View Planning for 3D Modeling of Outdoor Environments by Voxel Model with Object **Existence Probability**

Toshihiro Asai Vision and Media Computing Lab.

3D model of outdoor scenes

Useful for applications of ubiquitous networked media computing

- Virtual walk-through
- Site simulation
- ♦ Wearable AR
- (Human navigation)

These models are made manually with high cost.

Automatic 3D modeling of outdoor scenes by using a laser rangefinder has been widely investigated.

3D modeling using a rangefinder

A rangefinder can acquire 3D shape of object.

Acquired partial shape

The whole model is generated by registering partial shapes.

The modeling problem

Unobserved portions caused by occlusions become missing portions of a 3D model.

rangefinder White portions are unobserved portions

View planning for 3D modeling

Search of the position where range data which reduce unobserved portions efficiently is acquired

Motivation

- ◆ Reduction of the number of times of data acquisition.
- Reduction of unobserved portions

3D model for calculation of NBV

"View Planning for automated 3D object reconstruction and inspection" [Scott et al. 2003]

- Surface-based method (polygon model)
 - Suitable for expression of detailed 3D shape.
 - ◆ Addition in range data causes increase of memory usage.
- Volumetric-based method (voxel model) Shape accuracy depends on the voxel size.
 - Memory usage does not depends on the number of range data. • Compact method of encoding spatial occupancy.

Application to the outdoor modeling

Wide modeling area

- ◆ Large memory requirement for 3D model
- Use of voxel model with object existence probability.
 Consideration of moving efficiency
- Creation of the map which show the recommendation rate of acquisition.
- The necessity for registration of acquired range data
 - Acquisition of the overlapping portions required for registration.

Objective

Support of the decision of next measurement position by using a recommendation rate map Approach:

Approacn:

- Recommendation rate is calculated from voxel model.
- Creation of the map which show recommendation rate
 The map is updated when range data are acquired.
 - Next acquisition position is decided by a sensor operator.
 - The contents of instruction require only position by using an omnidirectional rangefinder.
- Acquisition of the portions which overlap acquired range data for registration

Recommendation rate of acquisition

The rate which raises reliability of object shapes in modeling area.

- Reliability of object shape = measured density by a rangefinder
 - Portions of low measured density : low reliability.
- Unobserved portions : no reliability.

Voxel model with object existence probability

Information of each voxel

- Object existence probability
 - The probability that a laser beam will reflect.
 - A ratio of the frequency of reflection and passage in the voxel.

Maximum measured density

- Reliability of object shape in the voxel.
- Spatial resolution of laser beams in the voxel.
- Normal vector (when a plane exists in the voxel)
 Registration is performed using plane based ICP algorithm.
 - In the initial state, object existence probability is 1 and maximum measurement density is 0

Construction of a voxel model Object existence probability

Sensor position and range points are quantized to the voxel resolution. Search of voxels which laser passed by Bresenham line-drawing algorithm.

Construction of a voxel model

Object existence probability

Count of frequency of reflection and passage of laser beam. Object existence probability = reflection / (reflection + passage)

Construction of a voxel model Object existence probability

When another range data is added.

Preliminary experiment for our campus

- Use of omnidirectional laser rangefinder (Riegl Inc. LMS-Z360)
 Angle : 360[deg] × 90[deg]
 - ♦ Resolution : 1024 × 512.
 - Measurable range : 200m
- Voxel size is 1m.
- Calculation of recommendation rate is performed at intervals of 1m.
 - Acquisition height from the ground of rangefinder is known
 - workable area of range data acquisition is known.
- The recommended positions where the overlapping plane area can acquire 10% of all laser.

Experimental result

Area where plane portions cannot be acquired sufficiently

Conclusion

- View planning by using voxel model with object existence probability.
 - Reduction of memory usage and calculation cost.
- Support of the decision of next measurement position by using a recommendation rate map.

Future work

- Evaluation of proposed method.
- Experiments in wide area urban environment.