

False pa	ath id	entif	ication : SR to data-path register				
SR loads a new value every clock							
Idea: Consider transitions for each FF in the SR							
State	assign	ment	SR				
	FF0	FF1	FF0 FF1				
SO	0	0	(S1 S2) _ +				
S1	0	1					
S2		1	Load or Hold at S3 ?				
S3	1	0					
Data-path register							

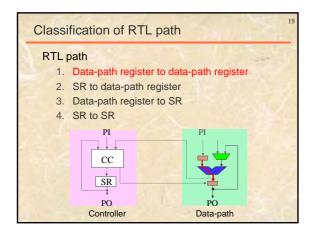
Experiments										
The number of RTL path identified as a control dependent untestable path										
		D_reg to D_reg		SR to D_reg		SR to SR				
1	Circuit	# CUPs	Ratio	# CUPs	Ratio	# CUPs	Ratio			
	Paulin	12 (29)	41.4 %	15 (64)	23.4 %	0 (9)	0 %			
	LWF	3 (19)	15.5 %	0 (24)	0 %	0 (4)	0 %			
	Tseng	6 (20)	30.0 %	6 (39)	15.4 %	0 (9)	0 %			
14	JWF	117 (153)	76.5 %	249 (405)	61.5 %	0 (9)	0 %			
	MPEG	32 (651)	4.90 %	256 (2,138)	12.0 %	0 (100)	0 %			
 For JWF, a large number of RTL paths are identified as CUPs The CPU time is less than 1 second. 										

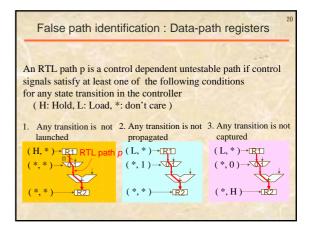
Evaluation for gate-level paths : Data-path								
The number of gate-level paths corresponding to CUPs								
	# CUPs	#Gate-level	#Gate-level	Ratio				
Circuit	at RTL	paths (CUP)	paths (total)					
Paulin	12 (29)	65,430	117,576	55.7 %				
LWF	3 (19)	536	2,766	19.3 %				
Tseng	6 (20)	7,978	16,532	48.3 %				
JWF	117 (153)	20,972	26,000	80.7 %				
			-					

• For Paulin, Tseng and JWF, 50% - 80% paths are identified as false paths within 1 second.

• If we try to identify false paths at gate-level, for Paulin, the CPU time for only 100 paths takes 498 sec

Conclusion


We proposed the method to identify a subset of false paths at RTL (control-dependent untestable paths) which


18

- ✤ can identify false paths within practical time, and (Dramatically reduce the CPU time)
- a can reduce over-testing

Our future work

Identifying not only control-dependent but also datadependent untestable paths at RT-level

