Application of kernels to link analysis (Approximation methods)

Takahiko Ito

Nara Institute of Science and Technology

Background

- A huge amount of data can be represented by graphs.
 - WWW, citation or social networks
 - Node: web page, person
 - Edge: hyperlink, citation

 We can get useful information from these types of graph data, however ...

Motivation

- Exploring huge graphs is a difficult task.
 - Ex. Visualization techniques can show only a fraction of huge graphs at a time.
- Services to explore huge graphs data are desired!

Motivation (recommendation service)

- 1. Users select favorite nodes
- 2. Recommendation services suggest nodes related to the selected nodes

popular in the graph

Previous work

- We have shown graph kernels compute relatedness or relative importance between two nodes.
 - They are adaptable for recommendation services.

Problem of graph kernels

- Graph kernels are computationally inefficient O(|N|³)
 - Where |N| is the number of nodes.
- We propose two types of approximation methods for graph kernels

Table of contents

- Review graph kernels
 - Neumann kenels [Kandola et al., 2003]
 - Regularized Laplacian kernels [Smola and Kondor, 2003]
- Propose two types of approximation methods for graph kernels

Graph kernels

- define an inner product of nodes in a graph.
 - Heat kernels [Chung, 1997; Kondor & Lafferty, 2002]
 - Neumann kernels [Kandola et al., 2003]
 - Regularized Laplacian kernels [Smola & Kondor, 2003]

Computation of graph kernels

 Graph kernels are represented by weighted sum of matrices.

Computation of graph kernels (Neumann kernels)

- Neumann kernels [Kandola et al., 2003] : NK_β(A^TA) = A^TA + β(A^TA)² + β²(A^TA)³ + ... where
 - A: adjacency matrix of graph G
 - β: diffusion rate

Computation of graph kernels (Regularized Laplacian kernels)

Regularized Laplacian kernel matrix [Smola and Kondor, 2003]

 $\mathsf{RLK}_\beta(S)$ = I + $\beta(-\mathsf{L}(S))$ + $\beta^2(-\mathsf{L}(S))^2$ + $\beta^3(-\mathsf{L}(S))^3$ + \ldots where

- S: symmetric matrix (such as A^TA)
- ◆ L(S): Laplacian [Chung, 1997] of S
 - $\mathsf{L}(\mathsf{S}) = \mathsf{D}(\mathsf{S}) \mathsf{S}$
- D(S): Diagonal matrix
 - (i,i)-element represents the degree of node i in the graph induced by S

Table of contents

- Review graph kernels
- Propose two types of approximation methods for kernels
 - Limited steps approximation
- Limited eigenvalues approximation

Standard techniques for matrix computation allow the approximation of kernel computation with the sum of the first k terms of infinite series.

Limited steps approximation of Neumann kernels: $NK'_{\beta}(A^{T}A) = A^{T}A + \beta(A^{T}A)^{2} + \dots \beta^{k-1}(A^{T}A)^{k}$

> The approximation error is bounded: (|N|/K!)(rλ)⁻¹-1)^{-1/2}

Approximation by limited steps 2/2

- If one is concerned with the importance of node relative to a single node rather than entire kernel matrix,
- We can reduce space requirement by limited step approximation:

i-th column of approximated Neumann kernel: $(A^TA)x_i + \beta (A^TA)^2x_i + ... \beta (A^TA)^kx_i$

where
$$x_i$$
: $\begin{cases} \text{if } k = i & x_i(k) = 1 \\ \text{otherwise} & x_i(k) = 0 \end{cases}$

Approximation by limited eigenvalues 2/2

- Definition of Neumann kernels with limited eigenvalue approximation:
 NK'_β(A^TA) = P^T (β^kD'^{k+1}) P

Experiments (performances of approximation methods)

Compare

 Graph kernels (Neumann kernels, regularized Laplacian kernels)

and

 Limited step approximation, limited eigenvalues approximation

dataset:

citation graph (2687 papers on natural language processing)

Experimental settings

- Process of experiments:
 - Extract the row vector for each paper from the kernel matrices and rank papers based on the magnitude of elements.
 - 2. Compare the ranking of each node among kernels using k-min distance.

K-min distance

- If two lists have similar rankings K-min distance is small
- If two lists have similar rankings K-min distance is large

Results (limited step approximation)

Averages of K-min distances between kernels and their limited step approximations

# of steps		5	10	50	100
Neumann	$\beta = 0.9$ * spectral radius ⁻¹	10.8	6.7	0.7	0.5
	0.1	0.7	0.6	0.6	0.6
Regularized Laplacian	0.9	3.7	3.7	3.3	3.2
	0.1	3.1	3.1	3.1	3.1

Results (limited eigenvalues approximation)

Averages of K-min distances between kernels and their limited eigenvalue approximations

# of eigen vectors		10	50	100	500	1000
Neumann	$\beta = 0.9 *$ spectral radius ⁻¹	52.9	36.0	24.4	7.12	0.69
	0.1	63.9	39.5	28.4	17.4	0.73
Regularized Laplacian	0.9	76.1	70.7	67.3	50.7	31.5
	0.1	75.8	70.9	67.5	51.0	32.0

Conclusions

- We have proposed two types of approximation methods for graph kernels.
 - Examine the performances of approximation methods on citation network.

Other contributions

Parameter estimation methods for kernels

Some proofs

- Non-negativity of kernels
- Positive semi-definiteness

Future work

- Comparison between other kernel methods and traditional relatedness measures.
- Application to collaborative filtering or relevance feedback.

References

- F. R. K. Chung. Spectral Graph Theory. AMS, 1997 R. Fagin, R. Kumar, D. Sivakumar. Comparing top k lists. In Proc. SODA, 2003.
- M. M. Kessler. Bibliographic coupling between scientfic papers. *American Documentation* 14:10-25, 1963
- J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In Proc. NIPS 15, 2003.
- R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In *Proc. ICML*, 2002.
- between two documents. *J. Am. Soc. Information Science*, 24:265-269, 1973. A. J. Smola and R. Kondor. Kernels and regularization of graphs. In *Proc. 16th COLT*, 2003.
- S. White and P. Smyth. Algorithms for estimating relative importance in networks. In Proc. ACM SIGKDD, 2003.