
1

Toward Secure Data Obfuscation

7th COE Postdoctoral and Doctoral Researchers Technical Presentation

October 27th , 2005

Software Engineering Lab.

Yuichiro Kanzaki

2/15

Background

Software cracking has posed a serious problem for
copyright protection of the software.

We need a method for protecting software to create a safe

ubiquitous computing environment.

Example

� An attacker analyzes a digital contents distribution

system and obtains the secret key[1].

� An attacker analyzes a program embedded in a set-top

box and steals the device key[2].

[1] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot: A white-box DES implementation for DRM applications, Proc. 2nd ACM

Workshop on Digital Rights Management, pp.1-15, Nov. 2002.

[2] The United Kingdom Parliament, ``The mobile telephones (re-programming) bill,'' House of Commons Library Research Paper
no.02/47, July 2002.

3/15

Goal

We develop an effective obfuscation method to protect

secret parts of software.

Obfuscation :

Transforming a program into an equivalent one that is

harder to reverse engineer[1]

[1] C. Collberg, C. Thomborson, ``Watermarking, Tamper-Proofing, and Obfuscation -- Tools for Software Protection,''
IEEE Trans. Software Eng., vol.28, no.8, pp.735-746, June 2002.

int a = 2,b = 3;

for(i=0;i<5;i++){

a *= pow(b,i);

}

printf(“%d”,a);

int a[] = {2,11};

int i=1;

LOOP:

if(i!=5){a[0] *=

pow((a[1]-2)/3,i);

i++;goto LOOP;

}printf(“%d”,a[0]);

obfuscate

original program obfuscated program

Developers can reduce a risk of attack to their program

4/15

Target and Attacker Model

� Target

A function that has a secret expression f(x) which calculates y

using input x and internal constant values c1, c2,…

� Attacker model

� Attackers can use tools for analyzing executable programs

� Attackers try to obtain f(x) that must be kept secret

f(x)

c1, c2, … (constant)

x y

(output)(input)

unsigned char f (int x)

{

int c1=3, c2=5, y;

y = c1 * x + c2;

return y;

}

Our goal is to make the program difficult to guess f(x)

5/15

unsigned char f (int x)

{

int c1=7, c2=11, y;

y = (c1+1) * x + c2;

return (y-1)/2;

}
Obfuscation

Problem of Conventional Obfuscation

unsigned char f (int x)

{

int c1 =3, c2=5, y;

y = c1 * x + c2;

return y;

}

Original Function

It is easy to guess f(x) from the obfuscated function since

there is a similar expression

Obfuscated Function

f(x)

We hide the expression that could be clue to obtain the

secret expression f(x)

6/15

obfuscate

Key idea of our method (1/3)

unsigned char f (int x)

{

int c1=3, c2=5, y;

y = c1 * x + c2;

return y;

}

Original Function

Hiding f(x) using an I/O table relating input to output

f(x)

c1, c2

x y
x y

Function using I/O table

unsigned char F[] = {

5, 8, 11,…..

}

unsigned char f (int x)

{

return F[x];

}

x y

0
1
2

5
8
11… …

I/O Table

It is easy to guess f(x) since the relation between x and y is

clear

f(x)

2

7/15

Key idea of our method (2/3)

One-way function:
A function which is easy to calculate but highly hard to

invert (e.g. MD5, SHA-1)

oneway(x)x x’

“25” “5f3da44b23”

easy to calculate

hard to invert

We obfuscate the relation between input x and output y

using a one-way function.

8/15

Key idea of our method (3/3)

oneway(x)x TableRef y

Obfuscated Function

yoneway(x)

5

8

11

5df382

f43e21

2899e1

……

HashVal F[] = {

“5df382”, “f43e21”, “2899e1”..

}

unsigned char f (int x)

{

for(i=0; i<sizeof(F); i++) {

if(oneway(x) == F[i]) y=i;

}

return y;

}

We construct an obfuscated function that has a table relating

the result of the one-way function of x to the output y.

Obfuscated I/O Table

To guess input x from output y is as difficult as inverting the

one-way function.

2 2899e1

2899e1

2899e1

11

Obfuscated I/O table

comparison

9/15

Procedure of obfuscation (1/2)

1. Create an I/O table from the target function

unsigned char f (int x)

{

int c1=3, c2=5, y;

y = c1 * x + c2;

return y;

}

Table

Builder

c1,c2,…

f(x) I/O Table

x y oneway(x)

0

1

2

3

5

8

11

13

5df382

f43e21

2899e1

e3dad0

… … …

I/O Table

Each candidate

for input x

Target Function

one-way function

The size of the table

depends on

the number of

candidates for input

10/15

Procedure of obfuscation (2/2)

2. Generate the obfuscated function from the I/O table

HashVal F[] = {

“5df382”, “f43e21”, “2899e1”..

}

unsigned char f (int x)

{

for(i=0; i<sizeof(F); i++) {

if(oneway(x) == F[i]) y=i;

}

return y;

}

Obfuscated Function

x y oneway(x)

0

1

2

3

5

8

11

13

5df382

f43e21

2899e1

e3dad0

… … …

I/O Table

oneway(x)

comparison

The number of comparison time depends on the size of

table

11/15

Discussion of security

� As long as the attacker analyzes the function statically,

to guess f(x) from the obfuscated I/O table is

impossible

� To generate the original I/O table based on the behavior

during execution, the difficulty depends on the number

of candidates for input

How difficult to obtain f(x) from the obfuscated function?

yoneway(x)

0

1

2

7f3f53

c4321e

3e5757

……

yx

5

8

11

0

1

2

……

y = 3 * x + 5;

f(x) in Original FunctionObfuscated I/O table Original I/O table

12/15

Experiment (1/3) : Overview

We evaluated the overhead of the obfuscated program

� Evaluation Items

� Size Overhead

� Performance Overhead

� Target Function

� A simple function which has

1 input and 1 expression

� We call the function 10 times

� We use MD5 algorithm

� The number of candidates

for input was varied

int f (int x)

{

int c1=3, c2=5, y;

y = c1 * x + c2;

return y;

}

int main() {

for(i=0; i<10; i++) {

f(rand()*candidates);

}

}

Target Program (original)

3

13/15

Experiment (2/3) : Size Overhead

The program size increases in proportion to the number of

candidates for input due to I/O tables.

25 25 40
100

340

1300

0

200

400

600

800

1000

1200

1400

original 2^8 2^10 2^12 2^14 2^16

The number of candidates for input

P
ro

gr
am

 S
iz

e
[K

B
]

14/15

Experiment (3/3) : Performance Overhead

The execution time increases in proportion to the number

of candidates for input due to comparison routines.

0.27 0.33 0.51
1.26

4.47

17.02

0

2

4

6

8

10

12

14

16

18

original 2^8 2^10 2^12 2^14 2^16

The number of candidates for input

E
xe

c
u
si

o
n
 T

im
e
 [

se
c
]

15/15

Conclusion and Future Work

� We have proposed an obfuscation method using I/O

table and one-way function

� The method drastically increases the cost of analyzing

� The current system imposes significant overhead

Conclusion

Future Work

� Improving our system to reduce performance overhead

� Investigation of the suitable application domain

