Computing Citation
 Relatedness U sing Kernels

Takahiko Ito

N ara Institute of Science and Technology

Graph data are ubiquitous

- A huge amount of data can be represented by graphs.
- W W W , citation or social networks
- Node: web page, person
- Edge: hyperlink, citation

- We can get useful information from these types of graph data, however ...

M otivation

- Exploring huge graphs is a difficult task
- Ex. Visualization techniques can show only a fraction of huge graphs at a time.
- Services to explore huge graphs data are desirable!

To recommend nodes

- Relatedness measures:

- M easures for analyzing the relationship among nodes in graphs based on graph structures.
- However, classical relatedness measures have some limitations, if they are applied to recommendation services.
- We propose to extend traditional relatedness measures based on kernel methods.

Recommendation service for graph data

U sers select favorite nodes (root nodes) - papers / web pages
Based on links or citations around the root nodes, the service recommends other nodes that may have some relatedness to the root nodes.

O utline

Introduce traditional relatedness measures Two problems with traditional relatedness measures
To overcome the problems, we apply two kernel methods as relatedness measures.

1. Neumann kernel [Kandola et al., 2003]
2. Regularized Laplacian kernel [Smola and Kondor, 2003]
Experiments

Co-citation/bibliographic coupling

 "relatedness"Co-citation coupling [Small et al., 1973] defines relatedness as the number of papers jointly citing the given pair of papers

Bibliographic coupling [Kessler,1963] defines relatedness as the number of common citations made by two papers

Computing co-citation/bibliographic

 couplingGiven adjacency matrix A of a citation graph,

- (i, j)-element of $A^{\top} A$
\rightarrow Co-citation relatedness between nodes i and j
- (i, j)-element of AA ${ }^{\top}$
\rightarrow Bibliographic relatedness between nodes i and j

Problem with classic relatedness 1

- If a pair of papers does not jointly cite or is not jointly cited by any paper, co-citation and bibliographic coupling cannot measure relatedness between the two nodes.

A

bibliographic coupling $(A, B)=0$

Problem with classical relatedness 2

- Intuition behind bibliographic coupling relatedness:

Two papers are related if they jointly make citation to one or more papers.

- But the number of other citations to the cited papers are ignored.

Problem with classic relatedness 2:

Illustration
Which of A or C is more related to B ?

Intuition:
C is more related to B than A is, because A and B only share citations to "generic" (or "popular", or "authoritative") pages (Google and Yahoo).

N eumann kernels [Kandola et al., 2003]

- O riginal Neumann kernels compute document relatedness, but not on the basis of citations.
- They use graphs induced from the content of documents: An edge between nodes (documents) has a weight based on the number of common terms in their contents.
Definition:

$$
N K_{\beta}\left(X X^{\top}\right)=X X^{\top}+\beta\left(X X^{\top}\right)^{2}+\beta^{2}\left(X X^{\top}\right)^{3}+\ldots \quad \text { (document relatedness) }
$$

$$
N K_{\beta}\left(X^{\top} X\right)=X^{\top} X+\beta\left(X^{\top} X\right)^{2}+\beta^{2}\left(X^{\top} X\right)^{3}+\ldots \quad \text { (term relatedness) }
$$

where X is a document-by-term matrix, and β is a
"diffusion rate" parameter.

N eumann kernels for citation analysis

N eumann kernels in this w ork

- are applied directly to citation graphs.
- i.e., use adjacency matrix A of a citation graph in place of document-by-term matrix X.
Definition:
$N K_{\beta}\left(A^{\top}\right)=A A^{\top}+\beta\left(A^{\top}\right)^{2}+\beta^{2}\left(A^{\top}\right)^{3}+\ldots$
$N K_{\beta}\left(A^{\top} A\right)=A^{\top} A+\beta\left(A^{\top} A\right)^{2}+\beta^{2}\left(A^{\top} A\right)^{3}+\ldots$
What do $\left(A A^{\top}\right)^{n}$ and $\left(A^{\top} A\right)^{n}$ in these series represent?

Meaning of $\left(A^{T}\right)^{n}$

- Element (i, j) of $\left(A A^{T}\right)^{n}=$ number of paths of length n between nodes i and j in a bibliographic graph.
- Where bibliographic graph is derived from AA $^{\top}$
- Example:

Bibliographic graph

W hy N eumann kernels does not solve problem 2

- Neumann kernels compute the weighted sum of $\left(A^{\top}\right)^{n}$ with $n=1 \sim \infty$

- At $n=1,\left(A A^{\top}\right)^{n}$ represents the bibliographic matrix As n is increased...
- After $n=5$, all rows of $\left(A^{\top}\right)^{n}$ give an identical ranking $\mathrm{C}>\mathrm{D}>\mathrm{B}>\mathrm{A}$. This ranking is not relatedness among nodes but the HITS hub ranking.

HITS [Kleinberg, 1999]

- computes "importance" of each node
- assigns two scores to each node:

Authority score :
N odes cited by many nodes receive a high authority score
Hub score:
N ode citing many authoritative nodes receive a high hub score.

Summary of N eumann kernels

- N eumann kernels are not a relatedness measure because they bias towards importance.
Ex. Neumann kernels give a larger value to A than C with respect to B (importance (A) > importance (C) in HITS hub score)

- We need to prevent Neumann kernels from biasing toward importance

Solution to importance bias problem

- Change weights assigned to self-loops
- negative of the number of non-loop edges at each node
- Compute sum of weights of all paths between the nodes (unchanged from N eumann kernels)
\rightarrow N odes with a large number of edges (important nodes) receive a large discount

Graph induced by -L(AAT)

Regularized Laplacian kernels

[Smola and Kondor, 2003]
Regularized Laplacian kernel matrix

$$
\operatorname{RLK}_{\beta}(S)=I+\beta(-L(S))+\beta^{2}(-L(S))^{2}+\beta^{3}(-L(S))^{3}+\ldots
$$

where

- S: symmetric matrix (such as $\mathrm{A}^{\top} \mathrm{A}$ or AA^{\top})
- L(S): Laplacian [Chung, 1997] of S

$$
L(S)=D(S)-S
$$

- D(S): Diagonal matrix
- (i,i)-element represents the degree of node i in the graph induced by S

Experiments

Compare

- Regularized Laplacian kernels
with
- Co-citation coupling

D ataset:
Citation graph consisting of 2687 papers on natural language processing

Regularized Laplacian kernel vs. co-citation coupling

Top ranked papers with respect to:
Marilyn A. W alker and Johanna D. M oore. Empirical studies in discourse. Computational Linguistics Vol. 23, No. 1, 1997

RLK	Co-cite	Title
1	1	

1	1	Empirical studies in discourse
2	1	Efct of

| 2 | 1 | Effect of ... computer spoken natural language dialogue |
| :--- | :--- | :--- | :--- | Message Understanding Conference tests of discourse

The reliability of a dialogue structure coding scheme
Assessing agreement on classification tasks:
Attention, intentions, and the structure of discourse
Building a large annotated corpus of english: the Penn Treebank

8	n / a	A prosodic analysis of discourse segments in ...

| n / a | Centering: a framew ork for modeling the ... discourse |
| :--- | :--- | :--- |
| 9 | n |

| n / a | Combining multiple knowledge sources for discourse |
| :--- | :--- | :--- |
| 10 | |

Conclusions

Future work

- Two types of kernel methods (N eumann kernel and regularized Laplacian kernel) have applied to solve the problems in traditional relatedness measures.
- The two limitations in co-citation and bibliographic coupling relatedness can be overcome using the regularized Laplacian kernels.
- Comparison between other kernel methods and traditional relatedness measures.
- Application to collaborative filtering or relevance feedback.

References
M. M. Kessler. Bibliographic coupling between scientific papers. American Documentation 14:10-25, 1963

- J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In Proc. NIPS 15, 2003.
- A. J. Smola and R. Kondor. Kernels and regularization of graphs. In Proc. $16^{\text {th }}$ COLT, 2003.
- H. Small. Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Am. Soc. Information Science, 24:265-269, 1973.
- S. White and P. Smyth. Algorithms for estimating relative importance in networks. In Proc. ACM SIGKDD, 2003.

