COE Postdoctoral and Doctoral Researchers Technical Presentation

CPG-Based Rhythmic Manipulation for a Multi-Fingered Hand

Robotics Lab.
Yuichi Kurita

Background

- Robot hand manipulation
- Model based analysis
- Difficult to manipulate unknown objects
- Human hand manipulation
- Stably grasp and dextrously manipulate unknown objects
- Sophisticated motion planning
- Sensory feedback from peripheral sensations

Biological motion control

- Neural and reflex systems control the musculo-skeletal system
- Neural rhythm generator
- Network of neural oscillators (CPG)
- Breathing, walking, fluttering, etc.
- Exists in the spinal cord
- Generate various patterns based on the feedback from the reflex system

CPG-based control

- Walking robots
- Adaptive walking by the CPG-based control in a variety of environments (Kimura2003)
- Human's rhythmic manipulation
- Rhythmic finger motions have been observed when a person attains proficiency (Taguchi2002)

CPG-Based rhythmic manipulation for a multi-fingered hand
\qquad

Multi-fingered hand system

- 4 fingers

3 DOF for each finger

- Elastic fingertips -6-axes force-torque sensors

Neural oscillator model

$$
\begin{aligned}
\gamma \dot{u}_{i} & =-u_{i}-\beta v_{i}+\sum_{j=1}^{n} w_{i j} y_{j}+u_{0}+S_{i} \\
\gamma^{\prime} \dot{v}_{i} & =-v_{i}+y_{i} \\
y_{i} & =f\left(u_{i}\right) \quad f\left(u_{i}\right)=\max \left(0, u_{i}\right)
\end{aligned}
$$

u_{i}, v_{i}	$:$ Internal states	γ, γ^{\prime}	$:$ Time constant
y_{i}	$:$ Neural output	β	$:$ Adaptation
u_{0}	$:$ External input		Coefficient
$w_{i j}$	$:$ Connection weight		
S_{i}	$:$ Feedback		

Matsuoka (1987)
틀

Contact pattern

Motion commands for the manipulation

Contact command

Return command

Release

Issues of the motion commands based on the neural output

Force control of the fingers

Equilibrium condition of moment
$\sum_{i=1}^{\sum_{f}} a_{i} \boldsymbol{r}_{\boldsymbol{i}} \times \boldsymbol{f}_{i}=-\sum_{i=1}^{N_{f}} a_{i} s_{i} \boldsymbol{n}_{\boldsymbol{i}}-\sum_{j=1}^{N_{f}} b_{j} \boldsymbol{r}_{\boldsymbol{j}} \times \boldsymbol{f}_{\boldsymbol{j}}-\sum_{j=1}^{N_{f}} b_{j} s_{j} \boldsymbol{n}_{\boldsymbol{j}}-\boldsymbol{r}_{\boldsymbol{e}} \times \boldsymbol{f}_{\boldsymbol{e}}-\boldsymbol{m}_{\boldsymbol{e}}$
Equilibrium condition of force
$\sum_{i=1}^{N_{f}} a_{i} \boldsymbol{f}_{i}=-\sum_{j=1}^{N_{f}} b_{j} \boldsymbol{f}_{\boldsymbol{j}}-\boldsymbol{f}_{\boldsymbol{e}}$

$$
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{f}_{i} \geq \frac{1}{\sqrt{1+\mu^{2}}}\left\|\boldsymbol{f}_{i}\right\|
$$

$\boldsymbol{f}_{\boldsymbol{i}}, \boldsymbol{m}_{\boldsymbol{i}}, \boldsymbol{n}_{\boldsymbol{i}}, \boldsymbol{r}_{\boldsymbol{i}} \quad$ Force, moment, contact vector, and vector
S_{i} moment size μ friction coefficient
a_{i} :1 when the finger is grasping finger, 0 when the finger is manipulation finger
$b_{i}: 0$ when the finger is grasping finger,
1 when the finger is manipulation finger

Angular velocity of the object

Finger velocity to move the object

$$
\left[\begin{array}{c}
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{v}_{i} \\
\vdots \\
\boldsymbol{v}_{N_{f}}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{E}_{3 \times 3} & -\boldsymbol{r}_{I} \\
\vdots & \vdots \\
\boldsymbol{E}_{3 \times 3} & -\boldsymbol{r}_{i} \\
\vdots & \vdots \\
\boldsymbol{E}_{3 \times 3} & -\boldsymbol{r}_{N_{f}}
\end{array}\right]\left[\begin{array}{cl}
\boldsymbol{v}_{o} \\
\boldsymbol{w}_{o}
\end{array}\right] \quad \boldsymbol{E}_{3 \times 3}, 3 \times 3 \text { unit matrix }
$$

Desired object velocity

$$
w_{o z}=k_{w} y_{g}
$$

$w_{o z}$ angular velocity of the object along z-axis
$k_{w} \quad$ conversion coefficient
$y_{g} \quad$ neural output of the grasping finger

Effect of the object size on the manipulation

- Rotatable angle of the object changes depending on the object size and the movable area of the finger
- Movable area is determined by the mechanical configuration of the finger

Joint margin feedback to the neurons

Relocation of the fingers can be performed when the finger moves to the movable limit

Experiment

- Experimental setup
- Rotation of a cylindrical cap
- Diameter: 50, 60, 75[mm]
- 2-neuron CPG model

Movable limit of the joint
$C_{i 1 \min }=-\pi / 9 \quad C_{i 2 \min }=-\pi / 2 \quad C_{i 3 \min }=0$
$C_{i 1 \max }=\pi / 9 \quad C_{i 2 \max }=4 \pi / 9 \quad C_{i 3 \max }=\pi / 2$
[rad]

RE
$15=5$

Experimental scene

Motion cycle

Adaptive manipulation according to the object size

Conclusion

- CPG-based manipulation using a four-fingered hand system
- CPG model using two neurons
- Grasping and rotation using facing two fingers
- Joint margin feedback
- Issue of the motion commands depending on the object size
- Experiment using a hand system
- Four-fingered hand system
- Adaptive change of the issuing cycle
- Future work
- Determination method of the CPG parameters
- Connecting the CPG directly to the actuators

