Computing Citation Relatedness Using Kernels

Takahiko Ito

Nara Institute of Science and Technology

Graph data are ubiquitous

- A huge amount of data can be represented by graphs.
 - WWW, citation or social networks
 - Node: web page, person
 - Edge: hyperlink, citation

 We can get useful information from these types of graph data, however ...

Motivation

- Exploring huge graphs is a difficult task.
 - Ex. Visualization techniques can show only a fraction of huge graphs at a time.
- Services to explore huge graphs data are desirable!

Recommendation service for graph data

- Users select favorite nodes (root nodes) papers / web pages
- Based on links or citations around the root nodes, the service recommends other nodes that may have some relatedness to the root nodes.

To recommend nodes

Relatedness measures:

- Measures for analyzing the relationship among nodes in graphs based on graph structures.
- However, classical relatedness measures have some limitations, if they are applied to recommendation services.

Outline

- 1. Introduce traditional relatedness measures
- 2 Two problems with traditional relatedness measures
- 3 To overcome the problems, we apply two kernel methods as relatedness measures.
 - 1. Neumann kernel [Kandola et al., 2003]
 - 2. Regularized Laplacian kernel [Smola and Kondor, 2003]
- 4. Experiments

Co-citation/bibliographic coupling "relatedness"

- Co-citation coupling [Small et al., 1973] defines relatedness as the number of papers jointly citing the given pair of papers
- Bibliographic coupling [Kessler, 1963] defines relatedness as the number of common citations made by two papers

Computing co-citation/bibliographic coupling

Given adjacency matrix A of a citation graph,

(i, j)-element of A^TA

→ <u>Co-citation</u> relatedness between nodes i and j

(i, j)-element of AA^T

<u>Bibliographic</u> relatedness between nodes i and j

Problem with classic relatedness 1

 If a pair of papers does not jointly cite or is not jointly cited by any paper, co-citation and bibliographic coupling cannot measure relatedness between the two nodes.

bibliographic coupling (A,B) = 0

Problem with classical relatedness 2

 Intuition behind bibliographic coupling relatedness:

Two papers are related if they jointly make citation to one or more papers.

• But the number of *other* citations to the cited papers are ignored.

Problem with classic relatedness 2: Illustration

Which of A or C is more related to B?

Intuition:

C is more related to B than A is, because A and B only share citations to "generic" (or "popular", or "authoritative") pages (Google and Yahoo).

Neumann kernels [Kandola et al., 2003]

- Original Neumann kernels compute document relatedness, but *not* on the basis of citations.
- They use graphs induced from the content of documents: An edge between nodes (documents) has a weight based on the number of common terms in their contents.

Definition

 $\begin{array}{ll} NK_{\beta}(XX^{T}) = XX^{T} + \beta(XX^{T})^{2} + \beta^{2}(XX^{T})^{3} + & \dots \ (document relatedness) \\ NK_{\beta}(X^{T}X) = X^{T}X + \beta(X^{T}X)^{2} + \beta^{2}(X^{T}X)^{3} + & \dots \ (term relatedness) \\ where X is a document-by-term matrix, and <math display="inline">\beta$ is a "diffusion rate" parameter. \end{array}

Neumann kernels for citation analysis

Neumann kernels in this work

- are applied directly to citation graphs.
- i.e., use adjacency matrix A of a citation graph in place of document-by-term matrix X.

 $NK_{B}(AA^{T}) = AA^{T} + \beta(AA^{T})^{2} + \beta^{2}(AA^{T})^{3} + \dots$ $\mathsf{NK}_{\beta}(\mathsf{A}^{\mathsf{T}}\mathsf{A}) = \mathsf{A}^{\mathsf{T}}\mathsf{A} + \beta(\mathsf{A}^{\mathsf{T}}\mathsf{A})^{2} + \beta^{2}(\mathsf{A}^{\mathsf{T}}\mathsf{A})^{3} + \dots$

What do $(AA^T)^n$ and $(A^TA)^n$ in these series represent?

Meaning of (AA^T)ⁿ

- Element (i, j) of $(AA^T)^n$ = number of paths of length n between nodes i and j in a bibliographic graph.
 - Where bibliographic graph is derived from AA^T

• Example:

Does Neumann kernel solve the two problems?

- Neumann kernels (with non-zero diffusion rate β) can give a value to a pair of nodes as long as there is more than one path between them in the bibliographic graph. Thus it does not suffer from Problem 1
- However, Neumann kernels can not solve problem 2; they mistakenly regards A as more related to B!

Why Neumann kernels does not solve problem 2 Neumann kernels compute the weighted sum of $(AA^T)^n$ with $n = 1 \sim \infty$ 403 753 496 1302 2901 2002 2901 7454 5306 (AA^T)⁵ = В D

At n=1, (AA^T)ⁿ represents the bibliographic matrix As n is increased...

5306

After n=5, all rows of $(AA^T)^n$ give an identical ranking C>D>B>A. This ranking is not relatedness among nodes but the HITS hub ranking.

HITS [Kleinberg, 1999]

- computes "importance" of each node
- assigns two scores to each node:

Authority score

Nodes cited by many nodes receive a high authority score

Hub score

Node citing many authoritative nodes receive a high hub score.

Summary of Neumann kernels

- Neumann kernels are not a relatedness measure because they bias towards importance. Ex. Neumann kernels give a larger value to A than C with
- respect to B (importance (A) > importance (C) in HITS hub score)

We need to prevent Neumann kernels from biasing toward importance

Solution to importance bias problem

- Change weights assigned to self-loops
- negative of the number of non-loop edges at each node Compute sum of weights of all paths between the nodes (unchanged from Neumann kernels)
- Nodes with a large number of edges (important nodes) receive a large discount

Graph induced by –L(AAT)

Regularized Laplacian kernels [Smola and Kondor, 2003]

 $RLK_{\beta}(S) = I + \beta(-L(S)) + \beta^{2}(-L(S))^{2} + \beta^{3}(-L(S))^{3} + \dots$ where

- S: symmetric matrix (such as A^TA or AA^T)
- ◆ L(S): Laplacian [Chung, 1997] of S L(S) = D(S) - S
- D(S): Diagonal matrix
 - (i,i)-element represents the degree of node i in the graph induced by S

Experiments

Compare

- Regularized Laplacian kernels with
- Co-citation coupling

Dataset:

Citation graph consisting of 2687 papers on natural language processing

Regularized Laplacian kernel vs. co-citation coupling

Top ranked papers with respect to: Marilyn A. Walker and Johanna D. Moore. Empirical studies in discourse. Computational Linguistics Vol. 23, No. 1, 1997		
RLK		
		Empirical studies in discourse
		Effect of computer spoken natural language dialogue
		Message Understanding Conference tests of discourse
		The reliability of a dialogue structure coding scheme
		Assessing agreement on classification tasks:
		Attention, intentions, and the structure of discourse
		Building a large annotated corpus of english: the Penn Treebank
		A prosodic analysis of discourse segments in
		Centering: a framework for modeling the discourse
		Combining multiple knowledge sources for discourse

Conclusions

- Two types of kernel methods (Neumann kernel and regularized Laplacian kernel) have applied to solve the problems in traditional relatedness measures.
 - The two limitations in co-citation and bibliographic coupling relatedness can be overcome using the regularized Laplacian kernels.

Future work

- Comparison between other kernel methods and traditional relatedness measures.
- Application to collaborative filtering or relevance feedback.

References

- M. M. Kessler. Bibliographic coupling between scientific papers. American Documentation 14:10-25, 1963
- J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In Proc. NIPS 15, 2003.
- A. J. Smola and R. Kondor. Kernels and regularization of graphs. In Proc. 16th COLT, 2003.

- H. Small. Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Am. Soc. Information Science, 24:265-269, 1973.
- S. White and P. Smyth. Algorithms for estimating relative importance in networks. In Proc. ACM SIGKDD, 2003.