
1

A Software Protection Method
Based on Instruction Camouflage

Yuichiro Kanzaki

Software Engineering Laboratory,

Graduate School of Information Science,

Nara Institute of Science and Technology

2nd COE Postdoctoral and Doctoral Researchers Technical Presentation

May 26 , 2005

May 26, 2005 2/17

Background

Software cracking has posed a serious problem for copyright
protection of the software.

We need a method for protecting software to create a safe
ubiquitous computing environment.

Example

� An attacker analyzes a digital contents distribution system and
obtains a secret key[1].

� An attacker analyzes a program embedded in a set-top box
and steals a device key[2].

[1] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot: A white-box DES implementation for DRM
applications, Proc. 2nd ACM Workshop on Digital Rights Management, pp.1-15, Nov. 2002.
[2] The United Kingdom Parliament, ``The mobile telephones (re-programming) bill,'' House of Commons
Library Research Paper no.02/47, July 2002.

Attacker : an individual who illegally analyzes software, and uses
the outcome for other purposes.

May 26, 2005 3/17

How is software attacked ?
A scenario of obtaining a secret key in a program

An effective solution to protect software against illegal code
analysis is to increase costs for understanding the program.

Binary Program

cmpl $12, %ebp
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax
movl $1, %esp
jmp L11

．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．

Assembly Program Fragment
(containing the secret key)

Assembly Program

Narrow the Range of Analysis

Disassemble

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

Understand Obtaining
the secret key

May 26, 2005 4/17

Previous work and Goal

� Program Obfuscation

Making expressions and procedures in a program more
complex than the original[1].

� Program Encryption

Making a program harder to understand with encryption[2]．

[1] C. Collberg, C. Thomborson, ``Watermarking, Tamper-Proofing, and Obfuscation -- Tools for Software Protection,'' IEEE Trans. Software
Eng., vol.28, no.8, pp.735-746, June 2002.

[2] F. B. Cohen,“Operating system protection through program evolution,” Computers and Security, vol.12, Issue 6, pp. 565-584, 1993.

Previous methods are still impractical :

Methods to increase cost for understanding a program

� difficult to automate

� easy to nullify

We propose a practical method for protecting software and
develop a system.

May 26, 2005 5/17

Approach - Self-modification mechanism

We add a self-modification mechanism to a program,
to increase the cost for understanding a program.

self-modification: An instruction in the program replaces another
instruction in the same program at run-time

:
add
mov
mov
sub
mov
add
mov
jmp

:

Self-modifying Program

xor

Replacing
an another
instruction

:
add
mov
sub
mov
add
mov
jmp

:

Original Program

May 26, 2005 6/17

Camouflaging an instruction

:
subl %edx, %eax
movl %eax, %ebx
L1:
addl -12(%ebp), %ebx
movl %eax, %ebx
movl %eax, (%esp)

:

movb $0x33, L1

:

Replacing the
dummy with the
original

Replacing the
original with the
dummy

Target Instruction xorl -12(%ebp), %ebx

Hiding Routine

:
movb $0x03, L1

A program to be protected

Restoring Routine

Overwrite an original instruction with a dummy, which makes
attackers misread the program.

1. We overwrite a target instruction with a dummy instruction.
2. We add self-modification routines that replace the dummy instruction

with the original one within a certain period of execution.

(RR)

(HR)

(target)

2

May 26, 2005 7/17

Extending a range of analysis

A program to be protected

:
cmpl $123,-4(%ebp)
movb 0x03, LC1
subl %edx, %eax
movl %eax, %ebx
jmp L11

:
pushl %ebp
movl %esp, %ebp
subl $12, %esp
movl 8(%ebp), %eax
LC1:
xorl (%ebp), %eax
shrl $8, %eax
andl $255, %eax

:
andl $1, %eax
movb 0x33, LC1
testl %eax, %eax
je L10

:

Camouflaged instructions force attackers into extending the
range of analysis.

Target Instruction
(camouflaged)

Hiding Routine

Restoring Routine

To read the long program
costs an attacker a lot of
time.

A part that an attacker
tries to understand

May 26, 2005 8/17

Multiple camouflaging

:
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax
shrl $8, %eax
andl $255, %eax
andl $1, %eax
addl (%esp), %eax
jmp L11
pushl %ebp
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax

:

A program to be protected

:
cmpl $123,-4(%ebp)
addl %edx, %eax
movb 0x03, L15
ret
pushl %ebp
addl (%esp), %eax
xorl $12, %esp
movb 0x06, L6
shrl $8, %eax
subl $255, %eax
andl $1, %eax
addl (%esp), %eax
inc %eax
pushl %ebp
cmpl $123,-4(%ebp)
addl %edx, %eax
movl %eax, %ebx
movb 0x03, L15
pushl %ebp
addl (%esp), %eax
addl $12, %esp
movb 0x06, L6

:

We camouflage many of the original instructions by dummy
instructions and add routines.

Many instructions are
camouflaged by dummy
instructions.

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

No matter where an attacker
tries to analyze, he will
encounter some camouflaged
instruction.

May 26, 2005 9/17

Outline of our system

Source Program
(in high-level lang.)

Assembly Program

Camouflaged
Binary Program

Camouflaging
System

:
i = i + 1
if(i > 10) {
x = x + 1 ;

} else {
x = x – 1 ;

}
:

Compile Input Output

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．

Camouflaged
Assembly Program

:
movb 125,%eax

:
addl $16,%esp
or $123,%eax
jne L6
jmp L4
push %eax

:

Assemble
1. Determine a target instruction and the positions

of self-modification routines
2. Determine a dummy instruction
3. Generate self-modification routines
4. Embed the dummy and the routines in the

program

May 26, 2005 10/17

RINRUN

[1] http://se.naist.jp/rinrun/

We have implemented a system that automates the
construction of camouflaged programs[1].

RINRUN outputs camouflagedWindows Executable from C
source (GCC)

May 26, 2005 11/17

Discussion – Overview

� A Feistel network-based block cipher designed for use in the
area of digital entertainment content protection

� Algorithm is open to the public[2]

� Secret Key is security-sensitive

Example Program

We discuss the effectiveness of the proposed method.

Discussion Items (based on [1])

� obscurity cost for understanding a part of program

� resilience difficulty of constructing an automatic tool to undo

� stealth difficulty of finding protection mechanism embedded

� overhead the execution time/space penalty incurred

A simple data decryption program using C2

C2(Cryptomeria Cipher) :

[1] C. Collberg, C. Thomborson, ``Watermarking, Tamper-Proofing, and Obfuscation -- Tools for Software Protection,‘’ IEEE Trans.
Software Eng., vol.28, no.8, pp.735-746, June 2002.

[2] 4C Entity, “Content protection for recordable media specification – Introduction and common cryptographic elements,” rev. 1.0, 31
pp.1.0, Jan. 2003.

May 26, 2005 12/17

Discussion – Obscurity(1/2)

ktmpa = ((WORD32)key[0]<<16)|
((WORD32)key[1]<<8) |(WORD32)key[2];

movl %eax, %edx
sall $16, %edx
movl 8(%ebp), %eax
incl %eax
movzbl (%eax), %eax
sall $8, %eax
orl %eax, %edx

subl %eax, %edx
nop
movl 8(%ebp), %eax
decl %eax
movzbl (%eax), %eax
sall $12, %eax
addl %edx, %eax

C source code (open)

Disassembled code (original) Disassembled code (camouflaged)

Easy to find the secret key Difficult to find the secret key

Secret Key

Secret Key
???

shift-operation

3

May 26, 2005 13/17

Discussion – Obscurity(2/2)

secretconst[] = {0x20, 0x35, 0x4f …}

:
movb $20, -24(%ebp)
movb $35, -23(%ebp)
movb $4f, -22(%ebp)

:

C source code

Disassembled code (original) Disassembled code (camouflaged)

Easy to obtain the secret key Difficult to obtain the secret key

Secret Key

Secret
Key

:
movb $08, -24(%ebp)
movb $31, -23(%ebp)
movb $55, -22(%ebp)

:
Camouflaged

Secret Key

May 26, 2005 14/17

Discussion - Resilience

:
subl %edx, %eax
movl %eax, %ebx
L1:
addl -12(%ebp), %ebx
movl %eax, %ebx
movl %eax, (%esp)

:

movb $0x33, L1

:

xorl -12(%ebp), %ebx

:
movb $0x03, L1

Is it difficult for attackers to automatically nullify the protection
mechanism?

movl $L1 + 1250, %eax
subl $1250, %eax
movb $0x03, (%eax)

movl $L1 - 259, %eax
addl $259, %eax
movb $0x33, (%eax)

Obfuscator

Obfuscator

Restoring Routine

Hiding Routine

subl $0xf3, (%eax)

…… ……

…… ……
…… ……

subl $0x2d, (%eax)

…… ……

May 26, 2005 15/17

Discussion - Stealth

The self-modification routines mainly consist of common
instructions (e.g. ,mov , add ..)

Is it difficult for attackers to find the protection mechanism
embedded?

12%other
4%jmp/jg/jle
6%or
6%lea
8%add/sub
9%shift

55%mov
proportionproportionproportionproportioninstructioninstructioninstructioninstruction

Instruction Distribution
of the sample program

It is not easy to notice that the
mechanism is embedded.

May 26, 2005 16/17

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500

Number of camouflaged instructions

P
ro

gr
a
m

 e
xe

cu
ti
on

 t
im

e
[s

e
co

nd
s]

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

P
ro

po
rt

io
n
 o

f
ca

m
ou

fl
ag

e
d

in
st

ru
c
ti
on

s

Proportion of camouflaged instructions Average of execution time

Discussion – Performance Overhead

0.06[s]

2.9[s]

When 500 instructions are camouflaged, the average execution
time is about 2.9 seconds, which is about 47 times as long as the
original (0.06 seconds).

* We used a 1 Mbyte text
file, and measured the
time taken for each ccrypt
to encrypt the text file.

Target program : ccrypt (well-known GNU utility for encrypting files)

May 26, 2005 17/17

Conclusion and future plan

Conclusion

� We presented a systematic method for protecting software
against the code analysis, by camouflaging instructions.

� We discuss the effectiveness of the proposed method.

� Costs for understanding the program seems to be
drastically increased.

� The more we camouflage the instructions, the more
expensive program overhead becomes.

Future Plan

� Improving our system in consideration of architectural aspects
to reduce performance overhead.

