v Protecting Cipher Programs using
Light-Weight Obfuscations:
A Cracker-Centric Approach

The 5th COE Postdoctoral and Doctoral Researchers Technical Presentation
August 25 , 2005

Software Engineering Laboratory,
Graduate school of Information Science,
Nara Institute of Science and Technology

August 25, 2005 1

= Nowadays, Digital Rights Management (DRM) software, such as
iTunes and media player, became an important application for
ubiquitous computing environments.

= Simplified DRM software:

Secret Key

Audio/Visual

Enciphered Media
Stream

Player Software P

= The manufacturer of DRM software must protect secret keys
included in the player software from being spied out by a
software cracker.

August 25, 2005 2

Software Obfuscation

= Various software obfuscation methods have been proposed to
make it difficult for crackers to understand the software.
= Program obfuscation
—Making expressions and procedures in a program more complex than
the original[1].
= Example of program obfuscation

inta=2,b=3; ::: ?:q; 2113
for(i=0;i<5;i++){ I LOOP:

a = pow(b, i); if(i1=5){a[0] *=
pow((a[1]-2)/3,1);
i++;goto LOOP;
Yprintf(“<%d>~,a[0]);

} obfuscate
printf(“<%d>~,a);

[1] C. Collberg, C. TI Proofing, and O

A Tamps -- Tools for Software Protection,"
IEEE Trans. Software Eng., vol.28, no.8, pp.735-746, June 2002.

August 25, 2005 3

Problem of software protection

= Unfortunately, it is unclear how effective they are in protecting
a secret key inside the cipher program.
— Difficult to understand == Difficult to find a secret key.

= We focus on the “Crackers' viewpoint™

— Obfuscation method often fell into a protector-centric approach
focusing on building a “complex” program.

— Our approach is a cracker-centric to conceal the clues of the attack.

— Itis necessary to construct a realistic crackers' model, a model of what
the cracker can do (and cannot do).

August 25, 2005 4

Approach and Goals

= Goals

— To develop the guideline for applying obfuscation methods to protect
cipher programs against a skilled cracker who tries to extract security-
sensitive data.

— Our research is NOT a proposal of new obfuscation methods. Our aim
is it clarify where and how to apply existing obfuscation methods.

= Approach
— Define a realistic crackers” model.

— Develop a guideline for obfuscation to hide clues, which might be found
by the cracker.

August 25, 2005 5

Target Software

= A data decryption program using C2 algorithm
C2(Cryptomeria Cipher) :

= A Feistel network-based block cipher designed for use in the area
of digital entertainment content protection (CPPM/CPRM).

= The algorithm is open to the public[2]
= The Device Key is required to be hidden from users.
= Written in Java

= Using ECB (Electronic Code Book) mode

[2] 4C Entity, “Content protection for recordable media specification — ion and common elements,”
rev. 1.0, 31 pp.L0, Jan. 2003

August 25, 2005 6

Crackers' model

We characterized the cracker”s knowledge and resources along
with three dimensions.
Algorithm Understanding
— The cracker has full knowledge of the principles of C2 algorithm.
System Observation
— The cracker owns a binary file and a disassembled file of DRM software.

— The cracker can observe computer memory and execution trace of
software using debuggers.

System Control
— The cracker can execute the software with an arbitrary input.
— The cracker can modify the software in any desired way.

August 25, 2005 7

Algorithm understanding

LorR

Round key k;

Cracker”s knowledge

— Round keys are 32-bit length
constants.

— There are 10 round keys.
— S-box is a set of 256 8-hit values.

(¥ addition
Irot9

? Irot22 @ XOR
Irot x... rotation

A Eart of C2 algorithm
August 25, 2005

Guideline for applying obfuscation

In order to achieve the security goal, we need to hide the
following information in the C2 program.

A) Round keys (secret keys)

B) S-box (secret data table)

C) Feistel function

D) Distinctive opcodes and operands

E) Obfuscation itself

Currently, we started to develop a guideline of obfuscation
that can hide above information.

Today, | explain about hiding A) and B).

August 25, 2005 9

A) Round keys

rkey[0] = Ox789ac6ee;
rkey[1] = 0x79bc3398;
rkey[2] = 0x48d15d62;

Source code for defining Round keys

17: iconst_0
18: Idc

20: iastore
21: aload 8
23: iconst_1
24: ldc

26: iastore
27: aload 8

29: iconst_2

30: Idc #8; //int 1221680482 ¢

Disassembled code (by javap -c)

#6; /lint 2023409390 #

#7, //int 2042377112 4

August 25, 2005

Value of Round Keys

Round keys can be easily
found from disassembly code.

Because they are large (32-bit)
constants

uscation for Hiding R

Changing the encoding domain of keys with homomorphism

rkey[0] = Ox789ac6ee; ﬂﬂ|:> \ rkey[0] = 0x123232143¢;

homomorphism
— Calculations using the key must be done in the changed domain.

Inserting dummy keys

rkey[0] = Ox789ac6ee;
rkey[1] = Ox6bc32e55 #—dummy constant
rkey[2] = 0x79bc3398;
rkey[3] = Ox1d8aa4f5;+—dummy constant

rkey[0] = Ox789ac6ee;
rkey[1] = 0x79bc3398;

=)

B_rkey[0][0] = Ox78;

Dividing keys into smaller sub-keys.
B_rkey[0][1] = 0x9a;
B_rkey[0][2] = Ox6c;

=)
B_rkey[0][3] = Oxee;

— Sub-keys must not be concatenated back to the original key throughout the
A galculation.
igust 25, 201 11

‘ static byte SecretConstant[] = { (byte)OxB6, (byte)OXAA, ‘

Source code for defining S-box

static {};

Code:

0: sipush 256

3: newarray byte
5: dup

6: iconst_0

7. bipush -74
9: bastore

10: dup

11: iconst_1

12: bipush -86 +
14: bastore

Disassembled code (by javap —c)

August 25, 2005

+——— Declaration of an array

(length: 256, Type: byte)

1st element

2nd element

Arrays are easily recognizable
in disassembled code.

Using more complex data structure, such as trees and lists, Defined a cracker”s model, a model of what a cracker is able
instead of using a simple array. (and not able) to do.
Developed a part of an obfuscation guideline to hide clues,
which might be found by the cracker.
I ~ Hiding round keys and S-Box
Future Plan

Merge, Split, Fold and/or Interleave the array. ~ Complete the guideline.

— Evaluation by a super hacker.

(1) int A[10] (1) int AL[5], A2[5]:

@) Ali] = ... @) if(({%2)==0) AL[i/2]=...;
HUI:‘ > else A2[i/2]=...;

(3) int B[10], C[20]; obfuscate (3) int BC[20];

@ B[i]=..; (4) BC[3*i] =...;

) Cli] = ... (5) BC[i/2*3+1+i%2] = ...

August 25, 2005 13 August 25, 2005 14

