**3D Modeling of Outdoor Environments by** Integrating Omnidirectional Range and Color Images

#### **Toshihiro ASAI**

Vision and Media Computing Lab.

2005/3/23

#### **3D Models of Outdoor Scenes**

Application fields

- ♦ Site simulation
- Mixed reality
- ♦ Virtual walk-through

These models are made manually with high cost



Automatic 3D modeling for outdoor scenes has been widely investigated.

## **Method of 3D Modeling**

- Estimating 3D shape from multiple images Easy to acquire data
  - × Difficult to apply for wide area with high accuracy
- Measuring environments by a laser rangefinder

Accurate range data

× Necessary to register multiple range data

Using a rangefinder is suitable for accurate modeling of outdoor scenes.

### Objective

#### 3D modeling of wide area outdoor scenes

#### Approach

- onal sensors are used to acquire range and color images
- RTK-GPS and gyroscope are used to estimate position and orientation of the sensor system.

Omnidirectional ulti-camera System (OMS)



## **Procedure of Modeling**

- 1. Data Acquisition · Data are acquired at multiple points in outdoor scenes.
- 2. Registration of multiple range data Acquired data by RTK-GPS and gyroscope are used
  - · Sensor position and orientation of range data are
- 3. Texture-mapping of color images
  - · The highest-resolution suitable texture is selected.





## Sensor system

- Geometrical relationships among these sensor coordinate systems are fixed.
- These coordinate systems are aligned to world coordinate system



#### **Registration of multiple range data**

- Position and orientation acquired by sensors are used as initial values for registration.
- Whole data are optimized simultaneously by using ICP algorithm.
  - Many plane parts exist in outdoor environments.
  - The rangefinder can measure environment omnidirectionally.

Plane based registration by overlapping the plane parts of different range data

#### Procedure of registering range data





## Search of corresponding plane

The plane correspond to a point is searched from different range data.



• Correspondences of a point and a plane are calculated among whole data.



#### **Estimation of transformation matrix**

- 1. Maximization of sum of Inner product of the normal vectors. (positions are fixed)
- 2. Minimization of sum of distance between corresponding a point and a plane. (orientations are fixed)



## **Texture-mapping of color images**

- Texture from the image which gives the highest resolution.
- Occlusions are detected from generated 3D shape.



#### **Experiments**

- Environment: our campus
- Data acquisition :68 points (about 50m interval)
- Required time : about 5 hours



## **Result of registration**

- Acquired data
- ◆ Resolution of range image :1024 x 512
- Search process of corresponding plane
  - Use of a cluster consisting of 24 PCs (CPU: Pentium4 1.7Ghz, Memory: 1024MB)
- Optimization process
  - Use of single PC (CPU: Pentium4 1.8Ghz, Memory: 1024MB)

Required time for registration is about 7 days.

## **Result of 3D modeling**



# 2D CAD data overlaid on generated 3D model



## Summary

#### 3D modeling of outdoor scenes

- Range and color images are acquired efficiently by using two omnidirectional sensors.
- Position and orientation are acquired by using RTK-GPS and gyroscope.
  - -Using as initial value for registration.

#### Future work

 Reduction of holes (non-measured portions) of the generated model.

## Continuous scanning

- Continuous measurement during the movement of rangefinder.
  - The non-measured portions which exist sparsely in environment by stop-and-go scanning are measured efficiently.



Range data acquired by a rangefinder during movement.

Registered model from stop-and-go scanning data. 2

## Approach

#### input

- Position and orientation of rangefinder during movement.
  (acquired by RTK-GPS + INS sensor)
- · Range data acquired during movement.



· Registered model from stop-and-go scanning data.

#### output

Optimized position and orientation of rangefinder during movement.