COE Technical presentation

Design for Testability Based on Single-Port Change Delay Testing for Data Paths

> Yuki Yoshikawa Computer Design and Test Lab. July 19 2005

Outline

Introduction to delay fault testing * Motivation * Delay fault testing Design for testability * Our previous work * Our proposed method Experimental result * Compare our method with previous one Conclusion 2

Reduce area overhead SPC two-pattern test # First and second vectors are any values on one input port # First vector is any value and second vector is the same as the first one on the other input port U SPC two-pattern test

Experiments

DFT for SPC two-pattern test vs DFT for any two-pattern test

- Hardware overhead
- Test application time

Table 1. Characteristics for benchmarks

12

Circuit	Bit width	PIs	POs	REGs	OPs	Area
Paulin	16	2	2	7	4	10,550
LWF	16	2	2	5	3	3,322
RISC	32	1	3	40	19	94,357
MPEG	8	7	16	241	157	77,554
RISC and MPEG are practical circuits designed by industry						

F	Hardware overhead					
	Circuit	Bit width	SPC two-pat (%)	A		

Circuit	Bit width	SPC two-pat (%)	Any two-pat (%)
LWF	8	7.43	15.25
	16	6.38	13.99
Paulin	8	5.13	11.56
	16	3.30	7.43
RISC	32	0.64	1.99
MPEG	8	4 64	9.35

Hardware overhead is reduced for all benchmarks

Test application time

13

15

Circuit	Bit width	SPC two-pat (cyc)	Any two-pat (cyc)	#CUPs
LWF	8	38,913	74,792	3 (19)
Paulin	8	785,136	1,645,335	11 (29)
RISC	32	3T _{ALU} +2	4T _{ALU} +2	512 (10,108)
MPEG	8	186T _M +6111	186T _M +6049	0 (651)

14

 T_{ALU} : The number of test patterns for ALU $T_{M}\,$: The number of test patterns for the main module of MPEG

Conclusion

Proposed the DFT method based on SPC two-pattern test

- Reduce hardware overhead
- Reduce test application time
- Reduce overtesting

Our future works

- * A controller part
- Control signal lines and status signal lines