Trigger-Based Language Model Adaptation for Automatic Transcription of Panel Discussions

Carlos Troncoso Alarcón

Speech and Acoustics Laboratory NAIST

April 27, 2006

Trigger-Based LM

Trigger pairs

- Semantically correlated word pairs (resort → beach)
- $A \rightarrow B$ means "A 'triggers' the appearance of B"
- Constructed from large corpus using average mutual information (AMI) within a text window
- Raise probability of words triggered by others
- \star Able to model dependencies longer than n

e.g. I used to go to this resort on the beach with...

Application to Conversational Speech

D Conversations and meetings usually centered in a topic ⇒ Trigger pairs capture long-distance topic constraints

- Problems of conversational speech
 - Disfluencies (filled pauses, repetitions, repairs...)
 - · Sentences can become ungrammatical
 - · Disfluencies contribute to data sparseness
 - Longer dependencies between words
 - ⇒ Trigger-based LM insensitive to disfluencies
 - Small amount of available in-domain data
 - · Conversational text corpora expensive to produce · Insufficient to derive reliable task-dependent models
 - · Web-based approaches not domain matched
 - ⇒ Effective training of trigger-based LM

Background

Conventional n-gram LM [Bahl '83]

- Powerful for modeling short-distance dependencies
- Unable to model dependencies longer than $n (n = 2 \sim 4)$
- e.g. I used to go to this resort on the beach with...

Alternative LMs

- Short distance:
- · Class n-gram [Brown '92]
- Mixture-based LMs [lyer '99]

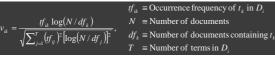
- Long distance:
- Intermediate distance:
 Long distance n-gram [Huang '93]
 - · Cache-based LM [Kuhn '92]
 - Trigger-based LM [Rosenfeld '96]
 - · LSA-based LM [Bellegarda '00]

Limitations of Conventional **Trigger-Based LM**

- Constructed from text window
 - Window limits scope of dependencies the model can capture ⇒ Local constraints
 - ⇒ Global topic constraints by TF/IDF
- Most potential lies in "self-triggers" (e.g. beach \rightarrow beach)
 - Self-triggers virtually equivalent to cache-based LM
 - ⇒ Small improvement
 - ⇒ Effective use of non-self-triggers
- □ So far applied to written language (newspapers)
 - Corpora too general in topic ⇒ Task dependency lost
 - ⇒ Trigger-based LM adaptation to target domain

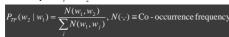
Description of Task and Corpora

Task: NHK's Sunday Discussion

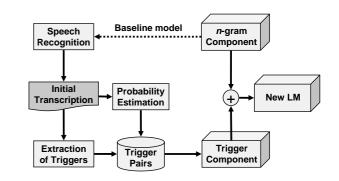

- 1 hour panel discussions about political, economic issues
- 10 programs chosen to cover diverse topics and sufficient variety of speakers
- Recorded from June 2001 to January 2002
- Average no. of utterances: 550 (14K words)
- Large corpus: National Diet (Congress) of Japan Selected because of similarity in topic with Sunday
 - Discussion Recorded from 1999 to 2002
 - Total no. of documents: 2866 (71M words)
 - Documents for matched portion: 671 from year 2001 (17M words)

Proposed Approach

- Construct task-dependent trigger pairs from initial speech recognition results (initial transcription)
 - Homogeneous topics ⇒ Related keywords throughout sessions
 - Initial transcription erroneous but provides task-dependent info
- Problems
 - Small size of initial transcription
 - · Insufficient to get enough trigger pairs and reliable estimates Errors in initial transcription
 - · Erroneous pairs increase probabilities of wrong words
- Solutions
 - Extract keywords with TF/IDF from whole discussion · Boost number of triggers and capture global constraints
 - Back-off scheme with statistics from large corpus
 - Use filtering techniques to discard unreliable pairs

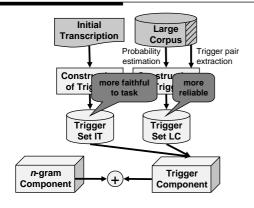

Construction of Trigger Pairs

Extracted from K-best of initial transcription using term frequency/inverse document frequency (TF/IDF)



Create pairs from words with TF/IDF value greater than threshold ■ Only one document ⇒ IDF from same year portion of large corpus

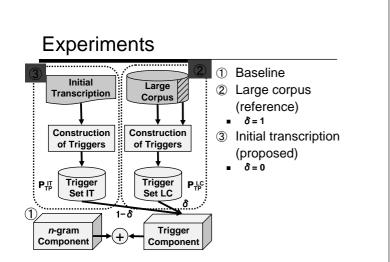
- Probability estimated from K-best of initial transcription Use text window of the previous L words
 - Probability of $w_1 \rightarrow w_2$ calculated as follows:


Trigger-Based Adaptation from Initial Transcription

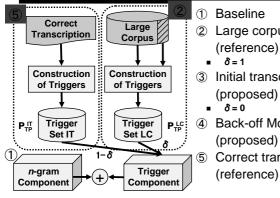
Filtering of Trigger Pairs

- □ To retain only topic words
 - POS-based filtering to remove function words
 - Stop word list filtering
 - · List of most frequent words to be ignored
- To minimize incorrect trigger pairs
 - Confidence score filtering
 - · Eliminate trigger pairs whose words have confidence score lower than threshold
 - Large corpus filtering
 - · Extract trigger pairs also from large corpus and remove trigger pairs that are not in intersection

Back-off Scheme

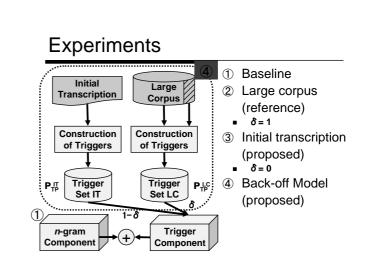

Back-off Model

Back off to trigger set LC when trigger pairs not found in set IT



 $P_{NG}(w_i \mid w_{i-n+1}^{i-1}), \text{ if } P_{TP}^{IT}(w_k \mid w_j) = 0, P_{TP}^{LC}(w_i \mid w_j) = 0, \forall k, l$
$$\begin{split} \lambda P_{NG}(w_i \mid w_{i-n+1}^{l-1}) + (1-\lambda) P_{IP}^{LC}(w_i \mid w_j), & \text{if } P_{IP}^{TT}(w_j \mid w_j) = 0, \forall j \\ \lambda P_{NG}(w_i \mid w_{i-n+1}^{l-1}) + (1-\lambda) \left(\delta P_{IP}^{LC}(w_i \mid w_j) + (1-\delta) P_{IP}^{TT}(w_i \mid w_j) \right), & \text{otherwise} \end{split}$$
n - gram probability = Probability of trigger set IT

- \equiv Probability of trigger set LC
- = Language model interpolation weight
- Trigger set interpolation weight



Experiments

Large corpus (reference)

- ③ Initial transcription
- ④ Back-off Model (proposed) Correct transcript
 - (reference)

Experimental Setup

Task	Sunday Discussion		
Idak	10 data sets (10 shows)		
ASR system	Julius 3.5-rc2		
Baseline LM	CSJ + National Diet trigram		
	Linear interpolation (λ = 0.5)		
Acoustic model	Triphone HMM from CSJ		
Vocabulary	30K words		
Out of vocabulary rate	1.56%		
Baseline word accuracy	55.2%		
Baseline perplexity	150		

Perplexity Evaluation

Model	# pairs	Hit rate	PPL	Reduction (%)
1 Baseline trigram	eline trigram – –		150	-
2 Large corpus (LC)	9M	33%	121	19.33
③ Initial transcription (IT)	128K	31%	104	30.66
④ Back-off (IT+LC)	9M	35%	102	32.00 🛩
⑤ Correct transcription	71K	35%	73	51.33

□ The back-off model improved PPL slightly

- The initial transcription provides well adapted trigger pairs ⇒ Benefit from LC is minimal
- Efficacy with smaller initial transcriptions

Perplexity Evaluation

Model	# pairs	Hit rate	PPL	Reduction (%)
① Baseline trigram	-	-	150	-
② Large corpus (LC)	9M	33%	121	19.33 📉
③ Initial transcription (IT)	128K	31%	104	30.66 🛩
④ Back-off (IT+LC)	9M	35%	102	32.00
⑤ Correct transcription	71K	35%	73	51.33

Reduction by IT much greater than that by LC

Effectiveness of proposed approach proved

Perplexity Evaluation

Model	# pairs	Hit rate	PPL	Reduction (%)
1 Baseline trigram	-	-	150	-
② Large corpus (LC)	9M	33%	121	19.33
③ Initial transcription (IT)	128K	31%	104	30.66
④ Back-off (IT+LC)	9M	35%	102	32.00
⑤ Correct transcription	71K	35%	73	51.33 🖊

- Reduction by IT less than that by correct transcription
 - Half of the initial transcription has errors
 - ⇒ Results consistent with this fact

Self-triggers VS. Non-self-triggers

Model	# used pairs	PPL	Reduction (%)
Baseline trigram	-	150	-
Initial transcription (IT)	26K	104	30.66 📉
Only self-triggers from IT	606	141	6.00
Only non-self-triggers from IT	26K	105	30.00 🖊

Most perplexity reduction from non-self-triggers

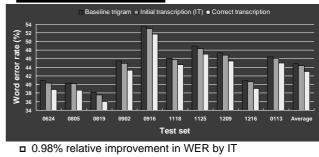
- Opposite to common finding in conventional triggerbased LM
- Trigger pairs from IT are task-dependent and make a better match

n-gram Adaptation

□ Create *n*-gram LM with *J*-best hypotheses

- **\square** Interpolate with baseline \Rightarrow adapted *n*-gram
- □ Interpolate with proposed trigger-based LM

Model	PPL	Reduction (%)
Baseline trigram	150	-
Adapted trigram	119	20.66
+ Initial transcription (IT)	87	42.00
+ Back-off model (IT+LC)	84	44.00


Analysis of Results

WER reduction << PPL reduction</p>

- Compared distributions of total extracted pairs and those used during PPL and WER evaluation
 - Trigger pairs not found in correct transcription are labeled as incorrect

	Class of triggers	Entries	Count	Proportion	
Total pairs	Correct	31253	-	24.23	-
Total pairs	Incorrect	97727	-	75.77	-
Pairs used	Correct	14848	26716	97.37	98.36
in PPL	Incorrect	401	446	2.63	1.64
Pairs used	Correct	7441	30290	43.91	52.88
in WER	Incorrect	9505	26987	56.09	47.12

Speech Recognition Evaluation

□ p-value = $0.022 \Rightarrow$ Statistically significant

■ 4.07% relative improvement by correct transcription

Summary

- Novel trigger-based LM adaptation using initial transcription and large corpus
- Remarkable improvement in PPL over baseline and typical trigger-based LM
- Most improvement from non-self-triggers
- **□** Further improvement by *n*-gram adaptation
- Extracted trigger pairs are task-dependent