Problems associated with applying NLP techniques to Clinical Trial MEDLINE Abstracts

Computational Linguistics Laboratory Kazuo Hara Background & Aim

2

Background & Aim

Ubiquitous Medicine

- a trend in the medical community -

- This trend is supported by popularization of ubiquitous technology such as
 - Remote Diagnostic Imaging, and
 - Electronic Health Records.
- The community is going to share comparable clinical information among medical sites.

Background & Aim This trend leads to a demand for high quality medical treatments.

- The concept, Evidence-Based Medicine (EBM), has become prevalent recently.
 EBM requires medical practitioners to select appropriate treatments for individual patients based on the current best evidence.
- Where does the current best evidence come from?
 - One major source of evidence is clinical trial results.

Background & Aim

What are the clinical trials?

• Phase I

- Examination of the safety of the new treatment.

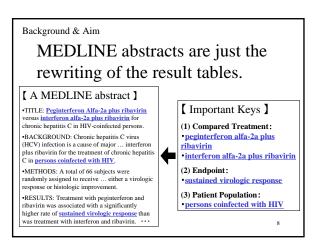
- Phase II
- Exploration of the usage and dosage of the new treatment.
- Phase III

Verification of the new treatment compared to an active control or placebo.

- Phase IV
 - Post Marketing Surveillance of the new treatment.

Background & Aim

Where to access the clinical trial results information?

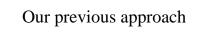

- MEDLINE, the U.S. National Library of Medicine's (NLM) database of biomedical citations and abstracts that is searchable on the Web.
- MEDLINE search index includes:
 clinical trial phases (phase I, II, III, and IV),
- but does not include important keys such as:
 "compared treatments", "patient population", and "endpoints".

Background & Aim

A clinical trial result is always summarized in a table.

• A typical example (phase III)

	Treatment A	Treatment B	statistical		
	(New Drug)	(Active Control)	significance		
Endpoint (Efficacy)	value or score	value or score	p-value		
Endpoint (Safety)	frequency or count	frequency or count	p-value		


Background & Aim

Our research goal is:

• Extracting information with respect to important keys from each clinical trial MEDLINE abstract in order to construct a database which is easy to access.

- The keys are:

- "compared treatments", "patient population", and "endpoints".
- This can become a support for realizing EBM in the medical community.

10

12

Our previous approach

Text mining based on phrasestructure trees

Our previous approach consists of:

- Converting MEDLINE texts into phrasestructure trees using an NLP parser, and
- Mining these trees for patterns to find target information such as "compared treatments".

Our previous approach

Resources

- NLP parser
 - Charniak's phrase-structure analyzer (Charniak, 2000)
- text miner
 - The sentence classifier or semistructured text classifier proposed in (Kudo and Matsumoto, 2004)

11

7

Our previous	approach			
Patter	rn mining	g (an ez	xample	e)
	We conducted STUI DISEASE in PATI			
<u> </u>	rns for finding targe	ts such as "Co	mpared Treat	ment", and
their weights	patterns in parsed phrase-structure trees	Compared Treatment	Endpoint	Patient Population
	(default)	-0.079	-0.141	-0.210
	"We"	0.051	0.016	0.105
	"STUDY"	0.013	0.065	0.081
	"DRUG"	0.045	0.009	-0.003
	"with"	0.008	-0.002	0.037
	"with DRUG"	-0.003	-	-0.050
	:	:	:	:
	"PATIENT"	0.007	-0.028	0.070
	"in PATIENT"	-	0.000	-
	"with DISEASE"	0.006	0.005	0.018
	Total weight	0.035	-0.065	0.074
	Classification	+ 1 (yes)	-1 (no)	+ 1 (yes)

Our previous approach

However ...

- There is a problem with applying NLP parsing techniques to MEDLINE abstracts.
 - Most NLP parsers have difficulty analyzing coordinate structures and prepositional phrases correctly.
 - Unknown technical terms also reduce the quality of parsing output.

Our previous approach

Coordinate structures

- " in 118 (80%) of the 148 evaluable patients in the standard arm "
- " in 129 (88%) of the 147 evaluable patients in the dose-dense arm "
 - These coordinate structures appear frequently in clinical trial MEDLINE abstracts.
 - These are likely to include important information about the clinical trial's design.

15

Our previous approach

To make parsing successful,

- Manually annotated MEDLINE corpus constructed by human labor is necessary, but is high cost.
- So, in addition to this approach, we plan another one.

16

18

14

Our ongoing approach

Our ongoing approach

Focus on the alignment of the coordinate structures

- Coordinate structures are likely to include important information about the clinical trial's design.
 - " in 118 (80%) of the 148 evaluable patients in the standard arm "
 - " in 129 (88%) of the 147 evaluable patients in the dose-dense arm "

Our ongoing approach

How to find and extract coordinate structures?

- (Kurohashi and Nagao, 1994):
- "A Syntactic Analysis Method of Long Japanese Sentences Based on the Detection of Conjunctive Structures."
 - Determine similarities (or weights) between tokens based on syntactic and semantic knowledge.
 - Calculate the similarity score between two token sequences according to their component token similarities.
 - A high similarity score indicates that the two token sequences construct coordinate structures.
 - equences construct coordinate structures.

Our ongoing approach The concept in (Kurohashi and Nagao, 1994):

	in	118	(80%)	of	the	148	evaluable	patients	in	the	standard	arm
in	0	-	-	Δ	-	-	-	-	0	-	-	-
129	-	Δ	-	-	-	Δ	-	-	-	-	-	-
(88%)	-	-	Δ	-	-	-	-	-	-	-	-	-
of	Δ	-	-	0	-	-	-	-	Δ	-	-	-
the	-	-	-	-	0	-	-	-	-	0	-	-
147	-	Δ	-	-	-	Δ	-	-	-	-	-	-
evaluable	-	-	-	-	-	-	0	-	-	-	Δ	-
patients	-	-	-	-	-	-	-	0	-	-	-	Δ
in	0	-	-	Δ	-	-	-	-	0	-	-	-
the	-	-	-	-	0	-	-	-	-	0	-	-
dose- dense	-	-	-	-	-	-	Δ	-	-	-	Δ	-
arm	-	-	-	-	-	-	-	Δ	-	-	-	0

Our ongoing approach

Shortcomings of (Kurohashi and Nagao, 1994)

- Revolutionary for incorporating both syntactic and semantic similarity in identifying coordinate structures.
- However, ad-hoc token weightings may reduce accuracy to find coordination depending on the domain of texts.

21

19

Our ongoing approach

Improving (Kurohashi and Nagao, 1994)

- Develop a method that can learn similarities (weights) from the MEDLINE corpus using machine learning.
- Seed the vector used to identify coordinate structures with weights from similarity as measured with the above method.

22

Summary

• Background:

- Ubiquitous medicine leads to a demand for high quality medical treatments represented by EBM.
- Our research goal is:
 - Extracting important information from clinical trial MEDLINE abstracts in order to support the realization of EBM.
- Our ongoing approach is:
 - Focusing on the coordinate structures and developing a method that can learn from a corpus using machine learning.

4