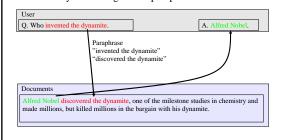
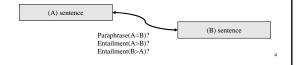
Recognizing paraphrase and entailment relationships between complex sentences based on logical relations


> Shuya ABE Computational Linguistics Lab. 2006-7-20

Background

- · Needs of accessibility to information
 - Some information was written in natural language.
 - Textbook, novel, chat and mail are written in natural language.
 - Movie, music and game aren't written in natural language.
 - Using natural language to request a system.
 - system: search engine, QA system, machine translation system.


Appropriate result

- . The system replys appropriate answers
 - The system recognizes a paraphrase relation.

Objective

- Recognize a paraphrase/entailment relation between
 - The setence is a complex sentence included two events and two clauses.
 - Two sentences represent different rhetorical relations.

Example

- · A Paraphrase relation between sentences.
 - Two events
 - · "Get a key"
 - · "Open a safe"
 - Sentences
 - . Get a key, before you open a safe.
 - Temporal location(rhetorical relation)
 - Get a key, so that you open a safe.
 - Purpose(rhetorical relation)

· An Enatilment relation between sentences.

Example

- Two events
 - · "Put a marble away"
 - · "A child swallows a marble"
- - Put a marble away, before a child swallows them.
 - Temporal location(rhetorical relation)
 - . If you don't put a marble away, a child will swallow them.
 - Condition(rhetorical relation)

Complex sentence

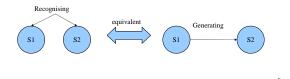
- . Sentence
 - Simple sentence
 - It contains only one clause.
 - Ex: My friend invited me to a party.
 - Ex: I do not want to go.
 - Complex sentence
 - . It contains more two clauses.
 - \bullet Ex: Although my friend invited me to a party, I do not want to go.

Quote from http://www.arts.uottawa.ca/writcent/hypergrammar/sntstrct.html

Paraphrase and Entailment

A paraphrase relation is equivalent to mutually entailment relations.

Sentence


1

Sentence
2

Sentence
2

Recoginise/Generate

- Purpose to recognize a paraphrase between S1 to S2.
- Approach to generate S2 from S1.
 - S2 paraphrases S1.

Using Patterns

- · Generate a paraphrase by a pattern.
 - Pattern: P1 -> P2
 - P1: "A, before B."(temporal location)
 - P2: "A, so that B1 not B2."(purpose)
 - Examples: S1 -> S2
 - S1: Put a marble away, before a child swallows them.
 - S2: Put a marble away, so that a child does not swallow them.

10

Using Patterns

- · Generate a paraphrase by a pattern.
 - Pattern: P1 -> P2
 - P1: "A, before B."(temporal location)
 - P2: "A, so that B1 not B2."(purpose)
 - Examples: S3 -> S4: Not paraphrase!
 - S3: Get a key, before you open a safe.
 - S4: Get a key, so that you don't open a safe.

11

Using Patterns

- . Generate a paraphrase by a same pattern.
 - S2 generated from S1 by a pattern(P1->P2)
 - S1 and S2 are a paraphrase relation.
 - S4 generated from S3 by a pattern(P1->P2)
 - S3 and S4 are not a paraphrase relation.
 - S3 and S4 are same rhetorical relations.
 - S3 is not correct sentence.
- . Can't Generate a paraphrase by a pattern

12

Using logical relations

- Paraphrase sentences own each logical relation.
 - Cause(S1 & S2)
 - · Motivation: "A child swallows them"
 - · Action: "Put a marble away"
 - Condition(S3 & S4)
 - · Condition: "Get a key"
 - · Action: "You open a safe"
- S1,2 and S3,4 are different logical relations.

13

Using logical relations

- S1,2 and S3,4 are different logical relations.
 - The logical relation between two events
 - · S2: Cause
 - S4: Condition
 - Correct or not correct
 - · S2: correct sentence
 - · S4: no correct sentence

14

Proposed model

- · Assume two things
 - Using logical relations for generating correct sentences.
 - Using paraphrase/entailment patterns for judging a relation between two sentences.
- · Proposed model
 - The model generate paraphrase/entailment sentences by logical relations and paraphrase/entailment patterns.

15

Three issues

- 1: Make a corpus(like a training data).
 - Sentences generated by a same logical relation. (logical relation map)
- 2: Develop definition of logical relation.
 - Each logical relation corresponds to correct sentences.
- 3: Create patterns to recognize each paraphrases/entailments on the corpus.

16

1: Create a corpus

- . Two steps to create a corpus
 - Generate potential sentences by two events and one logical relation.
 - Example
 - Events: "Get a key", "Open a safe"
 - Logical relation: Necessary condition
 - Sentences:
 - S1: Get a key, before you open a safe.
 - S2: Get a key, before you dont' open a safe.
 - S3: Get a key, so that you open a safe.
 Judge that sentences is correct by hand.
 - S1(OK), S2(NG), S3(OK), ...

7

1:Create a corpus

• Our corpus(example in japanese)

3

2: Definition of logical relation

- . Two Event have a action
 - Necessary condition
 - Sufficiently condition
 - Accountability
 - Motivation
- Two Events have only two states
 - Cause
 - Effect

19

Experiments: logical relation

- . Three steps
 - Pick up 18 event pairs.
 - Label each event "action" or "state" by hand.
 - Generate potential sentences by restricting rule.

	Precision	Recall	F-measure
18 event pairs	0.96	0.88	0.92

20

Conclustion

- Verify the performace of logical relation by experiments.
- Even when logical relations are applied, our methods for preprocess of paraphrase recognition have low recall.

21

Future work

- · Rest works
 - 3: Create patterns to recognize each paraphrases/entailments on the corpus.
- . Improve recall
- Make a more large size corpus
 - Pick up more event pairs
 - Cover more sentence patterns

22