Diagnosis of Errors from Compacted Test Response

Thomas Clouqueur

Computer Design and Test Laboratory

Outline

- Introduction and Motivation.
- □ Challenge of error diagnosis.
- Diagnosis using dictionaries.
 - Method.
 - Performance evaluation.
- **Conclusion and Future work**.

4

6

Introduction

Manufacturing test and debug of IC chips.

Motivation

Goal: identify fault location from test response.

Problem: identify errors from compacted test response.

Linear compactors

Linear compactors implemented with xor trees.

Example:

Challenge of diagnostic

One erroneous signature corresponds to several error patterns:

In general, only part of the error patterns can be correctly identified.

1

Diagnostic method

- Diagnostic using dictionary:
- Build dictionary for combinations of one, two, three... errors.

Diagnostic method

- Diagnostic using dictionary:
- Build dictionary for combinations of one, two, three... errors.

Diagnostic method

- Diagnostic using dictionary:
- Build dictionary for combinations of one, two, three... errors.

Unknown values

- Unknown values (X) are circuit responses that cannot be determined during simulation.
 - Sources: bus contention, unmodeled memory...
- Impact on compactor:

Diagnostic performance Impact of X values on diagnostic: Scan out 1 $01 - \oplus \oplus \oplus$ If X is given high weight: Scan out 2 00 Two single error patterns Scan out 3 00 - 6Scan out 4 10 $- \phi$ become indistinguishable. Scan out 5 XX — -00 _____ Scan out 6 00 Scan out 7 00 Scan out 8 Out Out Out Out Out 3 4 5 X 0 X 1 X O X 12

2

11

Diagnostic performance

Impact of X values on diagnostic:

If X is given high weight: Two single error patterns become indistinguishable.

If X is given low weight: Two single error patterns remain distinguishable.

Conclusion and Future work

- Multiple weight matrices can improve diagnostic resolution.
- Performance remains poor in presence of many unknowns.
- Future work:
 - Develop a method to optimally assign weights.
 - Evaluate diagnostic performance for faults.
 - Develop search algorithm to overcome limitation of dictionaries.

3