Study on Performance Improvement of ISDB-T Receiver in Fast Fading

Communications Lab.
Young-Cheol, Yu

Presentation Outline

- What is ISDB-T?
- Problem of ISDB-T in Fast Fading
- The Conventional research
- Dummy Elements add on both sides of Monopole Array
- Dipole Array Doppler Spread Compensator
- Conclusion
- Future Work

What is ISDB-T?
(Integrated Services Digital Broadcasting for Terrestrial)

- Digital Terrestrial Television Broadcasting
 ISDB-T has been started on December, 2003
 Stationary Reception->12 segments (64QAM)
 Cellular Phone Reception->1 segment (QPSK)
- OFDM (Orthogonal Frequency Division Multiplexing)
 robust multi-path delay
 奀 Narrow bandwidth among sub-carriers
 weak in Doppler spread
 (It can cause problem when high speed mobile reception)

Problem of ISDB-T in Fast Fading

- Multi-path Environment
 Several incoming waves affect the different Doppler shift
 ISDB-T has narrow bandwidth among sub-carriers
 (eg. Mode 3: 1kHz)

The Conventional Research

- Space Domain Interpolator
- OFDM Receiver

The Reception Point is fixed with respect to the Ground

Problems of Conventional Research

- Mutual Coupling Effect
 Dummy Elements add on both sides of Monopole Array
- Polarization
 By using Dipole Array
- Multi-Path Fading Problem
 Making use of MRC (Maximum Ratio Combining) Diversity
Mutual Coupling Effect Cancel Method

Dummy Elements add on both sides of Monopole Array

Mutual Coupling Cancel Method

The space domain interpolator severely affected the mutual coupling because the conventional monopole array has narrow antenna spacing between array elements.

Adding the dummy elements on both sides of monopole array, the mutual coupling effect has been reduced.

Adding the dummy elements on both sides of monopole array, the mutual coupling effect has been reduced.

Mutual Coupling Cancel Method

Mutual Coupling Cancel Method

The space domain interpolator severely affected the mutual coupling because the conventional monopole array has narrow antenna spacing between array elements.

Adding the dummy elements on both sides of monopole array, the mutual coupling effect has been reduced.

Adding the dummy elements on both sides of monopole array, the mutual coupling effect has been reduced.

Radiation Pattern(2-element)

Radiation Pattern(4-element)

BER Performance against fT_s

(Em/N_0 = 20dB, d = 0.15 \lambda)

Conclusion

- Adding the Dummy Elements on both sides of Monopole Array
 - Reduction of Mutual Coupling effect among Array Elements
 - Wide Operating Bandwidth
 - The BER performance of Doppler spread compensator is improved due to reduction of Mutual Coupling effect
Polarization & Multi-Path Fading Problem

Making use of Dipole Array with MRC (Maximum Ratio Combining) Diversity

Concept of Dipole Array

- Dipole Array System Model
 Proposed Horizontal Polarization Antenna
 Making efficiency use of MRC Diversity

 Degradation of Doppler Spread effect and Multi-path Fading

Conclusion

- Making use of Dipole Array assisted Doppler Spread Compensator with MRC Diversity
 - A Horizontally polarized Dipole Array mitigate BER Performance due to polarization mismatch between Base Station and Receiver.
 - MRC Diversity reduced BER Performance degradation in Multi-Path Environment.

The Performance of Doppler Spread Compensator improved in Fast Multi-Path Fading Environment