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= Nowadays, Digital Rights Management (DRM) software, such as
iTunes and media player, became an important application for
ubiquitous computing environments.

= Simplified DRM software:

Secret Key

Audio/Visual

Enciphered Media
Stream

Player Software P

= The manufacturer of DRM software must protect secret keys
included in the player software from being spied out by a
software cracker.

August 25, 2005 2

Software Obfuscation

= Various software obfuscation methods have been proposed to
make it difficult for crackers to understand the software.
= Program obfuscation
—Making expressions and procedures in a program more complex than
the original[1].
= Example of program obfuscation

inta=2,b=3; ::: ?:q; 2113
for(i=0;i<5;i++){ I LOOP:

a = pow(b, i); if(i1=5){a[0] *=
pow((a[1]-2)/3,1);
i++;goto LOOP;
Yprintf(“<%d>~,a[0]);

} obfuscate
printf(“<%d>~,a);

[1] C. Collberg, C. TI Proofing, and O

A Tamps -- Tools for Software Protection,"
IEEE Trans. Software Eng., vol.28, no.8, pp.735-746, June 2002.
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Problem of software protection

= Unfortunately, it is unclear how effective they are in protecting
a secret key inside the cipher program.
— Difficult to understand == Difficult to find a secret key.

= We focus on the “Crackers' viewpoint™

— Obfuscation method often fell into a protector-centric approach
focusing on building a “complex” program.

— Our approach is a cracker-centric to conceal the clues of the attack.

— Itis necessary to construct a realistic crackers' model, a model of what
the cracker can do (and cannot do).
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Approach and Goals

= Goals

— To develop the guideline for applying obfuscation methods to protect
cipher programs against a skilled cracker who tries to extract security-
sensitive data.

— Our research is NOT a proposal of new obfuscation methods. Our aim
is it clarify where and how to apply existing obfuscation methods.

= Approach
— Define a realistic crackers” model.

— Develop a guideline for obfuscation to hide clues, which might be found
by the cracker.
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Target Software

= A data decryption program using C2 algorithm
C2(Cryptomeria Cipher) :

= A Feistel network-based block cipher designed for use in the area
of digital entertainment content protection (CPPM/CPRM).

= The algorithm is open to the public[2]
= The Device Key is required to be hidden from users.
= Written in Java

= Using ECB (Electronic Code Book) mode

[2] 4C Entity, “Content protection for recordable media specification — ion and common elements,”
rev. 1.0, 31 pp.L0, Jan. 2003
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Crackers' model

We characterized the cracker”s knowledge and resources along
with three dimensions.
Algorithm Understanding
— The cracker has full knowledge of the principles of C2 algorithm.
System Observation
— The cracker owns a binary file and a disassembled file of DRM software.

— The cracker can observe computer memory and execution trace of
software using debuggers.

System Control
— The cracker can execute the software with an arbitrary input.
— The cracker can modify the software in any desired way.
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Algorithm understanding

LorR

Round key k;

Cracker”s knowledge

— Round keys are 32-bit length
constants.

— There are 10 round keys.
— S-box is a set of 256 8-hit values.

(¥ addition
Irot9

? Irot22 @ XOR
Irot x... rotation

A Eart of C2 algorithm
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Guideline for applying obfuscation

In order to achieve the security goal, we need to hide the
following information in the C2 program.

A) Round keys (secret keys)

B) S-box (secret data table)

C) Feistel function

D) Distinctive opcodes and operands

E) Obfuscation itself

Currently, we started to develop a guideline of obfuscation
that can hide above information.

Today, | explain about hiding A) and B).
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A) Round keys

rkey[0] = Ox789ac6ee;
rkey[1] = 0x79bc3398;
rkey[2] = 0x48d15d62;

Source code for defining Round keys

17: iconst_0
18: Idc

20: iastore
21: aload 8
23: iconst_1
24: ldc

26: iastore
27: aload 8

29: iconst_2

30: Idc #8; //int 1221680482 ¢

Disassembled code (by javap -c)

#6; /lint 2023409390 #

#7, //int 2042377112 4
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Value of Round Keys

Round keys can be easily
found from disassembly code.

Because they are large (32-bit)
constants

uscation for Hiding R

Changing the encoding domain of keys with homomorphism

rkey[0] = Ox789ac6ee; ﬂﬂ|:> \ rkey[0] = 0x123232143¢;

homomorphism
— Calculations using the key must be done in the changed domain.

Inserting dummy keys

rkey[0] = Ox789ac6ee;
rkey[1] = Ox6bc32e55 #—dummy constant
rkey[2] = 0x79bc3398;
rkey[3] = Ox1d8aa4f5;+—dummy constant

rkey[0] = Ox789ac6ee;
rkey[1] = 0x79bc3398;

=)

B_rkey[0][0] = Ox78;

Dividing keys into smaller sub-keys.
B_rkey[0][1] = 0x9a;
B_rkey[0][2] = Ox6c;

=)
B_rkey[0][3] = Oxee;

— Sub-keys must not be concatenated back to the original key throughout the
A galculation.
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‘ static byte SecretConstant[ ] = { (byte)OxB6, (byte)OXAA, .... ‘

Source code for defining S-box

static {};

Code:

0: sipush 256

3: newarray byte
5: dup

6: iconst_0

7. bipush -74
9: bastore

10:  dup

11: iconst_1

12:  bipush -86 +
14: bastore

Disassembled code (by javap —c)
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+——— Declaration of an array

(length: 256, Type: byte)

1st element

2nd element

Arrays are easily recognizable
in disassembled code.




Using more complex data structure, such as trees and lists, Defined a cracker”s model, a model of what a cracker is able
instead of using a simple array. (and not able) to do.
Developed a part of an obfuscation guideline to hide clues,
which might be found by the cracker.
I ~ Hiding round keys and S-Box
Future Plan

Merge, Split, Fold and/or Interleave the array. ~ Complete the guideline.

— Evaluation by a super hacker.

(1) int A[10] (1) int AL[5], A2[5]:

@) Ali] = ... @) if(({%2)==0) AL[i/2]=...;
HUI:‘ > else A2[i/2]=...;

(3) int B[10], C[20]; obfuscate  (3) int BC[20];

@ B[i]=..; (4) BC[3*i] =...;

) Cli] = ... (5) BC[i/2*3+1+i%2] = ...
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