
1

A Goal-Oriented Approach to 
Software Obfuscation Techniques

Software Engineering Lab.
D2 Hiroki Yamauchi

A Case Study to Hide Software
Watermarking

2

Background

Recent software products often contain “Intellectual 
Property” of a software development company.

In-house software component library
Algorithms
Customer Data

Such intellectual properties often stolen when the 
company outsources a part of development.

Intellectual properties should be protected by 
software protection techniques.

3

Software Protection Techniques 1/2

Obfuscation
Translates a program so that it is more difficult to 
understand, yet is functionally equivalent to the original.

int n=105,k,i=1,p=1;
L1: if(i <= 31){ for(;;){
k=n–2*i+2;p=(p*k-p)/2/i;
if(++i>31){k=n–2*i+2;
p=(p*k-p)/2/i++; }else 
break;
p=p*(n–2*i+1)/2/i++;} 
goto L1;}
return p;

int n=105,k,i=1,p=1;
L1: if(i <= 31){ for(;;){
k=n–2*i+2;p=(p*k-p)/2/i;
if(++i>31){k=n–2*i+2;
p=(p*k-p)/2/i++; }else 
break;
p=p*(n–2*i+1)/2/i++;} 
goto L1;}
return p;

Program for 52C31 Obfuscated program

Translation

int n = 52;
int i, k, p=1;

for(i=1;i<=31;i++)
{

k = n – i + 1;
p = p * k / i;

}
return p;

int n = 52;
int i, k, p=1;

for(i=1;i<=31;i++)
{

k = n – i + 1;
p = p * k / i;

}
return p;

4

Software Protection Techniques 2/2

Software Watermarking
A process of embedding a small amount of identifying 
information into a program.

Example of static code watermark

When the program was stolen, watermark proves the fact of 
program theft.

001101
101110

0101001

001101
101110

0101001

1101101

Java classfile

Address Instruction

1000  03 iconst 0
1001  84 01 21 20 iinc 01 21
1004  1C 10 01 iload 2
1007  10 90 00 0 bipush 90
100B  80 ior

Mnemonic Watermark

01
00100001
-
10010000
110

H I

R
O

5

Problem
There is no systematic method on how to apply software 

protection techniques appropriately.

Which obfuscation technique
should be used?

Which part of the program
should be obfuscated?

How much effects of
obfuscation can be expected?

CallRel
Obfus.

CtlFlow
Obfus.

Data
Obfus.

Name
Obfus.

...?

int fact=1, upper=16
int i; 
for(i=1;i<=upper;i++){

fact *= i;
}
printf(“%d”,fact);

?

?
Obfuscated
Program

Crack

These problems are caused because the conventional techniques
do not count the purpose and target of the cracker.

6

Research Objective

Establish a goal-oriented analysis framework for
proper use of the existing obfuscation techniques.
Key idea

Assume an imaginary cracker with his purpose and 
target (i.e., goal).
Break down the goal into pieces, each of which an 
appropriate obfuscation is applied to.

Approach
Step1. Determine a capability of an imaginary cracker.
Step2. Identify a cracker’s goal.
Step3. Conduct a goal-oriented analysis.
Step4. For every terminal sub-goal, select an obfuscation.
Step5. Apply the selected obfuscations to the program.



2

7

Case study
We have applied the proposed framework to hide 

a watermark embedded in a program.

Target program
A Java program with static code watermark 
embedded by jmark [1].

Cracker’s Capability Model
Knowledge: Know jmark algorithm.
Observation: Watch class file and input/output values.
Control: Use debuggers and disassemblers.

Goal
Find a watemark

[1] jmark home page , http;//se.naist.jp/jmark/ 8

Goal-Oriented Analysis

In this case study, We protect software from an 
attack based on opcode/operand frequency.

Find a watermark

Collusion attack

One-user
attack

Static attack

Static collusion
attack

Dynamic collusion
attack

Dynamic (decoder)
attack

Opcode
frequency

Operand
frequency

Countermeasures
Proposed  [2]

[2] K. Fukushima, T. Tabata, K. Sakurai, “A Software Fingerprinting Scheme for Java 
Using Class Structure Transformation”, IPSJ-Journal, Vol.46 No.8, pp. 2042-2052, 
2005.

A goal tree for finding a watermark

9

Opcode/operand frequency attack

An ordinal Java class has a 
biased opcode/operand 
frequency, while 
watermarked method 
shows unique frequency.

Preliminary analysis with 
rt.jar (a Java runtime 
library)

53.28%rest

2.51%iconst_010
2.76%iload9
2.98%ldc8
3.24%aload7
3.31%invokespecial6
3.57%aload_15
4.49%dup4
5.50%getfield3
7.85%invokevirtual2
10.01%aload_01

rt.jarRank

10

Opcode/operand frequency of watermarked method

Find unique instruction and
its frequency, check out
operands.

And then, search around
this code, watermark
(candidate) values can be 
found.

40.82%rest

3.06%ldc10
3.06%iconst_39
3.06%iconst_08
6.12%goto7
6.12%iinc6
6.12%iload_35
6.12%iload_24
6.12%iload_13
7.14%bipush2
12.24%invokevirtual1

watermaked methodRank

84 03 89 | iinc 03h 89h
84 02 5E | iinc 02h 5Eh
84 03 78 | iinc 03h 78h
84 02 45 | iinc 02h 45h
84 03 78 | iinc 03h 78h
84 02 45 | iinc 02h 45h

* iinc: increment instruction

Dissassemble code

11

A technique to hide a watermark

Add dummy opcodes to all the methods so that 
opcode frequency of all methods become similar 
each other.

Java class file

（C）HIRO（C）HIRO

Java method having
equal opcode frequency.

Watermarked
method

12

Result of hiding a watermark
Dummy opcodes were added to 10 methods of a Java class 
file.

（C） HIRO（C） HIRO

Opcode No.

Fr
eq

ue
nc

y

It became quite difficult to find a watermarked method by 
inspecting opcode frequency.



3

13

Summary and Future work

We have applied the proposed framework to hide a 
watermark embedded in a program.

Define a threat model and imaginary attacks.
Introduce a simple technique to hide a watermark.

Evaluate the proposed framework with other 
programs quantitatively.
Investigate optimal obfuscation.

Dependency analysis among obfuscation techniques.

14

Thank you, That’s ALL.


