
1

Applying obfuscation techniques to
cipher programs using goal-oriented
analysis

Software Engineering Laboratory
Hiroki Yamauchi

The 11th COE Postdoctoral and Doctoral Researchers Technical Presentation
Feb. 24, 2006.

2

Illegal
Application

Background

Digital Rights Management (DRM) software (such as iTunes
and Windows Media Player) became an important application
for ubiquitous computing environments.

Decrypt

Audio/Visual
Output

Secret Key

Source Media
Contents (encrypted)

Player Software
Authorized
User

Malicious
Cracker

Reverse-Engineering

The Problem:
Protect the authorized software (esp. Secret Key)
from the reverse-engineering by malicious crackers.

3

Program Obfuscation

A technique of inhibiting the reverse-engineering, transforming
a program into an equivalent one that is difficult to understand.

int fact=1, upper=16
int i;
for(i=1;i<=upper;i++){

fact *= i;
}
printf(“%d”,fact);

Original program
[Computing 16!]

Effects:
The obfuscated program preserves the specification of the original
program.
Cracking the obfuscated program requires an expensive cost.

Existing Techniques:
Name obfuscation
Control flow obfuscation
Data obfuscation (Type, Value, Structure)
Operation obfuscation
Inter module call relation obfuscation
Overload induction obfuscation
:

int a[] = {1,50};
int i=1; LOOP:
if(i!=(a[1]-2)/3)){ a[0]
*= (++i); goto LOOP;
}printf(“%d”,a[0]);

Obfuscated program
[Computing 16!]

obfuscate ??

4

Problem

There is no systematic method on how to apply obfuscation
techniques appropriately.

Which obfuscation technique
should be used?

Which part of the program
should be obfuscated?

How much effects of
obfuscation can be expected?

CallRel
Obfus.

CtlFlow
Obfus.

Data
Obfus.

Name
Obfus.

...?

int fact=1, upper=16
int i;
for(i=1;i<=upper;i++){

fact *= i;
}
printf(“%d”,fact);

?

?
Obfuscated
Program

Crack

These problems are caused because the conventional techniques
do not count the purpose and target of the cracker.

5

Research Objective

Establish a goal-oriented analysis framework for
proper use of the existing obfuscation techniques.
Key idea

Assume an imaginary cracker with his purpose and
target (i.e., goal).
Break down the goal into pieces, each of which an
appropriate obfuscation is applied to.

Approach
Step1. Determine a capability of an imaginary cracker.
Step2. Identify a cracker’s goal.
Step3. Conduct a goal-oriented analysis.
Step4. For every terminal sub-goal, select an obfuscation.
Step5. Apply the selected obfuscations to the program.

6

Step1. Determine an Imaginary Cracker.

Define a capability model of an imaginary cracker from three
viewpoints: knowledge, observation, control (presuming a
very skillful cracker.)

Knowledge : What does the cracker know beforehand?
• The cracker has full knowledge of the principles and external
specification of a program.

Observation : What can the cracker see in the program?
• The cracker owns a disassembled code of a program.
• The cracker can watch the program states and execution traces.

Control : What can the cracker do for the program?
• The cracker can execute the program with an arbitrary input.
• The cracker can modify the program in any desired way.

P

2

7

Step2. Identify Cracker’s Goal

For the given program P, define specific goals,
for which the cracker reverse-engineer P.

Cracker’s Goals (candiates)
Find Round Keys
Find Secret Key
Extract Secret Constants
from Feistel Function

Feistel
Function

K
ey

S
ch

ed
ul

er

L10 R10

Round key k10

Secret key K

10
 ro

un
ds

 (i
te

ra
tio

ns
)

－

L9 = R10 R9 = L10 – F(R10,k10)

－ subtraction

Input: Cipher text

Output: Clear text

Ri-1 = Li – F(Ri,ki)Li-1 = Ri

Example: Decryption Module (C2 Block cipher [1])

[1] 4C Entity, “Content protection for recordable media
specification – Introduction and common cryptographic
elements,” rev. 1.0, 31 pp.1.0, Jan. 2003.

Secret
Constants

8

Step3. Conduct a Goal-Oriented Analysis

For each goal decided in Step2, decompose and
refine the goal into more specific sub-goals.

Make an AND-OR graph based on Cracker’s Capability
Model defined in Step1.
Repeat the decomposition until no sub-goal can be
further decomposed.

Find
Round Keys

AND
Decomposition

OR
Decomposition

Goal

Find Value
“0x65”

Find Operator
“XOR”

Terminal
Sub-goals

Find Keys in
KeyScheduler

Intermediate
Sub-goals

Find Keys in
F-Function

Locate
F-Function

Find Key
Candidates Find value of

32bit Integer

Locate
KeyScheduler

Find a loop
with 10 times

9

Step4. Select an appropriate obfuscation.

Obfuscation
Techniques

Data Value
Obfuscation

Operation
Obfuscation

For each terminal sub-goal, select an appropriate
obfuscation that can inhibit the sub-goal.

Find
Round Keys

Find Value
“0x65”

Find Operator
“XOR”Goal

Find Keys in
KeyScheduler

Intermediate
Sub-goals

Find Keys in
F-Function

Find value of
32bit Integer

Find a loop
with 10 times

Terminal
Sub-goals

Data Type
Obfuscation

Control Flow
Obfuscation

10

Step5. Apply Selected Obfuscations

Apply the obfuscation selected in Step4 to the
program.

Find
Round Keys

Goal
Find Keys in
F-Function

Data Value
Obfuscation

Operation
Obfuscation

Find Value
“0x65”

Find Operator
“XOR”

public static int F(int data, int key) {
:
u = (byte)(v[0] ^ 0x65);
:

}

O1

O2

public static int F(int data, int key) {
:
int d = 203;
:
u = (byte)(v[0] ^ ((d-1)/2));
:

}

O1: Data Value Obfuscation
Replace value “0x65” using
homo-morphism f(x) = 2x+1

public static int F(int data, int key) {
:
int d = 203;
:
u = (byte)(~v[0] & ((d-1)/2)) |

(byte)((v[0] & ~((d-1)/2))
:

}

O2: Operation Obfuscation
Replace XOR with NOT, AND, OR.

Original Program

11

Case study

We have applied the proposed framework to a
practical cipher program.

Target program
A data decryption program using the C2 block cipher[1].
Comprising 140 lines of Java code.

Cracker’s Capability Model
Knowledge: Know C2 algorithm, but does not know keys.
Observation: Watch memory, stack and execution trace.
Control: Use all debugger operations, binary editor,

disassembler, decompiler.

Goal
Find the round key.

[1] 4C Entity, “Content protection for recordable media specification – Introduction and common cryptographic
elements,” rev. 1.0, 31 pp.1.0, Jan. 2003. 12

Result of Goal-Oriented Analysis

82 sub-goals have been identified.
31 intermediate sub-goals
51 terminal sub-goals

ここに新たな図をはっつける（一部の切り抜きでもよい）．

We confirmed all the terminal sub-goals can be
inhibited by certain obfuscation techniques.

3

13

Summary

We have proposed a goal-oriented framework of
applying the existing obfuscation techniques.

Determine the capability model and goal of cracker.
Using the goal-oriented analysis, decompose the goal
into pieces, corresponding to an appropriate obfuscation.

Future Work
Evaluate the proposed framework with other programs.
Investigate optimal obfuscation.

Dependency analysis among sub-goals.
Dependency analysis among obfuscation techniques.

14

Thank you, That’s ALL.

