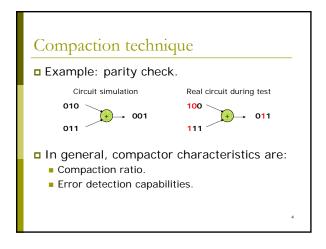
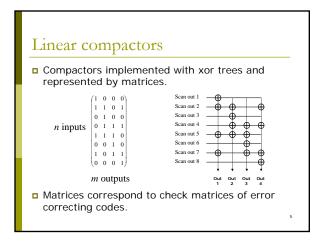
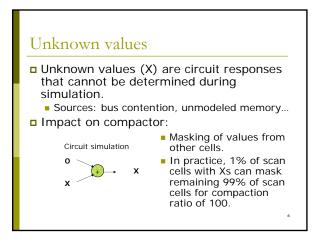
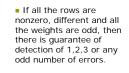

Matrices of Multiple Weights for Test Response Compaction with Unknown Values

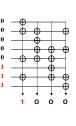

> Thomas Clouqueur COE Technical presentation January 27 2005


Overview


■ Introduction to test response compaction.

- Motivation.
- Compaction technique.
- Problem caused by unknown values.
 - Impact on current compaction technique.
 - New scheme:
 - Main idea.Properties and evaluation.
- Conclusion and Future work.




Main idea

- Goal: reduce X-masking.
- **Scheme:** modify the compactor matrix.
 - Previously proposed matrices: single weight, i.e. every row has same number of ones.
 - Observations:
 - A row with small weight propagates to few outputs.Some scan chains produce more Xs than others.
 - Idea: use multiple weights to build the compactor matrix.

 In absence of Xs: same property as single weight matrices.

Properties of multiple weight matrices.

In presence of Xs: different properties from single weight matrices.

 In presence of one X occurring at a row with small weight, it is guaranteed to detect one error anywhere.

 Also, if 2*weight_low < weight_high: in presence of 2 Xs occurring at rows of small weight, it is guaranteed to

detect one error occurring at row of high weight.

Evaluation

Percentage of scan cells masked

- Compactor with 1600 inputs, 16 outputs.90% of Xs are produced by 10% of scan
- chains.

	% of scan cells producing X values									
	0.01	0.02	0.05	0.1	0.25	0.50	1.00			
Single weight (7)	0.067	0.26	1.9	7.9	42	83	99			
Multiple weight (3,7)	0.027	0.066	0.29	1.1	8.6	36	82			
							10			

Compaction ratio

- Using multiple weights can also increase the compaction ratio.
- Maximum number of inputs for a given number of outputs:

	Number of outputs									
	4	6	8	10	12	14				
Single weight	4	20	56	252	792	3432				
Multiple weight	8	32	128	512	2048	8192				

Conclusion and future work

Multiple weight matrices can:

- Reduce X-masking.
- Increase the compaction ratio.

□ Future work:

- Evaluate the error-masking performance of multiple weight matrices.
- Evaluate the combination of error and Xmasking with industrial circuits.