Information Extraction and Sentence Classification Applied to Clinical Trial MEDLINE Abstracts

Computational Linguistics Laboratory

Kazuo Hara and Yuji Matsumoto

Background & Aim

2

Background & Aim

Ubiquitous Medicine

- a trend in the medical community -
 - This trend is supported by popularization of ubiquitous technology such as
 - Remote Diagnostic Imaging, or
 - Electronic Health Records.
 - The community is going to share comparable clinical information among medical sites.

Background & Aim

This trend leads to a demand for high quality medical treatments.

- The concept, Evidence-Based Medicine (EBM), has become prevalent recently.
 - EBM requires medical practitioners to select appropriate treatments for individual patients based on the current best evidence.
- Where does the current best evidence come from?
 - One major source of evidence is clinical trial results.

Background & Aim

What are the clinical trials?

- · Phase I
 - Examination of the safety of the new treatment.
- Phase II
 - Exploration of the usage and dosage of the new treatment.
- Phase III

Verification of the new treatment compared to an active control or placebo.

Phase IV

- Post Marketing Surveillance of the new treatment.

Background & Aim

Where to access the clinical trial results information?

- MEDLINE, the U.S. National Library of Medicine's (NLM) database of biomedical citations and abstracts that is searchable on the Web.
- MEDLINE search index includes:
 clinical trial phases (phase I, II, III, and IV),
- but does not include important keys such as:
 "compared treatments", "patient population", and "endpoints".

Background & Aim

A clinical trial result is always summarized in a table.

• A typical example (phase III)

	Treatment A (New Drug)	Treatment B (Active Control)	statistical significance
Endpoint (Efficacy)	value or score	value or score	p-value
Endpoint (Safety)	frequency or count	frequency or count	p-value

Background & Aim

Our research goal is:

- Extracting information with respect to important keys from each clinical trial MEDLINE abstract in order to construct a database which is easy to access.
- Information Extraction (IE) targets are:
 "compared treatments", "patient population", "endpoints", and so on.
- This can become a support for realizing EBM in the medical community.

Background & Aim

Today's presentation, we report ...

- Results of the two preliminary experiments for the summarization of clinical trial design information from MEDLINE abstracts.
 - Firstly, we used conventional Information
 Extraction (IE) methods to conduct an experiment in extraction of clinical trial design information.
 - Next, we performed sentence classification, using state-of-the-art sentence classification algorithm with the future goal of using those results to determine when to carry out IE.

10

IE experiment

What is Information Extraction (IE) in general?

- The goal is to extract pre-specified types of events, entities or relationships from the documents.
- Extracted information is usually entered into a database,
 - for the purpose of analyzing the data for trends, giving a natural language summary, or simply serving for on-line access.

12

IE experiment

We used conventional IE methods to estimate the difficulty of our task.

- Part-of-speech tagging - TnT tagger (Brants, 2000)
- Noun Phrase chunking
 - YamCha (Kudo and Matsumoto, 2001)
- Noun Phrase tagging – Manual labor using domain specific knowledge
- Extraction of IE targets by using manually written patterns

14

		se chunk do and Mats	ing: sumoto, 2001) -
TOKEN	POS	NP chunk	
We	PRP	B (Begin)	An example
conducted	VBD	O (Outside)	sentence:
a	DT	B (Begin)	→ "[We] conducted
multi-center	NN	I (Inside)	[a multi-center,
,	,	I (Inside)	
randomized	VBN	I (Inside)	randomized trial]
trial	NN	I (Inside)	comparing"
comparing	VBG	O (Outside)	16

ment	
	ledge -
conducted [a multi-center, randomized trial] comp nterferon plus ribavirin] with [interferon plus ribavir	0
▼ <u>NP tagging</u> : "[We] conducted [STUDY] comparing [DRUG] with [DRUG] for [THERAPY] of [DISEASE]."	
	"[We] conducted [STUDY] comparing [DRUG] with [DRUG]

IE experiment		
Our No	oun Phrase tag s	et:
[tag]	[covered concept]	[example]
DISEASE:	disease, symptom, virus	chronic hepatitis C
DRUG:	drug, chemical compound	interferon
STUDY:	clinical trial	clinical trial
THERAPY:	treatment, regimen	antiviral treatment
PATIENT:	participants in the trial	HBeAg-positive patients
TARGET:	endpoints	efficacy and safety
SCHEDULE:	time schedule of the trial	an additional 24 weeks
VALUE:	value of TARGET	significantly higher rates
NUMBER:	numeral expression	20 percent
		18

IE experiment

Part-of-speech tagging: - TnT tagger (Brants, 2000)

An example sentence:

"We conducted a multi-center, randomized trial comparing ..."

	We	PRP
	conducted	VBD
-	a	DT
7	multi-center	NN
	,	,
	randomized	VBN
	trial	NN
	comparing	VBG

Part-of-speech

TOKEN

Extract matched NPs and recover original texts.

IE Result:

Compared Treatment : "peginterferon plus ribavirin" Compared Treatment : "interferon plus ribavirin"

IE experiment

Data used in our experiment:

- We downloaded the 50 most recent abstracts of clinical trials from the MEDLINE database on October 2004. - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
- To simplify the experiment, abstracts were selected from the medical area of hepatitis.

- Recall for abstract summarization (Sum_rec)

21

IE experiment

Results:

- We show two types of results:
 - IE from titles alone, and
 - IE from titles and main texts.
- The results from titles alone can be considered as the baseline.
 - because just putting together the titles is close to summarizing the articles.

IE experiment

Results of IE from titles alone and from titles and main texts:

		Compared Treatment	Endpoint	Patient Population
	Ent_pre	76.9%	66.7%	88.2%
IE from	Ent_rec	60.2%	29.0%	53.6%
titles only IE from titles and main texts	Sum_pre	86.0%	96.0%	94.0%
	Sum_rec	40.0%	24.0%	50.0%
	Ent_pre	71.4%	71.9%	68.6%
	Ent_rec	78.3%	59.4%	85.7%
	Sum_pre	70.0%	82.0%	68.0%
	Sum_rec	66.0%	52.0%	84.0%

IE experiment

Why performance isn't good?

- The patterns based on heuristics have no theoretical guarantee that they are correct.
- In the next, we show experimental results of sentence classification that might overcome the difficulties found in this IE experiment.

20

22

Sentence Classification experiment BACT learns from training data as ordered trees.

• In case of N-gram assumption:

BACT learns from training data as ordered trees.

• In case of dependency grammar restriction:

Sentence Classification experim BACT ranks the (calculates weig • An example of depend	sub-ti hts) :		iction.	Sentence Classification experimen BACT classifies s to automatically c	ser	ntences according nstructed patterns.
automatically constructed patterns by BACT that include "DRUG"	Compared Treatment	Endpoint	Patient Population	NP tagged sentence:		Classification Result:
"PATIENT received DRUG"	0.048	-	-	"[We] conducted [STUDY]		Classification Result:
"DRUG"	0.046	-	-		┶	Compared Treatment: +1(Yes)
"TARGET of DRUG"	-	0.035	-	comparing [DRUG] with	7	Endpoint: -1 (No)
"DRUG, DRUG"	0.013	-	-	[DRUG] for [THERAPY]		
"received DRUG"	0.01	0.023	-	of [DISEASE] in		Patient Population: +1 (Yes)
"of DRUG"	0.006	0.012	-	[PATIENT] co-infected		
"with DRUG"	-0.004	-	-0.026	with [DISEASE]."		
"to DRUG"	-0.013	-	-0.012			
"in DRUG"	-0.019	-	-			34
μ <u></u>		•	•			

Sentence Classification experiment

Data used in our experiment:

- Same data as IE experiment.
- We downloaded the 50 most recent abstracts of clinical trials from the MEDLINE database on October 2004.
 - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
- To simplify the experiment, abstracts were selected from the medical area of hepatitis.

Sentence Classification experiment

Evaluation Metrics:

- We used two measures.
- Precision = tp / (tp + fp)
- Recall = tp / (tp + tn)
 - tp means true positive, fp means false positive, and *tn* means true negative.
 - Precision is the correctness of the system when it classifies sentences to "yes".
 - Recall is the proportion of "yes" sentences that the system classifies to "yes". 36

Sentence Classification experiment

Results (five-fold cross validation):

		Compared Treatment	Endpoint	Patient Population
# total sentence		562	562	562
# total "yes"	sentence	90	76	55
BOW	precision	82.3%	81.5%	71.7%
BOW	recall	70.8%	69.1%	64.7%
N-gram	precision	82.6%	85.7%	81.5%
	recall	71.7%	73.2%	81.5%
dependency	precision	86.8%	84.7%	75.2%
	recall	78.5%	72.2%	71.4%

Conclusions

Today's presentation, we have reported ...

- Results of the two preliminary experiments to estimate the difficulty of our task.
- These preliminary experiments show that the combination of IE methodology and sentence classification can be the solution to the summarization task in clinical trial MEDLINE abstracts.
- So we plan to construct a complete pipeline from sentence classification to IE.

Conclusions

Future Work

- Construction of bigger corpora.
- Automate NP tagging.
- In the IE subtask,
 - identification of correspondence between entities and mentions.
- In the subtask of sentence classification using BACT,
 - improving parsing accuracy such that come from coordination structure or PP attachment ambiguity.

