Immersive Telepresence System Using High-resolution Omnidirectional Video with Locomotion Interface

> Sei IKEDA Vision and Media Computing Laboratory

Conventional Telepresence Systems

S. Chen (1995) : QuickTime VR

- Panoramic image generation by mosaicing technique at various camera positions
- ✗ User interface using a standard display, a mouse and a keyboard
- D. Kotake et al. (2001) : Cybercity walker 2001
 - Omnidirectional video acquisition using multiple cameras mounted on a car
 - Presentation using an immersive display
 - Control of a virtual view position using a game controller

Blue : Reduction of Human Cost Red : Improvement of a Sense of Presence -

Proposed Telepresence System

offline phase

Environments Estimation of Camera Path

+

Correction of Acquired Video

online phase Presentation to Users

Immersive Display

Locomotion Interface

Proposed Telepresence System

offline phase

cquisition of Images

Generation of Virtualized Environments

Estimation of Camera Path

Correction of Acquired Video

online phase

Presentation to Users

Immersive Display

Locomotion Interface

Acquisition of Images with OMS

Proposed Telepresence System

offline phase

online phase Presentation to Users

Immersive Display

Locomotion Interface

Proposed Telepresence System

offline phase Acquisition of Images

online phase Presentation to Users

Immersive Display

Locomotion Interface

Experimental Result

~ Acquired Videos & Estimated Camera Path ~

Acquired Videos interval : 4 cm/frame (capturing frame rate 15fps, average speed 0.6 m/s

Estimated Camera Path length : 24 m camera shake effect (max rotation) : 4.1 deg variation of speed:0.3~0.9m/s

pyramid: view volume of a reference camera at every 10 frames

Experimental Result Correction of Camera Shake Effect ~

Summary

□ Proposed telepresence system

- Omnidirectional video acquisition using an calibrated OMS
- Estimation of camera path
 - Reduction of shake effectCorrection of replay speed
- Locomotion interface

Observation

The proposed system provides users with a sense of walking in a remote site.

Future Work

□Quantitative Evaluation

Relaxation of the limitation of the user's view point in a virtualized environment