 \end{array}$                                                                                                 | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9<br>12                                                                           | $\begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ \underline{0.5} \\ 0.7 \\ 1.1 \\ 0.8 \\ 1.5 \\ \underline{0.5} \\ 0.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ -2.1 \\ -4.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41                                                 | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \\ \underline{0.4} \\ 1.1 \end{array}$                                                                   | $1.0 - 1.0 \\ 3.7 \\ 11.5 - 1.5 \\ -3.1 \\ 0.3 \\ -2.8 \\ 0.1 \\ -2.0 \\ -2.6 \\ 0.8 \\ 0.8 \\ -8 \\ 0.8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15<br>21                                                             | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ 0.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7<br>1.0<br>2.2<br>5.8<br>2.1<br>-5.1<br>-1.3<br>1.2<br>1.2<br>-0.4<br>-0.7<br>-2.6                                                                                                                                           | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21<br>18                                                              | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br>0.5                                                                                            | 3.3 4.0 - 0.5 -3.0 0.7 -6.1 - 0.1 1.7 -2.4 7.5 0.8 -3.1                                                                                                                                                                          | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54<br>71<br>15<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1<br>1.0<br>0.7<br>0.9<br><b>1.6</b><br><b>1.8</b><br><b>1.4</b><br><u>0.6</u><br>1.1<br>1.0<br>0.8<br><b>1.4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r} 1.0 \\ -0.2 \\ -2.4 \\ -0.7 \\ 3.4 \\ 6.3 \\ 1.5 \\ -2.5 \\ 1.0 \\ 0.3 \\ -0.7 \\ 2.6 \\ \end{array} $                                |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro                                                  | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72                                           | $\begin{array}{c} \chi th \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \\ 1.2 \\ \underline{0.4} \\ \underline{0.5} \\ 0.7 \\ \underline{0.6} \\ 1.6 \\ 1.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{elix} \\ \underline{-2.1} \\ 1.3 \\ \textbf{9.9} \\ \underline{-2.0} \\ \underline{-2.3} \\ -0.1 \\ 0.8 \\ \underline{-4.0} \\ \underline{-3.5} \\ \underline{-2.5} \\ -1.9 \\ \textbf{3.8} \\ \textbf{5.8} \end{array}$ | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9<br>12<br>103                                                                    | $\begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ 0.5 \\ 0.7 \\ 1.1 \\ 0.8 \\ 1.5 \\ \underline{0.5} \\ \underline{0.3} \\ 2.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ \underline{-2.7} \\ 0.7 \\ \underline{-3.8} \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ \underline{-2.1} \\ \underline{-4.2} \\ 10.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38                                           | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \\ \underline{0.4} \\ 1.1 \\ 1.0 \end{array}$                                                            | $\begin{array}{c} 1.0 \\ -1.0 \\ \textbf{3.7} \\ \textbf{11.5} \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.0} \\ 0.8 \\ 0.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15<br>21<br>11                                                       | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.4} \\ \textbf{0.4} \\ \textbf{0.7} \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{1.0} \\ \textbf{0.8} \\ \textbf{0.6} \\ \textbf{0.3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} -0.7 \\ 1.0 \\ 2.2 \\ 5.8 \\ 2.1 \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \end{array} $                                                                                                  | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21<br>18<br>0                                                         | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br>0.0                                                                              | 3.3 4.0 -0.5 -3.0 0.7 -6.1 -0.1 1.7 -2.4 7.5 0.8 -3.1 -6.3                                                                                                                                                                       | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54<br>71<br>15<br>52<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.1 \\ 1.0 \\ 0.7 \\ 0.9 \\ 1.6 \\ 1.8 \\ 1.4 \\ 0.6 \\ 1.1 \\ 1.0 \\ 0.8 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ 1.4 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0$                                  | $ \begin{array}{r} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\end{array} $                                        |
| (B) FC<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln                                           | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18                                     | $\begin{array}{c} tth \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \\ 1.2 \\ \underline{0.4} \\ \underline{0.5} \\ 0.7 \\ \underline{0.6} \\ 1.6 \\ 1.9 \\ 0.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} -2.1 \\ -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \\ -1.9 \\ 3.8 \\ 5.8 \\ -2.3 \end{array}$                                                                                                   | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9<br>12<br>103<br>23                                                              | $ \begin{array}{c} 1.1\\ 1.0\\ 0.8\\ \underline{0.6}\\ 1.1\\ 0.5\\ 0.7\\ 1.1\\ 0.8\\ 1.5\\ \underline{0.5}\\ 0.3\\ 2.7\\ 0.8\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ -2.1 \\ -4.2 \\ 10.9 \\ -1.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31                                     | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \\ \underline{0.4} \\ 1.1 \\ 1.0 \\ 1.0 \end{array}$                                                     | $\begin{array}{c} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.0} \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15<br>21<br>11<br>41                                                 | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.4} \\ \underline{0.4} \\ 0.7 \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{1.0} \\ 0.8 \\ \underline{0.6} \\ \underline{0.3} \\ \textbf{1.4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.7 \\ 1.0 \\ 2.2 \\ 5.8 \\ 2.1 \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \\ 2.0 \end{array}$                                                                                             | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21<br>18<br>0<br>31                                                   | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0                                                                | $\begin{array}{r} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ -6.1 \\ -0.1 \\ 1.7 \\ -2.4 \\ \textbf{7.5} \\ 0.8 \\ -3.1 \\ -6.3 \\ 0.1 \end{array}$                                                                  | 76<br>11<br>32<br>46<br>50<br>110<br>25<br>29<br>54<br>71<br>15<br>52<br>0<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.1 \\ 1.0 \\ 0.7 \\ 0.9 \\ 1.6 \\ 1.8 \\ 1.4 \\ 0.6 \\ 1.1 \\ 1.0 \\ 0.8 \\ 1.4 \\ -0.0 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9$ | $\begin{array}{r} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\\ -0.5\end{array}$                                   |
| Res<br>(B) Fc<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg                             | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18<br>21                               | $\begin{array}{c} th \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \\ 1.2 \\ \underline{0.4} \\ \underline{0.5} \\ 0.7 \\ \underline{0.6} \\ 1.6 \\ 1.9 \\ \underline{0.6} \\ 0.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ \hline -2.3 \\ -0.1 \\ 0.8 \\ \hline -4.0 \\ \hline -3.5 \\ -2.5 \\ -1.9 \\ \textbf{3.8} \\ \textbf{5.8} \\ \textbf{5.8} \\ -2.3 \\ -2.9 \end{array}$                      | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9<br>12<br>103<br>23<br>40                                                        | $ \begin{array}{c} 1.1\\ 1.0\\ 0.8\\ \underline{0.6}\\ 1.1\\ 0.5\\ 0.7\\ 1.1\\ 0.8\\ 1.5\\ \underline{0.5}\\ 0.3\\ 2.7\\ 0.8\\ 1.0\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ -2.1 \\ -4.2 \\ 10.9 \\ -1.4 \\ 0.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34                               | $\begin{array}{c} 1.1 \\ 0.7 \\ 1.5 \\ 2.6 \\ 0.7 \\ \underline{0.6} \\ 1.1 \\ \underline{0.6} \\ 1.0 \\ 0.8 \\ \underline{0.4} \\ 1.1 \\ 1.0 \\ 1.0 \\ 0.9 \end{array}$                                              | $\begin{array}{c} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.0} \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \\ -0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15<br>21<br>11<br>41<br>42                                           | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ \underline{0.3} \\ \textbf{1.4} \\ 1.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} -0.7 \\ 1.0 \\ 2.2 \\ 5.8 \\ 2.1 \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \\ 2.0 \\ 0.6 \end{array}$                                                                                      | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21<br>18<br>0<br>31<br>41                                             | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><b>0.3</b><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1                                                         | $\begin{array}{r} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ \hline -0.1 \\ 1.7 \\ -2.4 \\ \textbf{7.5} \\ 0.8 \\ \hline -3.1 \\ \hline -6.3 \\ 0.1 \\ 0.4 \end{array}$                                              | $76 \\ 11 \\ 32 \\ 46 \\ 50 \\ 110 \\ 25 \\ 29 \\ 54 \\ 71 \\ 15 \\ 52 \\ 0 \\ 28 \\ 42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.1 \\ 1.0 \\ 0.7 \\ 0.9 \\ \textbf{1.6} \\ \textbf{1.8} \\ \textbf{1.4} \\ \underline{0.6} \\ 1.1 \\ 1.0 \\ 0.8 \\ \textbf{1.4} \\ \underline{-0.0} \\ 0.9 \\ 1.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\\ -0.5\\ 0.6\end{array}$                             |
| Res<br>(B) Fc<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg<br>Ser                      | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18<br>21<br>90                         | $\begin{array}{c} tth \ \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ 0.6 \\ 1.0 \\ 1.2 \\ 0.5 \\ 0.7 \\ 0.6 \\ 1.6 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ \hline -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ \hline -3.5 \\ -2.5 \\ -1.9 \\ 3.8 \\ 5.8 \\ -2.3 \\ -2.9 \\ 6.1 \end{array}$                                                        | 74<br>11<br>39<br>32<br>35<br>34<br>12<br>49<br>39<br>100<br>9<br>12<br>103<br>23<br>40<br>56                                                  | $ \begin{array}{c} 1.1\\ 1.0\\ 0.8\\ \underline{0.6}\\ 1.1\\ 0.5\\ 0.7\\ 1.1\\ 0.8\\ 1.5\\ \underline{0.5}\\ 0.3\\ 2.7\\ 0.8\\ 1.0\\ 1.2\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ -2.1 \\ -4.2 \\ 10.9 \\ -1.4 \\ 0.2 \\ 1.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34<br>60                         | $\begin{array}{c} 1.1\\ 0.7\\ \textbf{1.5}\\ \textbf{2.6}\\ 0.7\\ \underline{0.6}\\ 1.1\\ \underline{0.6}\\ 1.0\\ 0.8\\ \underline{0.4}\\ 1.1\\ 1.0\\ 1.0\\ 0.9\\ 1.2 \end{array}$                                    | $\begin{array}{c} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.0} \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \\ -0.8 \\ 1.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>55<br>66<br>15<br>21<br>11<br>41<br>42<br>36                                           | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ \underline{0.3} \\ \textbf{1.4} \\ 1.1 \\ 0.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.7 \\ 1.0 \\ 2.2 \\ 5.8 \\ 2.1 \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \\ 2.0 \\ 0.6 \\ -1.9 \end{array}$                                                                       | 94<br>25<br>45<br>30<br>35<br>16<br>18<br>56<br>31<br>128<br>21<br>18<br>0<br>31<br>41<br>36                                       | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><b>0.3</b><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1<br>0.7                                                  | $\begin{array}{r} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ \hline -0.1 \\ 1.7 \\ -2.4 \\ \hline 7.5 \\ 0.8 \\ -3.1 \\ \hline -6.3 \\ 0.1 \\ 0.4 \\ -1.9 \end{array}$                                               | $76 \\ 11 \\ 32 \\ 46 \\ 50 \\ 110 \\ 25 \\ 29 \\ 54 \\ 71 \\ 15 \\ 52 \\ 0 \\ 28 \\ 42 \\ 66 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$ | $\begin{array}{c} 1.1\\ 1.0\\ 0.7\\ 0.9\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.4}\\ \underline{0.6}\\ 1.1\\ 1.0\\ 0.8\\ \textbf{1.4}\\ \underline{-0.0}\\ 0.9\\ 1.1\\ \textbf{1.4}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\\ -0.5\\ 0.6\\ 2.6\end{array}$                       |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg<br>Ser<br>Thr                      | <i>bur-leng</i> 52 16 115 37 19 62 22 19 24 49 10 59 72 18 21 90 73                                                                      | $\begin{array}{c} t^{th} \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ 0.6 \\ 1.0 \\ 1.2 \\ 0.5 \\ 0.7 \\ 0.6 \\ 1.6 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \\ 1.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ \hline -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ \hline -3.5 \\ -2.5 \\ -1.9 \\ \textbf{3.8} \\ \textbf{5.8} \\ -2.3 \\ -2.9 \\ \textbf{6.1} \\ \textbf{4.1} \end{array}$             | $74 \\ 11 \\ 39 \\ 32 \\ 35 \\ 34 \\ 12 \\ 49 \\ 39 \\ 100 \\ 9 \\ 12 \\ 103 \\ 23 \\ 40 \\ 56 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 3$ | $\begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ 0.6 \\ 1.1 \\ 0.5 \\ 0.7 \\ 1.1 \\ 0.8 \\ \textbf{1.5} \\ 0.5 \\ 0.3 \\ \textbf{2.7} \\ 0.8 \\ 1.0 \\ 1.2 \\ 0.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ -2.7 \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ -2.1 \\ -4.2 \\ 10.9 \\ -1.4 \\ 0.2 \\ 1.1 \\ -2.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34<br>60<br>32                   | $\begin{array}{c} 1.1\\ 0.7\\ \textbf{1.5}\\ \textbf{2.6}\\ 0.7\\ \underline{0.6}\\ 1.1\\ \underline{0.6}\\ 1.0\\ 0.8\\ \underline{0.4}\\ 1.1\\ 1.0\\ 1.0\\ 0.9\\ 1.2\\ 0.7\\ \end{array}$                            | $\begin{array}{c} 1.0 \\ -1.0 \\ \textbf{3.7} \\ \textbf{11.5} \\ -1.5 \\ -3.1 \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.0} \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \\ 0.8 \\ 1.7 \\ -2.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>15<br>63<br>91<br>43<br>24<br>13<br>53<br>55<br>66<br>15<br>21<br>11<br>41<br>42<br>36<br>46                               | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ \hline 0.7 \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{1.2} \\ \textbf{1.0} \\ 0.8 \\ \hline 0.6 \\ \hline 0.3 \\ \textbf{1.4} \\ \textbf{1.1} \\ 0.7 \\ \textbf{1.0} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -0.7 \\ 1.0 \\ 2.2 \\ 5.8 \\ 2.1 \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \\ 2.0 \\ 0.6 \\ -1.9 \\ 0.0 \end{array}$                                                                       | $\begin{array}{c} 94\\ 25\\ 45\\ 30\\ 35\\ 16\\ 18\\ 56\\ 31\\ 128\\ 21\\ 18\\ 0\\ 31\\ 41\\ 36\\ 61\\ \end{array}$                | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1<br>0.7<br><b>1.3</b>                                    | $\begin{array}{c} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ \hline -0.1 \\ 1.7 \\ -2.4 \\ \hline \textbf{7.5} \\ 0.8 \\ -3.1 \\ -6.3 \\ 0.1 \\ -6.3 \\ 0.1 \\ 0.4 \\ -1.9 \\ \textbf{2.3} \end{array}$              | $\begin{array}{c} 76 \\ 11 \\ 32 \\ 46 \\ 50 \\ 110 \\ 25 \\ 29 \\ 54 \\ 71 \\ 15 \\ 52 \\ 0 \\ 28 \\ 42 \\ 66 \\ 21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.1\\ 1.0\\ 0.7\\ 0.9\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.4}\\ \underline{0.6}\\ 1.1\\ 1.0\\ 0.8\\ \textbf{1.4}\\ \underline{-0.0}\\ 0.9\\ 1.1\\ \textbf{1.4}\\ 0.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\\ -0.5\\ 0.6\\ -3.8\end{array}$                      |
| (B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg<br>Ser<br>Thr<br>Val               | <i>bur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18<br>21<br>90<br>73<br>22             | $\begin{array}{c} t^{th} \alpha -h \\ 0.8 \\ 1.4 \\ 2.4 \\ 0.7 \\ \underline{0.6} \\ 1.0 \\ 1.2 \\ \underline{0.4} \\ 0.5 \\ 0.7 \\ \underline{0.6} \\ 1.6 \\ 1.9 \\ \underline{0.6} \\ 1.9 \\ 1.6 \\ 0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \\ -1.9 \\ 3.8 \\ 5.8 \\ -2.3 \\ -2.9 \\ 6.1 \\ -4.7 \end{array}$                                                              | $\begin{array}{c} 74\\ 11\\ 39\\ 32\\ 35\\ 34\\ 12\\ 49\\ 39\\ 100\\ 9\\ 12\\ 103\\ 23\\ 40\\ 56\\ 32\\ 44 \end{array}$                        | $\begin{array}{c} 1.1 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 1.1 \\ 0.5 \\ 0.7 \\ 1.1 \\ 0.8 \\ 1.5 \\ \underline{0.5} \\ \underline{0.3} \\ 2.7 \\ 0.8 \\ 1.0 \\ 1.2 \\ 0.7 \\ 0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ \underline{-2.7} \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ 3.9 \\ \underline{-2.1} \\ \underline{-4.2} \\ 10.9 \\ -1.4 \\ 0.2 \\ 1.1 \\ \underline{-2.2} \\ -1.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34<br>60<br>32<br>33             | $\begin{array}{c} 1.1\\ 0.7\\ \textbf{1.5}\\ \textbf{2.6}\\ 0.7\\ \underline{0.6}\\ 1.1\\ \underline{0.6}\\ 1.0\\ 0.8\\ \underline{0.4}\\ 1.1\\ 1.0\\ 1.0\\ 0.9\\ 1.2\\ 0.7\\ 0.6\\ \end{array}$                      | $\begin{array}{c} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \\ -0.8 \\ 1.7 \\ \underline{-2.2} \\ -3.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 63\\ 15\\ 63\\ 91\\ 43\\ 24\\ 13\\ 53\\ 55\\ 66\\ 15\\ 21\\ 11\\ 41\\ 42\\ 36\\ 46\\ 55\\ \end{array}$         | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ \underline{0.4} \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ \underline{0.3} \\ \textbf{1.4} \\ 1.1 \\ 0.7 \\ 1.0 \\ 1.0 \\ 1.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.7 \\ 1.0 \\ \textbf{2.2} \\ \textbf{5.8} \\ \textbf{2.1} \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ \underline{-2.6} \\ -4.4 \\ \textbf{2.0} \\ 0.6 \\ -1.9 \\ 0.0 \\ -0.2 \end{array}$               | $\begin{array}{c} 94\\ 25\\ 45\\ 30\\ 35\\ 16\\ 18\\ 56\\ 31\\ 128\\ 21\\ 18\\ 0\\ 31\\ 41\\ 36\\ 61\\ 59\end{array}$              | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><u>0.3</u><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1<br>0.7<br><b>1.3</b><br>1.1                             | $\begin{array}{c} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ -6.1 \\ -0.1 \\ 1.7 \\ -2.4 \\ 7.5 \\ 0.8 \\ -3.1 \\ -6.3 \\ 0.1 \\ 0.4 \\ -1.9 \\ \textbf{2.3} \\ 0.4 \end{array}$                                     | $\begin{array}{c} 76 \\ 11 \\ 32 \\ 46 \\ 50 \\ 110 \\ 25 \\ 29 \\ 54 \\ 71 \\ 15 \\ 52 \\ 0 \\ 28 \\ 42 \\ 66 \\ 21 \\ 37 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.1\\ 1.0\\ 0.7\\ 0.9\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.4}\\ \underline{0.6}\\ 1.1\\ 1.0\\ 0.8\\ \textbf{1.4}\\ \underline{-0.0}\\ 0.9\\ 1.1\\ \textbf{1.4}\\ \underline{0.5}\\ 0.7\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.0\\ 0.3\\ -0.7\\ 2.6\\ -6.3\\ -0.5\\ 0.6\\ 2.6\\ -3.8\\ -2.7\end{array}$         |
| Res<br>(B) Fo<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg<br>Ser<br>Thr<br>Val<br>Trp | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18<br>21<br>90<br>73<br>22<br>9        | $\begin{array}{c} th \ \alpha -h \\ 0.8 \\ 1.4 \\ 0.7 \\ 0.6 \\ 1.0 \\ 1.2 \\ 0.7 \\ 0.6 \\ 1.0 \\ 1.2 \\ 0.7 \\ 0.6 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \\ 1.6 \\ 0.4 \\ 0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \\ -1.9 \\ 3.8 \\ 5.8 \\ -2.3 \\ -2.9 \\ 6.1 \\ -4.7 \\ -0.8 \end{array}$                                                      | $\begin{array}{c} 74\\ 11\\ 39\\ 32\\ 35\\ 34\\ 12\\ 49\\ 39\\ 100\\ 9\\ 12\\ 103\\ 23\\ 40\\ 56\\ 32\\ 44\\ 24 \end{array}$                   | 1.1<br>1.0<br>0.8<br><u>0.6</u><br>1.1<br>0.5<br>0.7<br>1.1<br>0.8<br><b>1.5</b><br><u>0.5</u><br><u>0.3</u><br><b>2.7</b><br>0.8<br>1.0<br>1.2<br>0.7<br>0.8<br><b>2.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ \underline{-2.7} \\ 0.7 \\ -3.8 \\ -1.5 \\ 0.6 \\ -1.2 \\ \underline{3.9} \\ \underline{-2.1} \\ \underline{-4.2} \\ 10.9 \\ -1.4 \\ 0.2 \\ 1.1 \\ \underline{-2.2} \\ -1.7 \\ 3.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34<br>60<br>32<br>33<br>14       | $\begin{array}{c} 1.1\\ 0.7\\ \textbf{1.5}\\ \textbf{2.6}\\ 0.7\\ \underline{0.6}\\ 1.1\\ \underline{0.6}\\ 1.0\\ 0.8\\ \underline{0.4}\\ 1.1\\ 1.0\\ 1.0\\ 0.9\\ 1.2\\ 0.7\\ \underline{0.6}\\ 1.2\\ \end{array}$    | $\begin{array}{c} 1.0 \\ -1.0 \\ 3.7 \\ 11.5 \\ -1.5 \\ \underline{-3.1} \\ 0.3 \\ \underline{-2.8} \\ 0.1 \\ \underline{-2.6} \\ 0.8 \\ 0.1 \\ 0.1 \\ -0.8 \\ 1.7 \\ \underline{-2.2} \\ \underline{-3.2} \\ 0.7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 63\\ 15\\ 63\\ 91\\ 43\\ 24\\ 13\\ 53\\ 55\\ 66\\ 15\\ 21\\ 11\\ 41\\ 42\\ 36\\ 46\\ 55\\ 13\\ \end{array}$    | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.8} \\ \textbf{1.4} \\ 0.4 \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.3 \\ \textbf{1.4} \\ 1.1 \\ 0.7 \\ 1.0 \\ 1.0 \\ 1.1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} -0.7 \\ 1.0 \\ \textbf{2.2} \\ \textbf{5.8} \\ \textbf{2.1} \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ \underline{-2.6} \\ -4.4 \\ \textbf{2.0} \\ 0.6 \\ -1.9 \\ 0.0 \\ -0.2 \\ 0.4 \end{array}$ | $\begin{array}{c} 94\\ 25\\ 45\\ 30\\ 35\\ 16\\ 18\\ 56\\ 31\\ 128\\ 21\\ 18\\ 0\\ 31\\ 41\\ 36\\ 61\\ 59\\ 16\end{array}$         | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><b>0.3</b><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1<br>0.7<br><b>1.3</b><br>1.1<br><b>1.4</b>               | $\begin{array}{c} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ \hline -0.1 \\ 1.7 \\ -2.4 \\ \hline 7.5 \\ 0.8 \\ -3.1 \\ \hline -6.3 \\ 0.1 \\ 0.4 \\ -1.9 \\ \textbf{2.3} \\ 0.4 \\ 1.3 \end{array}$                 | $\begin{array}{c} 76\\ 11\\ 32\\ 46\\ 50\\ 110\\ 25\\ 29\\ 54\\ 71\\ 15\\ 52\\ 0\\ 28\\ 42\\ 66\\ 21\\ 37\\ 9\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.1\\ 1.0\\ 0.7\\ 0.9\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.4}\\ \underline{0.6}\\ 1.1\\ 1.0\\ 0.8\\ \textbf{1.4}\\ \underline{-0.0}\\ 0.9\\ 1.1\\ \textbf{1.4}\\ \underline{0.5}\\ 0.7\\ 0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ 1.5\\ -2.5\\ 0.6\\ -6.3\\ -0.5\\ 0.6\\ -3.8\\ -2.7\\ -0.8\end{array}$              |
| (B) Fc<br>Ala<br>Cys<br>Asp<br>Glu<br>Phe<br>Gly<br>His<br>Ile<br>Lys<br>Leu<br>Met<br>Asn<br>Pro<br>Gln<br>Arg<br>Ser<br>Thr<br>Val<br>Trp<br>Tyr | <i>pur-leng</i><br>52<br>16<br>115<br>37<br>19<br>62<br>22<br>19<br>24<br>49<br>10<br>59<br>72<br>18<br>21<br>90<br>73<br>322<br>9<br>16 | $\begin{array}{c} tth \ \alpha -h \\ 0.8 \\ 1.4 \\ 0.7 \\ 0.6 \\ 1.0 \\ 1.2 \\ 0.5 \\ 0.7 \\ 0.6 \\ 1.6 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \\ 0.6 \\ 0.5 \\ 1.9 \\ 0.6 \\ 0.4 \\ 0.8 \\ 0.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} \text{elix} \\ \hline -2.1 \\ 1.3 \\ 9.9 \\ -2.0 \\ -2.3 \\ -0.1 \\ 0.8 \\ -4.0 \\ -3.5 \\ -2.5 \\ -2.5 \\ -1.9 \\ 3.8 \\ 5.8 \\ -2.3 \\ -2.9 \\ 6.1 \\ -4.7 \\ -0.8 \\ -2.5 \end{array}$                                      | $\begin{array}{c} 74\\ 11\\ 39\\ 32\\ 35\\ 34\\ 12\\ 49\\ 39\\ 100\\ 9\\ 12\\ 103\\ 23\\ 40\\ 56\\ 32\\ 44\\ 24\\ 37\\ \end{array}$            | 1.1<br>1.0<br>0.8<br><u>0.6</u><br>1.1<br>0.5<br>0.7<br>1.1<br>0.8<br><b>1.5</b><br><u>0.5</u><br><u>0.3</u><br><b>2.7</b><br>0.8<br>1.0<br>1.2<br>0.7<br>0.8<br><b>1.0</b><br>1.2<br>0.7<br><b>1.1</b><br><b>0.5</b><br><b>0.5</b><br><b>0.7</b><br><b>1.1</b><br><b>0.5</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>0.5</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>0.5</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>1.1</b><br><b>0.8</b><br><b>0.5</b><br><b>0.3</b><br><b>2.7</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>0.8</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.5</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.5</b><br><b>1.0</b><br><b>1.2</b><br><b>0.7</b><br><b>0.8</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b><br><b>1.1</b> | $\begin{array}{c} 0.7 \\ -0.2 \\ -1.4 \\ \underline{-2.7} \\ 0.7 \\ \underline{-3.8} \\ -1.5 \\ 0.6 \\ -1.2 \\ \underline{3.9} \\ \underline{-2.1} \\ \underline{-4.2} \\ 10.9 \\ -1.4 \\ 0.2 \\ 1.1 \\ \underline{-2.2} \\ -1.7 \\ 3.7 \\ 1.5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76<br>8<br>73<br>130<br>23<br>39<br>20<br>27<br>48<br>53<br>7<br>41<br>38<br>31<br>34<br>60<br>32<br>33<br>14<br>18 | $\begin{array}{c} 1.1\\ 0.7\\ \textbf{1.5}\\ \textbf{2.6}\\ 0.7\\ \underline{0.6}\\ 1.1\\ \underline{0.6}\\ 1.0\\ 0.8\\ \underline{0.4}\\ 1.1\\ 1.0\\ 1.0\\ 0.9\\ 1.2\\ 0.7\\ \underline{0.6}\\ 1.2\\ 0.6\end{array}$ | $\begin{array}{c} 1.0\\ -1.0\\ 3.7\\ 11.5\\ -1.5\\ -3.1\\ 0.3\\ -2.8\\ 0.1\\ -2.0\\ 0.8\\ 0.1\\ 0.1\\ -0.8\\ 1.7\\ -2.2\\ -3.2\\ -3.2\\ 0.7\\ -2.1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 63\\ 15\\ 63\\ 91\\ 43\\ 24\\ 13\\ 53\\ 55\\ 66\\ 15\\ 21\\ 11\\ 41\\ 42\\ 36\\ 46\\ 55\\ 13\\ 39 \end{array}$ | $\begin{array}{c} 0.9 \\ \textbf{1.3} \\ \textbf{1.3} \\ \textbf{1.4} \\ 0.4 \\ 0.7 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.0 \\ 0.8 \\ \underline{0.6} \\ 0.3 \\ \textbf{1.4} \\ 1.1 \\ 0.7 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.1 \\ \textbf{1.4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -0.7 \\ 1.0 \\ \textbf{2.2} \\ \textbf{5.8} \\ \textbf{2.1} \\ -5.1 \\ -1.3 \\ 1.2 \\ 1.2 \\ 1.2 \\ -0.4 \\ -0.7 \\ -2.6 \\ -4.4 \\ \textbf{2.0} \\ 0.6 \\ -1.9 \\ 0.0 \\ -0.2 \\ 0.4 \\ 1.9 \end{array}$      | $\begin{array}{c} 94\\ 25\\ 45\\ 30\\ 35\\ 16\\ 18\\ 56\\ 31\\ 128\\ 21\\ 18\\ 0\\ 31\\ 41\\ 36\\ 61\\ 59\\ 16\\ 43\\ \end{array}$ | <b>1.4</b><br><b>2.2</b><br>0.9<br><u>0.6</u><br>1.1<br><b>0.3</b><br>1.0<br><b>1.3</b><br>0.7<br><b>1.9</b><br>1.2<br><u>0.5</u><br><u>0.0</u><br>1.0<br>1.1<br>0.7<br><b>1.3</b><br>1.1<br><b>1.4</b><br><b>1.5</b> | $\begin{array}{c} \textbf{3.3} \\ \textbf{4.0} \\ -0.5 \\ -3.0 \\ 0.7 \\ \hline -0.1 \\ 1.7 \\ -2.4 \\ \hline 7.5 \\ 0.8 \\ -3.1 \\ \hline -6.3 \\ 0.1 \\ 0.4 \\ -1.9 \\ \textbf{2.3} \\ 0.4 \\ 1.3 \\ \textbf{2.7} \end{array}$ | $\begin{array}{c} 76\\ 11\\ 32\\ 46\\ 50\\ 110\\ 25\\ 29\\ 54\\ 71\\ 15\\ 52\\ 0\\ 28\\ 42\\ 66\\ 21\\ 37\\ 9\\ 31 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1.1\\ 1.0\\ 0.7\\ 0.9\\ \textbf{1.6}\\ \textbf{1.8}\\ \textbf{1.4}\\ \underline{0.6}\\ 1.1\\ 1.0\\ 0.8\\ \textbf{1.4}\\ \underline{-0.0}\\ 0.9\\ 1.1\\ \textbf{1.4}\\ \underline{0.5}\\ 0.7\\ 0.8\\ 1.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.0\\ -0.2\\ -2.4\\ -0.7\\ 3.4\\ 6.3\\ 1.5\\ -2.5\\ -2.5\\ 0.6\\ -2.5\\ 0.6\\ -6.3\\ -0.5\\ 0.6\\ -3.8\\ -2.7\\ -0.8\\ 0.4\end{array}$ |

**Table 2.** Amino acid propensity and z-values of three-length  $3_{10}$ -helical and four-length  $\alpha$ -helical sequences

*N* stands for the number of occurrences, *P* for propensity and *Z* for *z*-values of amino acid residues;  $P \ge 1.3$  and  $Z \ge 1.96$  are given in bold; P < 0.7 and Z < -1.96 are underlined.

three-length 310-helix can be considered to be two overlapping  $\beta$ -turns, where the two turns correspond to Nc-N3 and N1-Cc segments of the helix. Helix-turn correlation coefficients, corresponding to the two individual turns ((Nc/i, N1/i + 1, N2/i + 2, N3/i + 3) and (N1/i, N2/i + 1, N3/i + 2, Cc/i + 3) indicate that Nc-N3 is more strongly correlated with a single  $\beta$ -turn than N1–Cc, especially for the two N-terminal residues. Whether or not the Nc–N3  $\beta$ -turn can sustain a second  $\beta$ -turn (N1–Cc) strongly depends on how correlated is N3 with i + 2 position of a  $\beta$ -turn, similar to what was found for variant 310-helices as well.<sup>20</sup> In other words, a contiguous stretch of four residues, with strong  $\beta$ -turn forming potential, will add a second overlapping  $\beta$ -turn at its C-terminal only if the turn potential of position i + 3 is low when compared to the canonical i + 3 position of isolated  $\beta$ -turns but high compared to the canonical i + 2 position of isolated  $\beta$ -turns. Thus helix propagation from an isolated  $\beta$ -turn is determined by the nature of the i + 3 residue. Similarly a three-length  $3_{10}$ -helix thus formed can propagate into a four-length  $3_{10}$ -helix by adding a  $\beta$ -turn at the C terminus. Table 3(F) shows positional correlation between a three-length and a four-length  $3_{10}$ -helix. There is strong correlation between the two across the sequence, when aligned at the N termini. Correlation between a  $\beta$ -turn and the C-terminal end of four-length  $3_{10}$ -helix (N2/*i*, N3/*i* + 1, N4/*i* + 2, Cc/*i* + 3) shows Cc and i + 3 to be strongly correlated

|                                        | Three-length 310-helix |                     |                     |                          |       |      |  |  |  |  |  |
|----------------------------------------|------------------------|---------------------|---------------------|--------------------------|-------|------|--|--|--|--|--|
| (A) Long α-helix                       | Nc                     | N1/C3               | N2/C2               | N3/C1                    | Cc    |      |  |  |  |  |  |
| Nc                                     | 0.77                   | 0.06                | 0.59                | 0.39                     | -0.03 |      |  |  |  |  |  |
| N1                                     | 0.44                   | 0.92                | 0.41                | 0.15                     | 0.29  |      |  |  |  |  |  |
| N2                                     | 0.41                   | 0.43                | 0.89                | 0.57                     | 0.01  |      |  |  |  |  |  |
| N3                                     | 0.29                   | 0.34                | 0.72                | 0.60                     | 0.23  |      |  |  |  |  |  |
| C3                                     | 0.00                   | 0.33                | 0.31                | 0.56                     | 0.60  |      |  |  |  |  |  |
| C2                                     | -0.05                  | 0.27                | 0.37                | 0.57                     | 0.55  |      |  |  |  |  |  |
| C1                                     | 0.06                   | 0.28                | 0.46                | 0.66                     | 0.51  |      |  |  |  |  |  |
| Cc                                     | 0.28                   | 0.00                | 0.35                | 0.38                     | 0.50  |      |  |  |  |  |  |
|                                        |                        |                     | Four-lengt          | h α-helix                |       |      |  |  |  |  |  |
| (B) Long α-helix                       | Nc                     | N1/C4               | N2/C3               | N3/C2                    | N4/C1 | Cc   |  |  |  |  |  |
| Nc N1                                  | 0.92                   | 0.10                | 0.36                | 0.07                     | -0.03 | 0.33 |  |  |  |  |  |
| INI<br>N2                              | 0.36                   | 0.87                | 0.00                | 0.32                     | 0.42  | 0.27 |  |  |  |  |  |
| INZ<br>NI2                             | 0.47                   | 0.31                | 0.98                | 0.76                     | 0.22  | 0.39 |  |  |  |  |  |
| IND<br>NIA                             | -0.15                  | 0.51                | 0.90                | 0.89                     | 0.40  | 0.37 |  |  |  |  |  |
| IN4<br>C4                              | -0.15                  | 0.50                | 0.18                | 0.60                     | 0.90  | 0.40 |  |  |  |  |  |
| C4<br>C2                               | -0.01                  | 0.54                | 0.47                | 0.73                     | 0.90  | 0.49 |  |  |  |  |  |
|                                        | -0.02                  | 0.50                | 0.52                | 0.73                     | 0.85  | 0.51 |  |  |  |  |  |
| C2                                     | -0.04                  | 0.40                | 0.58                | 0.82                     | 0.74  | 0.40 |  |  |  |  |  |
|                                        | 0.13                   | 0.43                | 0.60                | 0.74                     | 0.80  | 0.55 |  |  |  |  |  |
| Cc                                     | 0.34                   | 0.15                | 0.30<br>Three-lengt | 0.24<br>h 3helix         | 0.27  | 0.95 |  |  |  |  |  |
| (C) True o L O, true                   | Na                     | N1                  | NO                  | N2                       | Ca    |      |  |  |  |  |  |
|                                        | INC                    | IN1                 | 1N2                 | 103                      |       |      |  |  |  |  |  |
| 1                                      | 0.89                   | $\frac{0.11}{0.02}$ | 0.58                | 0.62                     | 0.12  |      |  |  |  |  |  |
| i+1                                    | 0.61                   | <u>0.92</u>         | $\frac{0.55}{0.55}$ | 0.05                     | -0.15 |      |  |  |  |  |  |
| 1+2                                    | 0.69                   | -0.11               | 0.68                | 0.81                     | -0.01 |      |  |  |  |  |  |
| 1+3                                    | 0.29                   | -0.08               | 0.20<br>Four-longth | $\frac{0.21}{1}$         | 0.54  |      |  |  |  |  |  |
| (D) True a L Q true                    | rour-rength 310-nellx  |                     |                     |                          |       |      |  |  |  |  |  |
| (D) Type I p-turn                      |                        | 101                 | 1N2                 | N3                       | 1114  | 0.00 |  |  |  |  |  |
| 1                                      | 0.92                   | 0.24                | 0.58                | 0.61                     | 0.12  | 0.39 |  |  |  |  |  |
| i+1                                    | 0.47                   | 0.65                | 0.62                | 0.20                     | -0.11 | 0.03 |  |  |  |  |  |
| 1 + 2                                  | 0.70                   | -0.09               | 0.51                | 0.67                     | 0.06  | 0.35 |  |  |  |  |  |
| 1+3                                    | 0.49                   | 0.44                | 0.30                | 0.22                     | 0.30  | 0.86 |  |  |  |  |  |
|                                        |                        |                     | Four-lengt          | h α-helix                |       |      |  |  |  |  |  |
| (E) Type I β-turn                      | Nc                     | N1                  | N2                  | N3                       | N4    | Cc   |  |  |  |  |  |
| i                                      | 0.92                   | 0.20                | 0.43                | 0.20                     | 0.16  | 0.45 |  |  |  |  |  |
| i + 1                                  | 0.55                   | 0.76                | 0.51                | 0.20                     | 0.03  | 0.05 |  |  |  |  |  |
| 1+2                                    | 0.76                   | -0.05               | 0.55                | 0.39                     | 0.15  | 0.34 |  |  |  |  |  |
| 1+3                                    | 0.36                   | 0.09                | 0.23                | 0.16                     | 0.19  | 0.85 |  |  |  |  |  |
|                                        |                        |                     | I hree-lengt        | n 3 <sub>10</sub> -nelix |       |      |  |  |  |  |  |
| (F) Four-length 3 <sub>10</sub> -helix | Nc                     | N1                  | N2                  | N3                       | Cc    |      |  |  |  |  |  |
| Nc                                     | 0.93                   | 0.37                | 0.47                | 0.48                     | 0.23  |      |  |  |  |  |  |
| NI                                     | 0.41                   | 0.79                | 0.22                | -0.05                    | 0.39  |      |  |  |  |  |  |
| N2                                     | 0.59                   | 0.50                | 0.84                | 0.47                     | 0.12  |      |  |  |  |  |  |
| N3                                     | 0.43                   | 0.12                | 0.63                | 0.81                     | 0.32  |      |  |  |  |  |  |
| N4                                     | -0.03                  | 0.08                | -0.12               | 0.43                     | 0.76  |      |  |  |  |  |  |
| Cc                                     | 0.19                   | 0.01                | 0.41<br>Four longt  | 0.47<br>h a haliy        | 0.57  |      |  |  |  |  |  |
|                                        |                        |                     |                     |                          |       |      |  |  |  |  |  |
| (G) Four-length 3 <sub>10</sub> -helix | Nc                     | N1                  | N2                  | N3                       | N4    | Cc   |  |  |  |  |  |
| Nc                                     | 0.89                   | 0.46                | 0.42                | 0.17                     | 0.18  | 0.44 |  |  |  |  |  |
| N1                                     | 0.36                   | 0.84                | 0.35                | 0.22                     | 0.38  | 0.45 |  |  |  |  |  |
| N2                                     | 0.67                   | 0.54                | 0.75                | 0.51                     | 0.27  | 0.49 |  |  |  |  |  |
| N3                                     | 0.50                   | 0.28                | 0.56                | 0.60                     | 0.60  | 0.48 |  |  |  |  |  |
| N4                                     | -0.02                  | 0.44                | 0.06                | 0.39                     | 0.79  | 0.53 |  |  |  |  |  |
| Cc                                     | 0.22                   | 0.15                | 0.51                | 0.53                     | 0.33  | 0.93 |  |  |  |  |  |

Table 3. Correlation coefficients of percentage composition of amino acids at different positions of helices and type I  $\beta$ -turn

Values >0.75 are in bold. In (C), the positions in  $3_{10}$ -helix corresponding to the first  $\beta$ -turn (i.e. Nc to N3) are singly underlined, while those for the next turn (N1 to Cc) are doubly underlined.



**Figure 6**. Histogram of residue propensities in 3-length  $3_{10}$ -helix, type I  $\beta$ -turn, 4-length  $\alpha$ -helix and long  $\alpha$ -helix as a function of positions in helix (or  $\beta$ -turn); the positions in  $\beta$ -turn equivalent to those in helices are obtained from data in Table 4. Only those residues are shown that are over-represented (based on *z*-values) in at least one of the structures.

(Table 3(D)). Thus the nature of C1' position of a three-length  $3_{10}$ -helix (Cc position of the equivalent four-length  $3_{10}$ -helix), essentially determines helix propagation from three to four-length  $3_{10}$ -helix.

Unlike  $\beta$ -turns, isolated  $\alpha$ -turns are rare in proteins; a survey found only 50 in 107 protein chains.<sup>1</sup> This prevented us from calculating correlation between two consecutive  $\alpha$ -turns and the fourlength  $\alpha$ -helix, like we did for two consecutive  $\beta$ -turns and the three-length 3<sub>10</sub>-helix. However, surprisingly, the correlation between four-length  $\alpha$ and four-length 3<sub>10</sub>-helices was found to be very strong (Table 3(G)). This suggests that four contiguous and two flanking residues show similar local propensity to form an  $\alpha$  or a 3<sub>10</sub>-helix. The helical form it ultimately adopts is probably determined by the global tertiary structure context. In other words, four-length  $\alpha$  and four-length 3<sub>10</sub>-helices are easily inter-convertible with similar amino acid preference. The implications of these results, in the context of helix nucleation will be discussed later.

# Positional potentials in shortest helices *vis-à-vis* longer $\alpha$ -helix and $\beta$ -turn

For comparison, the propensities of residues that are over-represented ( $z \ge 1.96$ ) in three-length  $3_{10}$ and four-length  $\alpha$ -helices (Table 2) are plotted in Figure 6 along with the values observed in the N-terminal turn of long  $\alpha$ -helices and isolated type I  $\beta$ -turns. The positions in helices of different lengths are compared in sequence, so that compared to the three-length helix, the four-length helix has an extra position, N4. The equivalence between positions in  $\beta$ -turn and helices is as established in Table 3. A comparison between three-length  $3_{10}$ -helices and longer  $\alpha$ -helices has also been made by Karpen *et al.*<sup>18</sup> and that between the different positions in the first turn of the  $\alpha$ -helix by Penel *et al.*<sup>15</sup>

Asp and Asn have high propensities for the Nc (or position *i* in type I  $\beta$ -turn, Figure 1) in all the secondary structural elements. Propensities of Ser and Thr decrease in the order long  $\alpha$ , four-length  $\alpha$ -helix,  $\beta$ -turn and three-length  $3_{10}$ -helix, while for His it is reversed. Doig et al.22 explained why Ser and Thr are poorer Nc residues in  $3_{10}$  than  $\alpha$ -helices; in the latter they primarily hydrogen bond with the N3 NH, which is not available as a hydrogen bond partner to the Nc side-chain in a 3<sub>10</sub>-helix. The preference for Pro is much more pronounced in the shortest helices and Gly has a slightly lesser preference as compared to long  $\alpha$ -helices and  $\beta$ -turn. Pro is highly preferred at the N1 position in all the secondary structures, the preference being very striking for the 3<sub>10</sub>-helices and  $\beta$ -turn. Polar residues (Glu, Lys and Ser) are slightly more preferred in  $\beta$ -turns, whereas nonpolar (Leu and Trp) are found more in four-length α-helices.

The N2 position is occupied preferentially by polar residues, Glu in particular, when all three helix types are compared. The position N3 of helices and i + 2 of  $\beta$ -turn are compared together. As has also been noted by Hutchinson and Thornton,<sup>5</sup> Asp, Asn, Ser and Thr are the preferred residues at this turn position. Of all the helices, the three-length 3<sub>10</sub>-helix has the best match to turn, especially in the high propensity values of Asp and Asn. Thus N3 in 3<sub>10</sub>-helix and the position i + 2 in  $\beta$ -turn, which have similar  $\phi$ , $\psi$  angles, also show similar residue preferences.

At the N4 position, the comparison is really between the four-length and longer  $\alpha$ -helices. The hydrophobic residues, Phe, Ile, Met and Val are preferred more in the longer helices and Cys in the four-length helices. Cc of helices and the position i + 3 of  $\beta$ -turn have been put together. The three-length helices strongly prefer hydrophobic residues, such as Cys, Phe, Ile, Leu, Val and Tyr. The four-length and longer  $\alpha$ -helices have quite similar preferences, except that Gly is found more in the longer helices. Gly is also the most preferred residue in the equivalent i + 3 position of  $\beta$ -turn.

# Hydrophobic interaction and capping motifs involving the shortest helices

A hydrophobic interaction straddling the helix terminus is associated with hydrogen-bonded capping of helices.<sup>17</sup> As the helices under consideration here are short, the two ends can have hydrophobic contacts with each other. Thus both Nc and N1 can interact with Cc in  $3_{10}$ -helices, whereas in  $\alpha$ -helices it is the latter interaction that is normally observed (Figure 7). In  $\alpha$ -helices the interactions of Nc are more with residues N-terminal to it and for Cc the residues are towards the C-terminal. In contrast to  $\alpha$ -helices, the predominant interaction of Cc is with N1' and N2 with Nc in  $3_{10}$ -helices. The typical hydrophobic interactions in the two types of helices are illustrated in Figure 8.

The capping motifs that can be identified considering interactions (hydrogen bonding as well as hydrophobic) between helical residues and those outside the helix in the shortest helices are given in Figure 9. The nomenclature in the first three patterns in Figure 9(a) and first four patterns in Figure 9(b) are following Aurora & Rose (1998);<sup>17</sup> the rest were found primarily involving 3<sub>10</sub>-helices and have been named in conformity with the already known patterns.

The N-terminal capping patterns in long  $\alpha$ -helices, such as the capping box<sup>23,24</sup> and big box<sup>25</sup> are not frequent in the shortest  $\alpha$ -helices and not observed at all in the 310-helices. In capping box, Nc and N3 are linked to each other with a pair of backbone amide to side-chain hydrogen bonds. In  $3_{10}$ -helix, as the N3 backbone amide is already engaged in  $4 \rightarrow 1$  hydrogen bonding the capping box cannot be formed and instead there can be a cap'-box where Nc side-chain is hydrogen bonded with N2 backbone amide. β-Box (hydrogen bond between NH of Nc and CO of N3')17 and  $\alpha$ -box (between NH of Nc and CO of N4') are quite common in the shortest helices.  $\alpha'$ -Box is mainly found in those shortest 310-helices where an  $\alpha$ -helix has the  $3_{10}$ -helix at its C-terminal end. When NH of Nc in the shortest helix is hydrogen bonded to both the carbonyl groups at N3' and N4', an  $\alpha\beta$ -box is formed.  $\beta'$ -Box is generated when Nc has its NH hydrogen bonded to CO of N3' and the side-chain hydrogen bonded to NH group of N2. Thus the standard N-terminal capping patterns in long  $\alpha$ -helices are not common in the shortest helices; instead, there are new motifs. This trend is also observed in the C-terminal capping patterns. Schellman and Pseudo-Schellman motifs<sup>26</sup> are totally absent for  $3_{10}$ -helices, though it occurs to some extent in the shortest  $\alpha$ -helices. The Pro-box motif (with a Pro at C1')<sup>27</sup> occurs almost equally in the two types of shortest helices. Additionally however, there are instances in these helices, where the required three-center hydrogen bonding is present without any Pro at the C1' position, resulting in a pseudo-Pro box motif. The residues at C1' position in this motif have  $\phi, \psi$  values as in the Pro-box motif.

The capping patterns considered so far are of classical kind, meaning that they involve interactions between helical residues and residues extraneous to the helix at one of the two termini. In the shortest helices, however, as Nc and Cc are only three or four residues away from each other, there can also be hydrogen bonding across the helix, resulting in the motifs shown in Figure 9(c). In the three-length  $3_{10}$ -helices, several cases were found in which NH of Nc is hydrogen bonded to the CO group at C1' and, reciprocally, NH of C1' is hydrogen bonded to CO of Nc. The residues outside the helix actually define this motif, which in reality is a 4:4  $\beta$ -hairpin motif,<sup>28</sup> with the  $3_{10}$ -helix constituting the turn region (Figure 10(a)). This motif is unique only for the shortest  $3_{10}$ -helices. Across these helices, there can also be a  $6 \rightarrow 1$  hydrogen bond involving NH of C1' and CO of Nc ( $\pi$ -box motif). A few additional cases are found with the reciprocal pattern of hydrogen bonds ( $\pi'$ -box motif).

About 25% of all the three types of helices exhibit the N-terminal capping patterns given in Figure 9(a). However, while about 20% of C termini of long helices participate in the motifs in Figure 9(b), this Figure reduces to 10% when the shortest helices are considered. Thus compared to the longer  $\alpha$ -helices, lesser number of C-terminal capping motifs are observed in three-length 3<sub>10</sub>- and four-length  $\alpha$ -helices.

# Secondary structures on either side of the shortest helices

We also investigated the structural context (helix or strand as sequence neighbors) of the shortest helices. Results, given in Table 4, indicate that the shortest helices can be present in two distinct structural neighborhoods, one, in which there are no immediate secondary structural elements, making the shortest helix a connector between two secondary structures and another, in which the helix is contiguous to another secondary structure or sandwiched between two of them with no gap in between. The four-length  $\alpha$ -helix has a greater probability (79%) of occurring in isolation than a three-length 3<sub>10</sub>-helix (61%).

Short bits of  $3_{10}$ -helix are known to occur at the ends of  $\alpha$ -helices,<sup>29</sup> especially at the C-terminal end.<sup>6</sup> Table 4(category (a)) indicates that the  $3_{10}$ -helix is found more at the N-terminal end of an  $\alpha$ -helix, when there is usually a kink at the junction (Figure 10(b)) and interestingly, there are examples where such a helix is sandwiched between two regular  $\alpha$ -helices. A  $3_{10}$ -helix leading into a  $\beta$ -strand is found more than a four-length  $\alpha$ -helix in a similar situation. A few of the cases of  $\beta$ -strand



**Figure 7** (legend opposite)

leading into a  $3_{10}$ -helix are part of 4:4  $\beta$ -hairpin structures (Figure 10(a)) mentioned in the section entitled Hydrophobic interaction and capping motifs involving the shortest helices.

### Discussion

The shortest possible helices, three-length  $3_{10}$ and four-length  $\alpha$  (Figure 1), are very abundant in nature (Figure 2). Here we report an analysis of such helices. Specifically we focus on the extent to which (in terms of conformation and residue distribution) they resemble  $\beta$ -turns and longer helices, the origin of their stability, the tertiary structural context in which they occur (and a typical signature of their occurrence, especially when a  $3_{10}$ -helix occurs immediately before an  $\alpha$ -helix) and the perspectives the results provide on the folding process.

#### Conformational irregularity of 3<sub>10</sub>-helices

The  $\phi,\psi$  angles of residues in four-length  $\alpha$ -helices are distributed within a compact region (Figure 3), whereas the distribution of angles in  $3_{10}$ -helices is elongated along the direction of more negative  $\phi$  and positive  $\psi$  towards what is normally called the bridging region between helical and extended conformations.<sup>19</sup> Interestingly, this spread occurs because there is a systematic shift of the backbone torsion angles at positions N1 to N3. This is due to a shift in the  $\phi,\psi$  angles of N3 in three-length  $3_{10}$ -helices (or the C-terminal position of  $3_{10}$ -helices in general) by about  $-35^{\circ}$  and  $25^{\circ}$ , respectively, from the average values in the



**Figure 7**. Position-specific hydrophobic interactions in shortest (a)  $3_{10}$ - and (b)  $\alpha$ -helices. The interactions are between helical residues (Nc to Cc, indicated on top of each histogram) and the flanking residues (N10' to Nc and Cc to C10'). The ordinate is normalized (by the total number of interactions) and for the highest peak in each panel the number of hydrophobic interactions is given in parentheses.

remaining positions, which brings about two stabilizing effects in the structure (Figure 4 and Table 1). The O···O separation between two adjacent carbonyl groups at N2 and N3 is widened to reduce the electrostatic repulsion and the N–H···O angle between the NH group at Cc and the CO at N1 becomes more linear to improve the hydrogen bond stability. A similar deviation in  $\phi,\psi$  angles is not observed at the last position (N4) of a four-length  $\alpha$ -helix, as this would perturb the normal hydrogen bond geometry linking N1 carbonyl to NH of Cc and the longer distance across the  $\alpha$ -helix (with a radius of 2.3 Å, *vis-à-vis* 1.9 Å in a 3<sub>10</sub>-helix<sup>30</sup> would not allow the formation of an additional hydrogen bond (typical of 3<sub>10</sub>-helices) involving positions N2 and Cc.

#### Similarity to type I β-turn

The four-length  $\alpha$ -helix can be considered as an extension of  $\alpha$ -turn. Though in an analogous

manner the three-length  $3_{10}$ -helix can also be considered to be two consecutive type III turns, this is untenable as the observed  $\phi,\psi$  angles at N3 are atypical. In fact, the backbone angles at N2 and N3 are very similar to  $(-64^\circ, -27^\circ)$  and  $(-90^\circ, -7^\circ)$  observed at the two central residues of type I  $\beta$ -turn.<sup>5</sup> Hence a better description of a three-length  $3_{10}$ -helix is a type III turn followed by a type I turn.

Proposed originally by Venkatachalam,<sup>2</sup> type III β-turn was included by Lewis *et al.*<sup>3</sup> in an enlarged list of β-turns and also retained by Rose *et al.*<sup>4</sup> as a class of turns. However, Richardson<sup>6</sup> suggested eliminating type III as a distinct category as it occupies contiguous regions of  $\phi$ , $\psi$  space as type I β-turns. Our results indicate that a single, isolated type III turn is not likely to exist. This would require the carbonyl groups of two adjacent peptide groups to align in a parallel fashion, which is electrostatically less stable and can exist only when they are embedded within a 3<sub>10</sub>-helix where



(b)



**Figure 8**. Hydrophobic interactions (shown by dashed lines) in shortest (a)  $3_{10}$ - and (b)  $\alpha$ -helices. The former is represented by residues 18–23 in 1a15A and the latter by residues 327–333 in 1a8i\_. The atoms (N, C and O) of main-chain and polar residues are shown in gray shade.

the groups are held in position by intrahelical hydrogen bonds. In the three-length  $3_{10}$ -helix two peptide carbonyl groups (at positions N2 and N3, Figure 1(a)) are not involved in such hydrogen bonds and the last carbonyl group is tilted outwards. As such, a type III turn can only be considered as part of a  $3_{10}$ -helix and is not likely to exist in the isolated state, where it is likely to get converted to a type I  $\beta$ -turn.

The conformational similarity between  $3_{10}$ -helices and type I  $\beta$ -turn made us find out if they have compositional similarity also. For this, correlation coefficients were calculated between the percentage composition at each position of a three-length  $3_{10}$ -helix and the four positions of type I  $\beta$ -turn. As illustrated in Table 3(C), strong correlation was observed for Nc and N1 with the first turn and N3 with the second turn. This clearly spells out the sequence requirement for the formation of a three-length  $3_{10}$ -helix originating from a pair of overlapping  $\beta$ -turns.

#### Helix kink

Helices need not necessarily be linear; in fact, a large fraction of them is curved or kinked.<sup>31</sup> There is no clear understanding of the origin of the distortion in helix, except that the occurrence of a Pro inside the helix is known to introduce a kink in the structure.<sup>32,35</sup> Our results suggest a possible reason for helix distortion. Because of the local relaxation from typical helical values in the  $\phi,\psi$  angles at the last position of a 3<sub>10</sub>-helix, if there is an  $\alpha$ -helix immediately following a  $3_{10}$ -helix, the two helix axes may not be aligned. Indeed, when we look at the composite helices, a  $3_{10}$ -helix leading into an  $\alpha$ -helix (Table 4 and also the cases with longer  $3_{10}$ -helices), there is a bend at the last position of the  $3_{10}$ -helix. As an example, Figure 10(b) shows a 16-residue helix where the first seven residues adopt the 310-helical conformation and the next nine adopt the  $\alpha$ -helical conformation. The C-terminal 3<sub>10</sub>-helical residue has  $\varphi,\psi$  angles of  $(-103^\circ,-7^\circ)$  with a  $\Delta\varphi$  of about  $-40^{\circ}$  and  $\Delta \psi$  of 15° from the average 3<sub>10</sub>-helical conformation. The two halves of the helix deviate from linearity by an angle of 42°, as measured following the procedure given by Chakrabarti & Chakrabarti (1998).<sup>35</sup> Thus the kink angle would depend on  $\Delta \phi$  and  $\Delta \psi$  (the former, in particular) of the C-terminal 3<sub>10</sub>-helical residue, preceding an  $\alpha$ -helix in a contiguous manner.

#### Stabilizing interactions in the shortest helices

 $\beta$ -Turns may or may not be accompanied by a hydrogen bond between the CO group of residue *i* and NH of residue i + 3 in the turn.<sup>3</sup> However, a three-length 310-helix has two interlocked tight turns held together by two hydrogen bonds (Figure 1(a)), contributing to its stability. In addition, characteristic hydrophobic interactions also exist, which may not necessarily be of type i, i + 3. As the three-residue helix is short, the most prominent interaction is across it (Figures 7 and 8). Thus Cc can interact with both Nc (i, i + 4 interaction) and N1 (i, i + 3 interaction) and consequently this position has an over-representation of hydrophobic residues (Table 2). In the  $\alpha$ -helical counterpart, though N1 and Cc interact (i, i + 4 interaction), the other interactions for Nc and Cc are with a residue on the same side of the helix. For example, most of the interactions of Nc are with N2' and Cc with C3'. In contrast, a distinguishing feature of  $3_{10}$ -helices is the interaction of Cc with N1' (*i*, *i* + 5) interaction), which is almost absent in  $\alpha$ -helices. Also the interaction between N2 and Nc (*i*, i + 2interaction) is quite prominent in  $3_{10}$ -helices. The various interaction patterns exhibited clearly show that the shortest helices can be stabilized by hydrophobic interactions similar to single turns occurring at the two termini of longer helices.<sup>17</sup>

The common patterns in capping (hydrogen bonding and hydrophobic) interactions involving residues, N-terminal as well as C-terminal, in the shortest helices and regular  $\alpha$ -helices are shown in Figure 9. Although the degree of occurrence of a particular motif varies among different helix types (for example, the capping box in Figure 9(a) is not found in the shortest  $3_{10}$ -helix at all, whereas all the motifs in Figure 9(c) are exclusive to the shortest 310-helix), 25% N termini of all individual helix types adopt one of the several typical N-terminal motifs. However, when the C termini of the helices are considered, participation in a distinct motif (identified in Figure 9(b)) by the shortest helices, compared to the longer  $\alpha$ -helices, is reduced by about 50%. Thus the capping of the N-terminal end of the shortest helices is much more extensive than in the other direction.

#### Resemblance of shortest helices to N-terminal end of long helices and implications in protein folding

The potentials of different residues to occur in  $\alpha$ -helix and  $\beta$ -turns have long been established.<sup>5,36</sup> Here we have shown that the residue preference in type I  $\beta$ -turn is very similar to the N-terminal end of  $\alpha$ -helices (Table 3(E), Figure 6). Protein folding is thought to be a hierarchic process in which folding begins with structures that are local in sequence, which interact to produce intermediates of increasing complexity, growing ultimately into the native conformation.<sup>37</sup> With a similar distribution of amino acid residues, interactions important for the formation of turns and helix N terminus during folding are likely to be similar.

Being equivalent to a single helical turn, the shortest helices may have residue preferences similar to either the N or the C terminus of longer helices. In the former case, the shortest helices may be thought to have originated like a normal helix, which could not propagate along the sequence in the C-terminal direction, whereas the latter would indicate that long helices could also be initiated at the C-terminal end and then propagate in the N-terminal direction. Table 3 shows that the position-specific preference in the shortest helices compares better with the N-terminal rather than the C-terminal end of regular helices. In the previous section it has been shown that typical N-terminal motifs are found more than the C-terminal motifs in these helices. Our observations suggest that there may exist a pronounced directionality (N to C terminus of the polypeptide chain) in the way the local structures are formed during folding. Computer simulation studies of helix unfolding<sup>38-41</sup> or helix-helix transition<sup>42</sup> show preferential unfolding from the C-terminal, although some recent folding simulations<sup>43</sup> do not support directional propagation of helix, as suggested here. However, it should be noted that typical peptide sequences for which helix folding simulations exist are mostly homopolymers (often polyalanine) with no inherent directional bias in the sequence. Our study shows that protein helices have clear directional bias in their sequence and that may be responsible for directional preference of helix growth.

#### $\beta$ -Turns as helix nucleation sites and short 3<sub>10</sub>helices as early helix propagation intermediates

Helix-coil transition theories<sup>44,45</sup> consider helix formation as a series of elementary steps. The first step is helix nucleation; this is then followed by a series of helix propagation steps. Helix nucleation involves restricting the backbone  $\phi,\psi$  angles of three sequence contiguous residues (i + 1 through)i + 3) in the helical region with concomitant formation of a single i, i + 4 hydrogen bond (an  $\alpha$ -turn). The first helix propagation step, on the other hand, involves restricting the backbone  $\phi,\psi$ angles of one additional residue (i + 4) in the helical region and the addition of another hydrogen bond (i + 1, i + 5). In other words, helix propagation steps represent addition of additional overlapping  $\alpha$ -turns to the growing helix. The  $\alpha$ -turn is assumed to be the nucleation conformation because its elementary hydrogen bonding pattern is identical to long  $\alpha$ -helices. Similarly, the nucleation conformation for 310-helices is considered to be the  $\beta\text{-turn.}^{46-48}$ 

However, as can be observed from protein structures, the occurrence of the  $\alpha$ -turn is rare. This is because there is a large loss in conformational entropy in restricting three residues in a helical conformation that cannot be compensated by the formation of only one hydrogen bond or any other associated favorable non-bonded interactions.  $\beta$ -turns, on the other hand, restrict the conformational space of only two residues and as a result they occur frequently in proteins. If the formation of an  $\alpha$ -turn is energetically much less favorable than the  $\beta$ -turn, can  $\beta$ -turns be the effective nucleating conformations for  $\alpha$ -helices? Correlation coefficients between  $\beta$ -turns and the four-length  $\alpha$ -helix (Table 3(E)) showed strong correlation at the N-terminal (between Nc, N1 positions in the helix and i, i + 1 positions in the turn), as was seen between  $\beta$ -turns and the three-length 310-helix. In fact this N-terminal correlation was seen for all helices, independent of type or length, indicating that β-turns can indeed be the nucleation conformation of all helices.

The propagation of a  $\beta$ -turn into  $3_{10}$ -helices, by addition of overlapping  $\beta$ -turns, was inferred from the fact that a three-length  $3_{10}$ -helix is correlated with two overlapping  $\beta$ -turns and a fourlength  $3_{10}$ -helix is correlated with the three-length  $3_{10}$ -helix and an overlapping  $\beta$ -turn. In an analogous way can a  $\beta$ -turn propagate into a four-length  $\alpha$ -helix? Four-length  $\alpha$  and four-length  $3_{10}$ -helices were found to be highly correlated (Table 3(G)), indicating that the two helical forms are interconvertible (by reshuffling hydrogen bonds and a slight shift in  $\phi$ , $\psi$  angles). Clearly, a four-length



Figure 9 (legend opposite)

 $3_{10}$ -helix is therefore the potential precursor to the four-length  $\alpha$ -helix, linking a  $\beta$ -turn to  $\alpha$ -helices.

The observed inter-correlation between  $\beta$ -turns, three-length  $3_{10}$ -helices and four-length  $\alpha$  and  $3_{10}$ -helices lead to a comprehensive model of  $\alpha$ -helix nucleation and propagation, shown in Figure 11. The nucleation step for the formation of both  $\alpha$  and 3<sub>10</sub>-helices involves the formation of an isolated  $\beta$ -turn. This then can propagate into a longer  $3_{10}$ -helix by adding successive  $\beta$ -turns. However, intrinsic instability of longer 3<sub>10</sub>-helices makes helix propagation difficult beyond n = 4. In addition, the four-length  $3_{10}$ -helix can rearrange its backbone hydrogen bonds and dihedral angles into a four-length  $\alpha$ -helix. Thus the formation of four-length  $\alpha$ -helix occurs in a concerted manner from three-length  $3_{10}$ -helix. The  $\alpha$ -helix can then propagate by addition of successive  $\alpha$ -turns. From an analysis of hydrated  $\alpha$ -helical segments in proteins, Sundaralingam and Sekharudu<sup>49</sup> had earlier proposed that reverse turns could act as intermediates in the folding-unfolding of helices. In addition, based on double-labeled ESR data (along with CD and NMR data) on short peptides,

Millhauser (1995)<sup>50</sup> put forward a proposal of positioning the  $3_{10}$ -helix along the thermodynamic folding pathway of helices (random coil  $\leftrightarrow$  nascent helix  $\leftrightarrow 3_{10}$ -helix  $\leftrightarrow \alpha$ -helix). The picture that emerges from our work encompasses both these views. It is worth noting that  $\alpha$ -aminoisobutyric acid (Aib), a non-coded amino acid that strongly favors the helical state,<sup>51</sup> also exhibits a lengthdependent  $3_{10}$ - to  $\alpha$ -helical transition.<sup>52</sup> A recent review<sup>53</sup> summarizes the  $3_{10}$ - $\alpha$ -helical equilibrium in short peptides.

The helix nucleation parameter in the Zimm– Bragg model,<sup>44</sup>  $\sigma$ , is the equilibrium constant connecting a  $\alpha$ -turn and the statistical coil. Analysis of experimental unfolding data of peptides, when analyzed by the Zimm–Bragg model, typically yields a rather low (~0.003) value for  $\sigma$ .<sup>54</sup> However, if indeed helix nucleation bypasses the  $\alpha$ -turn, as suggested in Figure 11, this low number may not necessarily reflect the equilibrium constant of isolated  $\alpha$ -turn formation. Isolated  $\beta$ -turns are often observed in short peptide fragments or denatured proteins,<sup>55</sup> and therefore in all likelihood, the bottleneck in helix formation is the





**Figure 10.** (a) Cartoon representation of 4:4 β-hairpin motif in the structure 1a2yB. Residues 73–75 constitute the 3<sub>10</sub>-helix; a pair of intra-strand hydrogen bonds links residues at Nc and C1', which are shown in ball-and-stick; (b) A nine-length α-helix (residues 325–333) immediately following a seven-length 3<sub>10</sub>-helix (318–324) (shown in darker shade) in 1aoxA, the composite helix having a kink at position 324 with  $\phi_{\nu}\psi$  angles of  $(-103.2^{\circ}, -6.8^{\circ})$ .

Figure 9. Schematic representations of capping patterns in (a) N-terminal, (b) C-terminal and (c) involving both N- and C-termini in three types of helices-3-length  $3_{10}$ , 4-length  $\alpha$ - and longer  $\alpha$ - helices. Each motif has a name (found in the literature, or assigned here based on standard conventions) and the three numbers in square brackets correspond to the percentage occurrence of the three types of helices mentioned above. Hydrogen bonds and hydrophobic interactions typical of the motif are shown in solid and broken lines, respectively. Motifs in (c) are found only in 310-helices and the two intrahelical hydrogen bonds are also shown in thin solid lines. For 310-helices, N4 is Cc in (a) and C4 is Nc in (b). In some motifs, restrictions on the type of residue or the secondary structure or backbone torsion angle at Nc, Cc and C1' are indicated. Depending on whether the hydrogen bond involves the side chain, the mainchain NH or CO, the corresponding line starts from the middle of the circle representing the helix position, or before it or following it.

shortest  $3_{10}$ -helical intermediates in Figure 11, giving rise to low values of  $\sigma$ . Independent support for our model comes from computer simulations of helix formation.<sup>43</sup> A long time simulation of reaction pathway for coil-to-helix transition in polyalanine showed formation of isolated  $\beta$ -turns (not  $\alpha$ -turns) at early stages of transition. In addition, short (and not long)  $3_{10}$ -helices were observed as intermediates. Interestingly, all the early equilibrium intermediates to  $\alpha$ -helix, as proposed here ( $\beta$ -turn, three and four-length  $3_{10}$ -helices), are populated substantially in proteins, as if these equilibrium intermediates have been frozen along the helix folding pathway due to tertiary structural demands of the global structure.

# Tertiary structural context of the shortest helices

An earlier study on structural characterization of protein helices<sup>32</sup> had reported that a large number of short  $3_{10}$ -helices occur mostly at  $\alpha$ -helix termini, which has since become the generally accepted view. Contrary to this notion, among all right-handed three-length  $3_{10}$ -helices (for  $3_{10}$ -helix

|              | Three-length 31                  | <sub>0</sub> -helix (total 2140) | Four-length α-helix (total 805) |                               |        |      |
|--------------|----------------------------------|----------------------------------|---------------------------------|-------------------------------|--------|------|
|              | Туре                             | Number                           | %                               | Туре                          | Number | %    |
| Category (a) | Connected 3 <sub>10</sub> -helix | 826                              | 38.6                            | Connected <i>a</i> -helix     | 173    | 21.5 |
| 0,00         | $(3_{10}) + \alpha$              | 207                              | 25.1                            | $(\alpha) + 3_{10}$           | 46     | 26.6 |
|              | $\alpha + (3_{10})$              | 138                              | 16.7                            | $3_{10} + (\alpha)$           | 39     | 22.5 |
|              | $(3_{10}) + \beta$               | 160                              | 19.4                            | $(\alpha) + \beta$            | 17     | 9.8  |
|              | $\beta + (3_{10})$               | 131                              | 15.9                            | $\beta + (\alpha)$            | 34     | 19.7 |
|              | $(3_{10}) + B$                   | 58                               | 7.0                             | $(\alpha) + B$                | 16     | 9.3  |
|              | $B + (3_{10})$                   | 37                               | 4.5                             | $B + (\alpha)$                | 15     | 8.7  |
|              | $\alpha + (3_{10}) + \alpha$     | 13                               | 1.6                             | $3_{10} + (\alpha) + 3_{10}$  | 1      | 0.6  |
|              | $\beta + (3_{10}) + \beta$       | 19                               | 2.3                             | $\beta + (\alpha) + \beta$    | 2      | 1.2  |
|              | $\alpha + (3_{10}) + \beta$      | 11                               | 1.3                             | $3_{10} + (\alpha) + \beta$   | 0      | 0.0  |
|              | $\beta + (3_{10}) + \alpha$      | 23                               | 2.8                             | $\beta + (\alpha) + 3_{10}$   | 3      | 1.7  |
|              | $\alpha + (3_{10}) + B$          | 7                                | 0.9                             | $3_{10} + (\alpha) + B$       | 0      | 0.0  |
|              | $B + (3_{10}) + \alpha$          | 8                                | 1.0                             | $B + (\alpha) + 3_{10}$       | 0      | 0.0  |
|              | $\beta + (3_{10}) + B$           | 6                                | 0.7                             | $\beta + (\alpha) + B$        | 0      | 0.0  |
|              | $B + (3_{10}) + \beta$           | 6                                | 0.7                             | $B + (\alpha) + \beta$        | 0      | 0.0  |
|              | $B + (3_{10}) + B$               | 2                                | 0.2                             | $B + (\alpha) + B$            | 0      | 0.0  |
| Category (b) | Isolated 3 <sub>10</sub> -helix  | 1314                             | 61.4                            | Isolated $\alpha$ -helix      | 632    | 78.5 |
|              | $\alpha - \alpha$ connector      | 88                               | 6.7                             | $\alpha - \alpha$ connector   | 33     | 5.2  |
|              | $\beta - \beta$ connector        | 103                              | 7.8                             | $\beta - \beta$ connector     | 27     | 4.3  |
|              | $\alpha - \beta$ connector       | 87                               | 6.6                             | $\alpha - \beta$ connector    | 27     | 4.3  |
|              | $\beta - \alpha$ connector       | 78                               | 5.9                             | $\beta - \alpha$ connector    | 37     | 5.9  |
|              | $\alpha - 3_{10}$ connector      | 21                               | 1.6                             | $\alpha - 3_{10}$ connector   | 14     | 2.2  |
|              | $3_{10}-\alpha$ connector        | 16                               | 1.2                             | $3_{10} - \alpha$ connector   | 13     | 2.1  |
|              | $\beta - 3_{10}$ connector       | 22                               | 1.7                             | $\beta - 3_{10}$ connector    | 10     | 1.6  |
|              | $3_{10}-\beta$ connector         | 24                               | 1.8                             | $3_{10}-\beta$ connector      | 11     | 1.7  |
|              | $3_{10}$ - $3_{10}$ connector    | 1                                | 0.1                             | $3_{10}$ - $3_{10}$ connector | 5      | 0.8  |

Table 4. Occurrences of different types of secondary structures around shortest helices

The overall percentage values in two categories (a) and (b) (for example, 38.6 and 61.4 for three-length  $3_{10}$ -helix) are with respect to the total number (2140), whereas the individual values within the two categories are relative to the total numbers (826 and 1314) in them. The two categories are distinguished as follows: (a), when any (or both) of Nc and Cc positions are part of neighboring helix or  $\beta$ -strand (in which a  $\beta$ -bridge with DSSP notation "B" is also included); (b) contains the rest; under (b), a few sub-categories have been identified as connectors when two secondary structural elements occur within four flanking positions (N1'  $\rightarrow$  N4' and C1'  $\rightarrow$  C4') of the helix.



**Figure 11.** A schematic description of proposed helix nucleation and propagation scheme in proteins. Shaded circles indicate helical backbone dihedral angles (dark:  $\alpha$ - and light:  $3_{10}$ -) and lines connecting non-contiguous residues indicates backbone hydrogen bonds. Arrows indicate the proposed pathways to longer helices (thicker the arrow, stronger the pathway).

variants, see Pal *et al.*<sup>20</sup> only  $\sim 20\%$  occur as  $\alpha$ -helix termini (Table 4), which is  $\sim$  50% of all three-length 310-helices connected contiguously to another secondary structure; for the rest, the contiguous secondary structure is a  $\beta$ -strand or a  $\beta$ -bridge. More importantly, more than 60% of total threelength 3<sub>10</sub>-helices occur independent of any other contiguous secondary structure. Occurring as an  $\alpha$ -helix terminus, a three-length 3<sub>10</sub>-helix can provide a unique geometry for the terminal helix turn. Occurring in isolation, often three-length 3<sub>10-</sub> -helices participate in reversal of peptide chain direction, including participation in established motifs that induce such chain reversal (4:4 β-hairpin motif in Figure 9). Collective experimental evidence, from several proteins, also point out that short 3<sub>10</sub>-helices may play an important role in the overall folding and stability<sup>56–58</sup> or function<sup>59–61</sup> of proteins.

### Conclusion

In conclusion, an analysis of the shortest helices in protein structures has provided several useful insights into protein structure and folding. Far from being a regular structure, the DNA helix is known to be capable of accommodating a large number of distortions, which have been parameterized.  $^{\rm 62}$  Here we show that one of the counterparts in protein structures, viz., the  $3_{10}$ -helix, can have a significant deviation in the backbone torsion angle at the last position (or the first position, in some  $3_{10}$ -helix variants,<sup>20</sup> this being an interesting manifestation of the interplay of two types of interactions, electrostatics and hydrogen bonding. The distortion can explain the kink that is observed when a  $\alpha$ -helix follows a  $3_{10}$ -helix and the information should be useful in protein modeling. The similarity in the residue composition of the shortest helices with type I  $\beta$ -turn and the N-terminal end of regular helices suggests that turns and helices may be nucleated in an analogous fashion during the folding, and depending on the residues that follow, a turn can exist as such or extend to a helix.

Finally, using clues from site–site correlation coefficients of amino acid composition and the frequency of occurrence in the database, we propose an important role of three and four-length  $3_{10}$ -helices in  $\alpha$ -helix nucleation. At variance from the general notion that  $\alpha$ -turns nucleate  $\alpha$ -helices, our model (Figure 11) stipulates formation of a  $\beta$ -turn to be the helix nucleation event; this is then followed by sequential formation of a three and four-length  $3_{10}$ -helix. The shortest  $\alpha$ -helix (four-length) is formed from the four-length  $3_{10}$ -helix, which then can propagate by adding  $\alpha$ -turns.

### **Materials and Methods**

The culledpdb data set (March, 1999 version),<sup>63,64</sup> containing 1085 protein chains with less than 30% sequence identity and  $\leq 2.5$  Å resolution, was used in this analysis. Secondary structure assignments were made using the Define Secondary Structure of Proteins (DSSP) program.<sup>65</sup> A Protein Data Bank (PDB) file is mentioned in the text as the four-letter PDB code (in lowercase letters) followed by the chain identifier (in uppercase letters); when there is no chain ID an underscore (\_) is used.

The nomenclature for the three-length  $3_{10}$ -helices and their flanking residues is as follows:

$$\dots N2' - N1' - Nc - N1/C3 - N2/C2 - N3/C1 - Cc - C1' - C2' \dots$$

where N1/C3 through N3/C1 belong to helix proper, Nc and Cc represent helix capping positions, while the primed residues represent residues preceding and succeeding the helix. A position within the shortest helix can be labeled counting from the N-terminal or the C-terminal end. Thus the first position in the  $3_{10}$ -helix is N1 or C3 and the label N1/C3 is used to designate it. However, for brevity, N1 is also used synonymously in the text. The labels in  $\alpha$ -helix are given in a similar way and shown in Figure 1.

As in Ref. 5, turns were characterized as four consecutive residues (*i* to *i* + 3) with the distance between  $C_i^{\alpha}$ and  $C_{i+3}^{\alpha} < 7$  Å, and where the central residues were not helical. To constitute a type I  $\beta$ -turn the  $\phi,\psi$  angles of residues *i* + 1 and *i* + 2 had to be within 30° of the ideal values ((-60°, - 30°) and (-90°,0°)), with one angle being allowed to deviate by 45°. In addition to hydrogen-bonded  $\beta$ -turns (for which the two central residues would normally appear with designation TT in DSSP output) this definition would also include non-hydrogen bonded turns. Two consecutive turns were considered to be part of multiple turns when they had a common central residue; such turns were excluded to retain only the isolated  $\beta$ -turns.

The propensity of a given residue to occur at a specific position (say, helix Nc) of a secondary structure was calculated as the ratio of the actual number of observations to the expected number of observations, where the expected number of observations is given by  $(n_{xaa}/n_{total}) \times n^*$ , where  $n_{xaa}$  is the total number of residue type Xaa in the data set,  $n_{\text{total}}$  is total number of all residues in the data set, and  $n^*$  is the total number of residues in the data set at that particular position. In calculating amino acid composition, over-representation was estimated as described.18 For each amino acid at a specific helix position, a z-value was calculated. If  $|z| \ge 1.96$  (5% significance level), the observed number of occurrences was considered to deviate significantly from its expected value. Negative values of z indicate under-representation and positive values indicate overrepresentation.

Two hydrophobic residues were considered to be making a contact when the distance between any two atoms of either residue was less than or equal to the sum of their van der Waals radii plus the diameter of a water molecule, 2.8 Å.<sup>17</sup> In addition to the typical hydrophobic residues (Ala, Val, Ile, Leu, Met, Phe, Trp, Cys, Tyr, Pro and His) Lys and Arg are also considered hydrophobic as most of their contacts within the helix involve non-polar atoms. Hydrogen bonded partners were assigned using the program HBPLUS.<sup>66</sup> Molecular diagrams were made using MOLSCRIPT.<sup>67</sup>

#### Acknowledgements

The financial support for the work was provided by the Council of Scientific and Industrial Research, India. Additional support was provided by the special coordination fund promoting science and technology from ministry of education, culture, sports, science and technology, Japan.

#### References

- Nataraj, D. V., Srinivasan, N., Sowdhamini, R. & Ramakrishnan, C. (1995). α-Turns in protein structures. *Curr. Sci.* 69, 434–447.
- Venkatachalam, C. M. (1968). Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. *Biopolymers*, 6, 1425–1436.
- Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1973). Chain reversals in proteins. *Biochim. Biophys. Acta*, 303, 211–229.
- Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985). Turns in peptides and proteins. *Advan. Protein Chem.* 37, 1–109.
- Hutchinson, E. G. & Thornton, J. M. (1994). A revised set of potentials for β-turn formation in proteins. *Protein Sci.* 3, 2207–2216.

- 6. Richardson, J. S. (1981). The anatomy and taxonomy of protein structure. *Advan. Protein Chem.* **34**, 167–339.
- Lim, V. I. (1974). Algorithms for prediction of α-helical and β-structural regions of globular proteins. *J. Mol. Biol.* 88, 873–894.
- 8. Huang, E. S., Subbiah, S. & Levitt, M. (1995). Recognizing native folds by the arrangement of hydrophobic and polar residues. *J. Mol. Biol.* **252**, 709–720.
- Sun, S. J., Thomas, P. D. & Dill, K. A. (1995). A simple protein-folding algorithm using a binary code and secondary structure constraints. *Protein Eng.* 8, 769–778.
- West, M. W. & Hecht, M. H. (1995). Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. *Protein Sci.* 4, 2032–2039.
- Richardson, J. S. & Richardson, D. C. (1988). Amino acid preferences for specific locations at the ends of α-helices. *Science*, **240**, 1648–1652.
- 12. Presta, L. G. & Rose, G. D. (1988). Helix signals in proteins. *Science*, **240**, 1632–1641.
- Kumar, S. & Bansal, M. (1998). Dissecting α-helices: position-specific analysis of α-helices in globular proteins. *Proteins*, **31**, 460–476.
- Petukhov, M., Muñoz, V., Yumoto, N., Yoshikawa, S. & Serrano, L. (1998). Position dependence of nonpolar amino acid intrinsic helical propensities. *J. Mol. Biol.* 278, 279–289.
- 15. Penel, S., Hughes, E. & Doig, A. J. (1999). Side-chain structures in the first turn of the  $\alpha$ -helix. *J. Mol. Biol.* **287**, 127–143.
- Penel, S., Morrison, R. G., Mortishire-Smith, R. J. & Doig, A. J. (1999). Periodicity in α-helix lengths and C-capping preferences. J. Mol. Biol. 293, 1211–1219.
- 17. Aurora, R. & Rose, G. D. (1998). Helix capping. *Protein Sci.* 7, 21–38.
- Karpen, M. E., De Haseth, P. L. & Neet, K. E. (1992). Differences in the amino acid distributions of 3<sub>10</sub>-helices and α-helices. *Protein Sci.* 1, 1333–1342.
- 19. Chakrabarti, P. & Pal, D. (2001). The interrelationships of side-chain and main-chain conformations in proteins. *Prog. Biophys. Mol. Biol.* **76**, 1–102.
- Pal, L., Basu, G. & Chakrabarti, P. (2002). Variants of 3<sub>10</sub>-helices in proteins. *Proteins*, 48, 571–579.
- Pal, L. & Basu, G. (1999). Novel protein structural motifs containing two-turn and longer 3<sub>10</sub>-helices. *Protein Eng.* 12, 811–814.
- Doig, A. J., MacArthur, M. W., Stapley, B. J. & Thornton, J. M. (1997). Structures of N-termini of helices in proteins. *Protein Sci.* 6, 147–155.
- Dasgupta, S. & Bell, J. A. (1993). Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. *Int. J. Peptide Res.* 41, 499–511.
- Harper, E. T. & Rose, G. D. (1993). Helix stop signals in proteins and peptides: the capping box. *Biochemistry*, 32, 7605–7609.
- Seale, J. W., Srinivasan, R. & Rose, G. D. (1994). Sequence determinants of the capping box, a stabilizing motif at the N-termini of alpha-helices. *Protein Sci.* 3, 1741–1745.
- Schellman, C. (1980). The alpha-L conformation at the ends of helices. In *Protein Folding* (Jaenicke, R., ed.), pp. 53–61, Elsevier/North Holland, New York.
- Prieto, J. & Serrano, L. (1997). C-capping and helix stability: the Pro C-capping motif. J. Mol. Biol. 274, 276–278.

- Sibanda, B. L., Blundell, T. L. & Thornton, J. M. (1989). Conformation of β-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J. Mol. Biol. 206, 759–777.
- Baker, E. N. & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. *Prog. Biophys. Mol. Biol.* 44, 97–179.
- 30. Schulz, G. E. & Schirmer, R. H. (1984). *Principles of Protein Structure*, Springer-Verlag, New York.
- Blundell, T., Barlow, D., Borkakoti, N. & Thornton, J. (1983). Solvent-induced distortions and the curvature of α-helices. *Nature*, **306**, 281–283.
- 32. Barlow, D. J. & Thornton, J. M. (1988). Helix geometry in proteins. J. Mol. Biol. 201, 601–619.
- Woolfson, D. N. & Williams, D. H. (1990). The influence of proline residues on α-helical structures. *FEBS Letters*, 277, 185–188.
- Kumar, S. & Bansal, M. (1996). Structural and sequence characteristics of long α-helices in globular proteins. *Biophys. J.* 71, 1574–1586.
- 35. Čhakrabarti, P. & Chakrabarti, S. (1998). C-H···O hydrogen bond involving proline residues in  $\alpha$ -helices. *J. Mol. Biol.* **284**, 867–873.
- Chou, P. Y. & Fasman, G. D. (1974). Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. *Biochemistry*, 13, 211–222.
- Baldwin, R. L. & Rose, G. D. (1999). Is protein folding hierarchic? I. Local structure and peptide folding. *Trends Biochem. Sci.* 24, 26–33.
- Soman, K. V., Karimi, A. & Case, D. (1991). Unfolding of an α-helix in water. *Biopolymers*, **31**, 1351–1361.
- Tirado-Rives, J. & Jorgensen, W. L. (1991). Molecular dynamics simulation of the unfolding of an α helical analog of ribonuclease A S-peptide in water. *Biochemistry*, **30**, 3864–3871.
- Daggett, V. & Levitt, M. (1992). Molecular-dynamics simulations of helix denaturation. J. Mol. Biol. 223, 1121–1138.
- Hummer, G., Garcia, A. E. & Garde, S. (2001). Helix nucleation kinetics from molecular simulations in explicit solvent. *Proteins: Struct. Funct. Genet.* 42, 77–84.
- 42. Basu, G., Kitao, A., Hirata, F. & Go, N. (1994). A collective motion description of the  $3_{10}$ - $/\alpha$ -helix transition: implications for a natural reaction coordinate. *J. Am. Chem. Soc.* **116**, 6307–6315.
- Huo, S. & Straub, J. E. (1999). Direct computation of long time processes in peptides and proteins: reaction path study of the coil-to-helix transition in polyalanine. *Proteins: Struct. Funct. Genet.* 36, 249–261.
- 44. Zimm, B. H. & Bragg, J. K. (1959). Theory of phase transition between helix and random coil in polypeptide chains. *J. Chem. Phys.* **31**, 526–535.
- Lifson, S. & Roig, A. (1961). On the theory of helixcoil transition in polypeptides. J. Chem. Phys. 34, 1963–1974.
- Basu, G. & Kuki, A. (1992). Conformational preferences of oligopeptides rich in alpha-aminoisobutyric acid. II. A model for the 3<sub>10</sub>-/alpha-helix transition with composition and sequence sensitivity. *Biopolymers*, **32**, 61–71.
- Rohl, C. A. & Doig, A. J. (1996). Models for the 3<sub>10</sub>-helix/coil, pi-helix/coil, and alpha-helix/3<sub>10</sub>-helix/coil transitions in isolated peptides. *Protein Sci.* 5, 1687–1696.

- Sheinerman, F. B. & Brooks, C. L., III (1995). 3<sub>10</sub>-helices in peptides and proteins as studied by modified Zimm-Bragg theory. J. Am. Chem. Soc. 117, 10098–10103.
- Sundaralingam, M. & Sekharudu, Y. C. (1989). Waterinserted α-helical segments implicate reverse turns as folding intermediates. *Science*, 244, 1333–1337.
- Millhauser, G. L. (1995). Views of helical peptides: a proposal for the position of 3<sub>10</sub>-helix along the thermodynamic folding pathway. *Biochemistry*, 34, 3873–3877.
- Karle, I. L. & Balaram, P. (1990). Structural characteristics of alpha-helical molecules containing Aib residues. *Biochemistry*, 29, 6747–6756.
- Pavone, V., Benedetti, E., Di Blasio, B., Pedone, C., Santini, A., Bavoso, A. *et al.* (1990). Critical mainchain length for conformational conversion from 3(10)-helix to alpha-helix in polypeptides. *J. Biomol. Struct. Dyn.* 7, 1321–1331.
- 53. Bolin, K. A. & Millhauser, G. L. (1999).  $\alpha$  and 3<sub>10</sub>: the split personality of polypeptide helices. *Acc. Chem. Res.* **32**, 1027–1033.
- Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M. & Baldwin, R. L. (1991). Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. *Biopolymers*, **31**, 1463–1470.
- Dyson, H. J. & Wright, P. E. (1998). Equilibrium NMR studies of unfolded and partially folded proteins. *Nature Struct. Biol.* 5, 499–503.
- Worthylake, D. K., Wang, H., Yoo, S., Sundquist, W. I. & Hill, C. P. (1999). Structures of the HIV-1 capsid protein dimerization domain at 2.6 Å resolution. *Acta Crystallog. sect. D*, 55, 85–92.
- Martinez, J. C. & Serrano, L. (1999). The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. *Nature Struct. Biol.* 6, 1010–1016.

- Demarest, S. J., Boice, J. A., Fairman, R. & Raleigh, D. P. (1999). Defining the core structure of the alphalactalbumin molten globule state. *J. Mol. Biol.* 294, 213–221.
- 59. Xu, R. M., Jokhan, L., Cheng, X., Mayeda, A. & Krainer, A. R. (1997). Crystal structure of human UP1, the domain of hnRNP A1 that contains two RNA-recognition motifs. *Structure*, 5, 559–570.
- Ventura, S., Villegas, V., Sterner, J., Larson, J., Vendrell, J., Hershberger, C. L. & Aviles, F. X. (1999). Mapping the pro-region of carboxypeptidase B by protein engineering. Cloning, overexpression, and mutagenesis of the porcine proenzyme. *J. Biol. Chem.* 274, 19925–19933.
- Hashimoto, Y., Kohri, K., Kaneko, Y., Morisaki, H., Kato, T., Ikeda, K. & Nakanishi, M. (1998). Critical role for the 3<sub>10</sub> helix region of p57(Kip2) in cyclindependent kinase 2 inhibition and growth suppression. *J. Biol. Chem.* 273, 16544–16550.
- Dickerson, R. E. (1983). The DNA helix and how it is read. Sci. Am. 249, 94–111.
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H. et al. (2000). The Protein Data Bank. Nucl. Acids Res. 28, 235–242.
- Hobohm, U., Scharf, M. & Schneider, R. (1993). Selection of representative protein data sets. *Protein Sci.* 1, 409–417.
- Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers*, 22, 2577–2637.
- McDonald, I. K. & Thornton, J. M. (1994). Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793.
- 67. Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–950.

Edited by F. E. Cohen

(Received 24 June 2002; received in revised form 30 September 2002; accepted 12 November 2002)