An Information Management and Retrieval Method Considering Geographical Location on Ubiquitous Environment

MATSUURA Satoshi
Internet・Architecture LAB
sato-mat@is.naist.jp

Background
• Development of Wireless Technology & Positioning Devices
 – cars, PDAs, mobile phones…
 – easily connect to the Internet
 – get the actual position
• Demand for location related service
 – weather information (mobile phone)
 – traffic information (car navigation)

Goal
• collect data with geographical location
• share location-related data with each devices
• we can use location-related information of any place.
 – more detailed traffic and weather information
 • new geographical services
 • traffic and environmental problem

Requirements
• Scalability
 – manage a large number of devices
• Region search
 – weather and traffic information is deeply related with geographical position
• Fast Search
 – location-related information is easily affected by TIME (and location)

Architecture

DEMO

1. Put(x, y) Get(x, y) Put(keyID) Put(keyID, IP) data Get(KeyID)
2. Z-ordering — this layer creates ID “region search”
3. skip-list — this layer provides lookup service “scalability” “fast search”

Application
2D ⇔ 1D Mapping
Lookup Service
Algorithm

- Optimize “Z-ordering”, “Skip-list” for P2P

Simulation environment

- CPU: Pentium4 2.4GHz
- Memory: 1GB
- Programming language: Java 2 SDK ver1.4.2-05
- OS: WindowsXP-SP2
- Number of nodes: 10 → 2560
- ID-space: 2^{14} (4096 x 4096)
- Transfer method: Random work

Application Example

1. Create weather information
2. See the atmospheric temperature
3. Region search
4. Supports any size of region search

Routing Cost

- Linear search: $O(N)$
- Proposed System: $O(\log N)$

Messaging Cost

- Linear search: $O(N)$
- Proposed System: $O(\log N)$

Robustness

- Recover overlay network 100%
Related-work

- DHT-based P2P network
 - Chord, SkipNet, Tapestry, Pastory
 - routing cost: $O(\log N)$
 - hashed ID is NOT match Geographical Info
 - so much queries are generated
- Geographical-based P2P network
 - CAN, LL-net
 - routing cost: $O(\sqrt{N})$
 - complex area management
 - There are some kind of special nodes (Super nodes, etc.)

Summary

- Scalability
 - message cost: $O(\log N)$
- Region search
 - can search any size of square (few queries)
- Fast search
 - routing cost: $O(\log N)$
- Other features
 - robustness
- Feature work
 - improve road-balance, support poor devices, etc...