Immersive Telepresence System with a Locomotion Interface Using High-resolution Omnidirectional Videos

Sei IKEDA, Tomokazu SATO, Masayuki KANBARA and Naokazu YOKOYA

Nara Institute of Science and Technology, Japan

Appearance of the Presentation System

Setting for Experiment

System X

- A) Stabilizing is not implemented.
- B) Head tracking is not implemented.

Contents

About 20m course of outdoor scene

Subjects

- □ 10 people
- No knowledge about the detail

Result of Evaluation

System X	P < X	X = P	X < P
(A)	0	2	8
(В	1	7	2

Additional Condition :

17

19

The subjects should stop walking once.

System X	P < X	X = P	X < P	
В	2	3	5	
X < Y : Y gives us more sense of presence than X.				
X = Y: Neither.				
			18	

Summary

- Proposed telepresence system Offline phase

 - Image acquisition using OMS
 Stabilization using estimated camera path
 - Online phase
 - Locomotion interface
 Head tracking
- Conclusion
 - > We have improved telepresence system
 - > Head tracking is effective in the case a user often change the speed.
- Future work
 - > We should increase the number of subject.