Mill: Scalable Area Management for P2P Network based on Geographical Location

MATSUURA Satoshi
Internet Architecture and Systems
sato-mat@is.naist.jp

06/2/21

Background

- Development of Wireless Technology & Positioning Devices
 - cars, PDAs, mobile phones...
 - easily connect to the Internet
 - get the actual position

- · Demand for location related service
 - weather information (mobile phone)
 - traffic information (car navigation)

2006/2/21

2

Goal

· share sensing data on Ubiquitous Environment

- · we can use sensing data of any place.
- more detailed traffic and weather information
 - provide new geographical services
 - solve environmental problem

Requirements

- Scalability
 - manage a large number of devices
- · Region search
 - weather and traffic information is deeply related with geographical position
- · Fast Search
 - location-related information is easily affected by TIME (and location)

2006/2/21

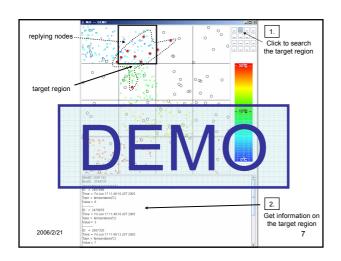
4

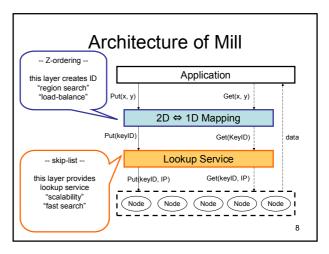
Related-work

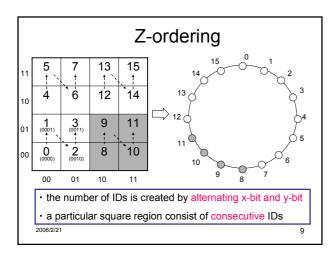
- · DHT-based P2P network
 - Chord, Tapestry, Pastory
 - routing cost: O(logN)
 - hashed ID is NOT match Geographical Info
 - so much queries are generated
- Geographical-based P2P network
 - CAN, LL-net
 - routing cost: O(sqrt(N))
 - complex area management
 - There are some kind of special nodes(Super nodes, etc)

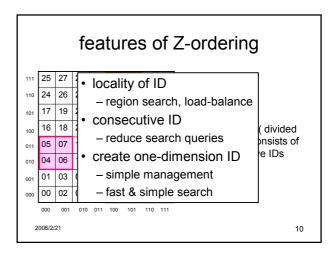
2006/2/2

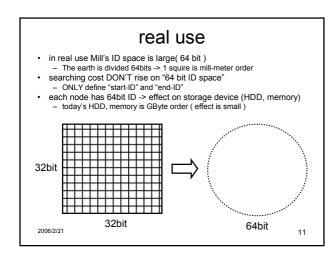
5

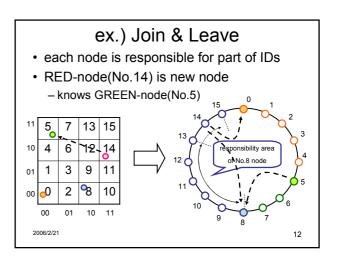

comparison of related work

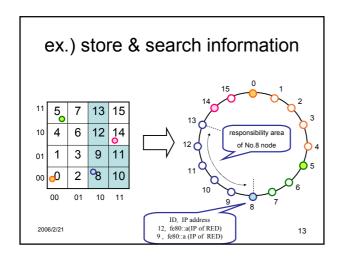

	DHT	CAN, LL-net	Mill
Search cost	O(logN)	O(sqrtN)	O(logN)
Region search	Huge queries	Few queries	Few queries
Require "special node" or "lots of management cost"	NO	YES	NO

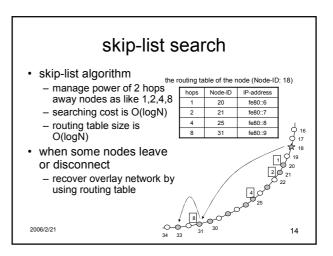

: Blue square means good feature

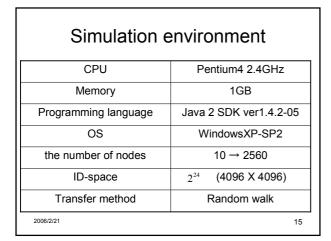

2006/2/21

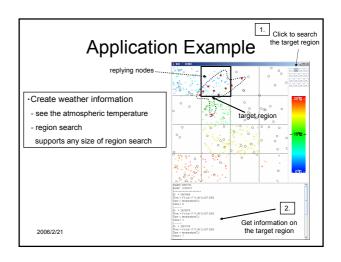

6

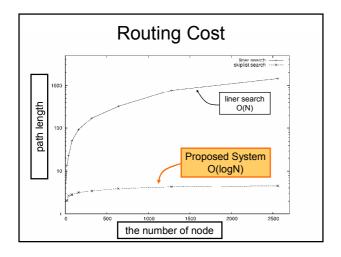


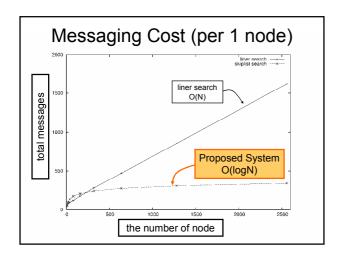


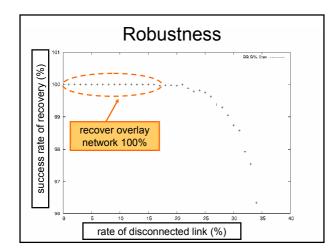











Routing Cost (search 20bits area) • Mill – O(logN) – path length: 10 hops (N=10,000) • DHT – O(logN) – path length: 10 * 2^20 ≒ 10millon hops – hashed ID is NOT match Geographical Info • CAN – O(sqrtN) – path length: 100 hops(N=10,000) • LL-net – O(sqrtM) (M: number of areas) – path length: 10 hops(M=100) – can NOT search areas flexibly (limitation of area size)

management cost

- Mill & DHTs O(logN)
 - just manage neighbor nodes(on routing table)
- CAN O(sqrtN)
 - just manage neighbor nodes
 - how to divide area(responsibility) is complex
- LL-net O(N)
 - super-node and rendezvous-node(RN) are needed
 - On each area, RN manages every normal node

2006/2/21 20

Summary

- · Scalability
 - message cost: O(logN)
- · Region search
 - can search any size of square(few queries)
- · Fast search
 - routing cost: O(logN)
- Other features
 - robustness
- · Future work
 - ${\mathord{\text{--}}}$ improve load-balance, support poor devices, etc...

2006/2/21 22