A Fast Computation without Divisions for Combiners in Carrier Interferometry OFDM System

Khoirul Anwar
Communications Laboratory

Presentation Outline

- Orthogonal Frequency Division Multiplexing (OFDM)
- Peak-to-Average Power Ratio (PAPR) Problem
- Carrier Interferometry OFDM (CI/OFDM)
- Multipath Fading Effects
- Frequency Domain Equalization
- Proposed Combiners
 - Make Efficient of FFT Spreading at the receiver
 - Fast Computation with Improved Newton-Raphson
- Conclusions

OFDM and High Peak Problem

- OFDM: Technology for high-data rate applications and robust to against frequency selective fading effects.
- One disadvantage of OFDM is its high PAPR.
- Low PAPR → Safe Battery Power → Suitable for Ubiquitous Computing.

The Idea of Peaks Reduction

- IFToFT can do both of CI generating and CI spreading at the same time.

Proposed FFT Spreading

- FFT is very efficient for replacing the CI
- FFT can do both of CI generating and CI spreading at the same time

Complexity Reduction by CI-FFT

- Computational Complexities of Generating CI Codes and Spreading Process*
Impulse Response

- Inter-Symbol-interference
- Frequency Selective

Frequency Domain Equalizations

Equalizers Characteristics

\[W(k)_{ZF} = \frac{1}{H(k)} \]

\[W(k)_{MMSE} = \frac{H^*(k)}{|H(k)|^2 + \sigma^2} \]

Objectives of the Research

- Obtain fast and low complexity design of CI/OFDM
 - Replace the division operation in the computation of combiner weights.
 - Using the summation in FFT-spreading for performing Combiner.
- One division can replaced by 2 multiplications and 1 subtraction
- Simple combiners

Newton-Raphson Method

To obtain the desired value, Newton-Raphson need more than 15X iterations.
Khoirul Anwar

Fast Computation without Divisions for Combiners in Carrier Interferometry OFDM

COMMUNICATIONS LAB.
Nara Institute of Science & Technology

Bit-Error-Rate Performance

Proposed Range Extension

Subcarriers Index

Bit-Error-Rate Performance

Conclusions

- PAPR of OFDM can be reduce by CI-FFT/POCI-FFT
 - Simple Combiners, low computational complexity
 - Suitable for future ubiquitous computing with low power transmission
- Improvement of Newton-Raphson Method
 - One division can be replaced by 2 multiplications and one subtraction.
 - Range extension can reduce the number of iterations significantly from 15x \(\Rightarrow \) 2x