
1

August 25, 2005 1

Protecting Cipher Programs using
Light-Weight Obfuscations:
A Cracker-Centric Approach

The 5th COE Postdoctoral and Doctoral Researchers Technical Presentation
August 25 , 2005

Hiroki Yamauchi

Software Engineering Laboratory,
Graduate school of Information Science,

Nara Institute of Science and Technology

August 25, 2005 2

Background

Nowadays, Digital Rights Management (DRM) software, such as
iTunes and media player, became an important application for
ubiquitous computing environments.

Simplified DRM software:

The manufacturer of DRM software must protect secret keys
included in the player software from being spied out by a
software cracker.

Decode Audio/Visual
Output

Player Software P

Secret Key

Enciphered Media
Stream

August 25, 2005 3

Software Obfuscation

Various software obfuscation methods have been proposed to
make it difficult for crackers to understand the software.

Program obfuscation
‒ Making expressions and procedures in a program more complex than
the original[1].

Example of program obfuscation

int a = 2,b = 3;
for(i=0;i<5;i++){
a *= pow(b,i);

}
printf(“%d”,a);

int a[] = {2,11};
int i=1;
LOOP:
if(i!=5){a[0] *=
pow((a[1]-2)/3,i);
i++;goto LOOP;
}printf(“%d”,a[0]);

obfuscate

[1] C. Collberg, C. Thomborson, ``Watermarking, Tamper-Proofing, and Obfuscation -- Tools for Software Protection,''
IEEE Trans. Software Eng., vol.28, no.8, pp.735-746, June 2002.

August 25, 2005 4

Problem of software protection

Unfortunately, it is unclear how effective they are in protecting
a secret key inside the cipher program.
‒ Difficult to understand ≠ Difficult to find a secret key.

We focus on the “Crackers' viewpoint”．
‒ Obfuscation method often fell into a protector-centric approach
focusing on building a “complex” program.

‒ Our approach is a cracker-centric to conceal the clues of the attack.

‒ It is necessary to construct a realistic crackers' model, a model of what
the cracker can do (and cannot do).

August 25, 2005 5

Approach and Goals

Goals
‒ To develop the guideline for applying obfuscation methods to protect
cipher programs against a skilled cracker who tries to extract security-
sensitive data.

‒ Our research is NOT a proposal of new obfuscation methods. Our aim
is it clarify where and how to apply existing obfuscation methods.

Approach
‒ Define a realistic crackers’ model.

‒ Develop a guideline for obfuscation to hide clues, which might be found
by the cracker.

August 25, 2005 6

Target Software

A data decryption program using C2 algorithm

C2(Cryptomeria Cipher) :
A Feistel network-based block cipher designed for use in the area
of digital entertainment content protection (CPPM/CPRM).

The algorithm is open to the public[2]

The Device Key is required to be hidden from users.

Written in Java

Using ECB (Electronic Code Book) mode

[2] 4C Entity, “Content protection for recordable media specification ‒ Introduction and common cryptographic elements,”
rev. 1.0, 31 pp.1.0, Jan. 2003.

2

August 25, 2005 7

Crackers' model

Algorithm Understanding
‒ The cracker has full knowledge of the principles of C2 algorithm.

System Observation
‒ The cracker owns a binary file and a disassembled file of DRM software.

‒ The cracker can observe computer memory and execution trace of
software using debuggers.

System Control
‒ The cracker can execute the software with an arbitrary input.

‒ The cracker can modify the software in any desired way.

We characterized the cracker’s knowledge and resources along
with three dimensions.

August 25, 2005 8

Algorithm understanding

Cracker’s knowledge
‒ Round keys are 32-bit length
constants.

‒ There are 10 round keys.

‒ S-box is a set of 256 8-bit values.

‒ …
S-box

L or R Round key ki

0x
65

0x
2b

0x
c9

lro
t1

lro
t5

lro
t2

lrot9 lrot22

+

+ addition
XOR

lrot x… rotation

A part of C2 algorithm

August 25, 2005 9

Guideline for applying obfuscation

In order to achieve the security goal, we need to hide the
following information in the C2 program.
A) Round keys (secret keys)

B) S-box (secret data table)

C) Feistel function

D) Distinctive opcodes and operands

E) Obfuscation itself

Currently, we started to develop a guideline of obfuscation
that can hide above information.

Today, I explain about hiding A) and B).

August 25, 2005 10

A) Round keys

17: iconst_0
18: ldc #6; //int 2023409390
20: iastore
21: aload 8
23: iconst_1
24: ldc #7; //int 2042377112
26: iastore
27: aload 8
29: iconst_2
30: ldc #8; //int 1221680482

rkey[0] = 0x789ac6ee;
rkey[1] = 0x79bc3398;
rkey[2] = 0x48d15d62;
….

Source code for defining Round keys

Disassembled code (by javap -c)

Round keys can be easily
found from disassembly code.

Value of Round Keys

Because they are large (32-bit)
constants

August 25, 2005 11

Obfuscation for Hiding Round keys

Changing the encoding domain of keys with homomorphism

‒ Calculations using the key must be done in the changed domain.

Inserting dummy keys

Dividing keys into smaller sub-keys.

‒ Sub-keys must not be concatenated back to the original key throughout the
calculation.

rkey[0] = 0x789ac6ee;

rkey[0] = 0x789ac6ee;
rkey[1] = 0x79bc3398;
….

rkey[0] = 0x789ac6ee;
rkey[1] = 0x6bc32e55;
rkey[2] = 0x79bc3398;
rkey[3] = 0x1d8aa4f5;
….

rkey[0] = 0x789ac6ee;

B_rkey[0][0] = 0x78;
B_rkey[0][1] = 0x9a;
B_rkey[0][2] = 0x6c;
B_rkey[0][3] = 0xee;

rkey[0] = 0x123232143e;
homomorphism

dummy constant

dummy constant

August 25, 2005 12

B) S-box

static {};
Code:
0: sipush 256
3: newarray byte
5: dup
6: iconst_0
7: bipush -74
9: bastore
10: dup
11: iconst_1
12: bipush -86
14: bastore

Declaration of an array
(length: 256, Type: byte)

1st element

2nd element

static byte SecretConstant[] = { (byte)0xB6, (byte)0xAA, ….
Source code for defining S-box

Disassembled code (by javap –c)
Arrays are easily recognizable
in disassembled code.

3

August 25, 2005 13

Obfuscation for hiding S-Box

Using more complex data structure, such as trees and lists,
instead of using a simple array.

Merge, Split, Fold and/or Interleave the array.

(1) int A[10]
(2) A[i] = …;

(3) int B[10], C[20];
(4) B[i] = …;
(5) C[i] = …;

(1) int A1[5], A2[5];
(2) if((i%2)==0) A1[i/2]=…;

else A2[i/2]=…;
(3) int BC[20];
(4) BC[3*i] = …;
(5) BC[i/2*3+1+i%2] = …;

obfuscate

…

August 25, 2005 14

Summary

Defined a cracker’s model, a model of what a cracker is able
(and not able) to do.

Developed a part of an obfuscation guideline to hide clues,
which might be found by the cracker.
‒ Hiding round keys and S-Box

Future Plan
‒ Complete the guideline.

‒ Evaluation by a super hacker.

