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Background

A huge amount of data can be represented by 
graphs.

WWW, citation or social networks
Node: web page, person
Edge: hyperlink, citation

We can get useful information from these types 
of graph data, however …
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Motivation

Exploring huge graphs is a difficult task.
Ex.  Visualization techniques can show only a 
fraction of huge graphs at a time.

Services to explore huge graphs data are desired!
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Motivation (recommendation service)

1. Users select favorite nodes
2. Recommendation services suggest nodes

related to the selected nodes
popular in the graph

with rank

Link structure (Web or citation) Recommendation service

select 
Recommend 
other nodes
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We have shown graph kernels compute relatedness 

or relative importance between two nodes.

They are adaptable for recommendation 

services.

Previous work
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Problem of graph kernels

Graph kernels are computationally inefficient 
O(|N|3)

Where |N| is the number of nodes.
We propose two types of approximation methods 
for graph kernels
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define an inner product of nodes in a graph.

Heat kernels [Chung, 1997； Kondor & Lafferty, 2002]

Neumann kernels [Kandola et al., 2003]

Regularized Laplacian kernels [Smola & Kondor, 2003]

…

Ex：

Graph kernels

Ａ

Ｂ

Map node pair （A, B）
into a vector space

A

B

Compute the inner product 
between A and B
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Computation of graph kernels 

Graph kernels are represented by weighted sum of 
matrices. 
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Neumann kernels [Kandola et al., 2003] :
NKβ(ATA) = ATA + β(ATA)2 + β2(ATA)3 + …

where
A: adjacency matrix of graph G
β: diffusion rate

Computation of graph kernels 
(Neumann kernels )
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Computation of graph kernels 
(Regularized Laplacian kernels)
Regularized Laplacian kernel matrix [Smola and Kondor, 

2003]

RLKβ(S) = I + β(−L(S)) + β2(−L(S))2 +β3(−L(S))3+…
where

S: symmetric matrix (such as ATA)
L(S): Laplacian [Chung, 1997] of S
L(S) = D(S) − S

D(S): Diagonal matrix
(i,i)-element represents the degree of node i 
in the graph induced by S
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Approximation by limited steps 1/2

Standard techniques for matrix computation allow the 
approximation of kernel computation with the sum 
of the first k terms of infinite series.

Limited steps approximation of Neumann kernels:
NK’β(ATA) = ATA + β(ATA)2 + … βk-1(ATA)k

The approximation error is bounded:
(|N|/K!)(rλ)-1-1)-1/2
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Approximation by limited steps 2/2

If one is concerned with the importance of node 
relative to a single node rather than entire kernel 
matrix,
We can reduce space requirement by limited step  
approximation:
i-th column of approximated Neumann kernel:

(ATA)xi + β (ATA)2xi + … β (ATA)kxi

where ｘi:      if k = i        xi(k) = 1
otherwise   xi(k) = 0
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Approximation by limited eigenvalues
1/2

Neumann kernels can be represented as:
NKβ(ATA) = ATA + β(ATA)2 + β2(ATA)3 + …

= PTDP  + PTβD2P + …
= PT (ΣβkDk+1) P

where P consists of eigenvectors of ATA,
D contains of eigenvalues of ATA.

ATA is decomposed as PTDP
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Approximation by limited eigenvalues
2/2

Use only the k largest eigenvalues in ATA
N.B. Use  D’ in place of D  

D’ if (D (i, i) > λk) D’(i, i) = D (i, i) 
Else                   D’(i, i) = 0

λk = k-th largest eigen value

Definition of Neumann kernels with limited 
eigenvalue approximation:

NK’β(ATA) = PT (ΣβkD’k+1) P
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Experiments（performances of 
approximation methods）
Compare

Graph kernels （Neumann kernels, regularized 
Laplacian kernels）

and
Limited step approximation, limited eigenvalues
approximation

dataset:
citation graph (2687 papers on natural language 
processing)
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Experimental settings

Process of experiments:
1. Extract the row vector for each paper from the 

kernel matrices and rank papers based on the 
magnitude of elements.

2. Compare the ranking of each node among 
kernels  using k-min distance.

K-min distance:
If two lists have similar rankings ⇒ K-min 
distance is small
If two lists have similar rankings ⇒ K-min 
distance is large
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Results（limited step approximation）

3.13.13.13.10.1

3.23.33.73.70.9Regularized 
Laplacian

0.60.60.60.70.1

0.50.76.710.8β = 0.9 
* 
spectral 
radius-1

Neumann

10050105# of steps

Averages of K-min distances between kernels 
and their limited step approximations
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Results（limited eigenvalues
approximation）

32.051.067.570.975.80.1

31.550.767.370.776.10.9Regularized 
Laplacian

0.73

0.69

1000

17.4

7.12

500

28.439.563.90.1

24.436.052.9β = 0.9 * 
spectral 
radius-1

Neumann

1005010# of eigen vectors

Averages of K-min distances between kernels 
and their limited eigenvalue approximations
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Conclusions

We have proposed two types of approximation 
methods for graph kernels. 

Examine the performances of approximation 
methods on citation network.
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Other contributions

Parameter estimation methods for kernels

Some proofs
Non-negativity of kernels
Positive semi-definiteness
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Future work

Comparison between other kernel methods and 
traditional relatedness measures.

Application to collaborative filtering or relevance 
feedback.
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