

Outline of the talk

- Study question
- Motivation & previous studies
- Eye-tracking experiment
- Results
- Discussion
- Conclusion

How about in other languages?

- Thai uses alphabetic scripts, but no spaces between words การปรับสานวนแปลเช่นในหัวข่าวก็น่ามาใช้ในประโยคแรก ของย่อหน้านี้ได้เช่นกัน
- Kohsom & Gobet (1997)
 Spaced texts were read faster than unspaced texts
- Will Japanese readers use these cues when present?

Experiment: overview

- Participants read spaced and unspaced texts
- Eye movements were recorded during reading
- Examined if spacing has positive effects on reading
- Results from 16 native speakers of Japanese (students from NAIST)

Apparatus (EyelinkII)

- Head-mounted eye tracker with high speed eye cameras
- Binocular recording of eye movements during reading
- Sampling rate: 500 data samples per second
- Spatial resolution: < 0.5°

Materials

- 20 (unspaced) texts
 - 13 texts from a science magazine (science articles translated into Japanese)
 - 7 texts from a newspaper corpus
- Length of texts
 - 286-386 characters
 - 8-10 lines
 - 1-3 paragraphs

Space insertion into texts

- Used parsing tools developed at CL-lab
 ChaSen added POS-tags into texts
 - CaboCha (dependency analyzer) determined bunsetsu boundaries
 - One segmentation error corrected manually (一番は なれた → 一番 はなれた)
- Spaces
 - one half-width space between bunsetsu
 - one full-width space at the beginning of each paragraph

Spaced and unspaced texts

- The amount of information per line was the same
 - 40 characters per line
 - Line breaks appear at the same position
- Line length is shorter in unspaced texts than in spaced texts

Procedure

- Each participant had two reading sessions (separated by a short break)
- 8 spaced texts in one session and 8 unspaced texts in another session
 - Never read the same text in two different spacing versions
 - Spacing-type and session-order were equally distributed across participants

10

Procedure (cont.)

Each session begins with 2 practice texts

- In the test trials
 - A text is displayed on the screen
 - A participant reads the text silently for comprehension
 - Three questions asked after each text
 Q1: "Was the text easy to read?" [Yes or No]
 Q2 & Q3: About the content of the text [Yes or No]

Types of data

- Data from comprehension questions
 - Q1: text readability
 - Q2 & Q3: content of the text
- Eye movement data
 - Fixations
 - Total reading times
 - Regressions
- Significance level set at p<0.05

Comprehension questions

No difference in

- Q1: text readability [Fs < 1]</p>
 - Unspaced 75.0%
 - Spaced 77.3%
- Q2 & 3: comprehension accuracy [Ps > 0.23]
 - Unspaced 64.4%
 - Spaced 68.7%

Fixations

The number of times an eye is fixated within a text, and its average duration

- Spaced texts (209ms) had shorter fixations than unspaced texts (216ms) [Ps<0.005]
 - Tendency in Session 2 only
 - Trade-off between duration and number "many short fixations vs. fewer long fixations"

Definition of the product o

Distribution of regressions

The number of regressions per length range

Length	Spaced	Unspaced	
0-19	35.31	48.81	Fewer regressions in
20- 39	50.50	57.38	spaced texts (47)
40- 59	53.88	62.31	than in unspaced
60- 79	53.75	54.31	texts (53)
80- 99	41.63	44.63	[p ₁ <0.07; p ₂ <0.05] No difference over 100 ranges
100-199	104.75	96.63	
200+	84.13	84.44	
			10

Regressions (to previous lines)

 No difference in length, latency, and number

Summary of the results

- Spaced texts produced
 - Higher rating on text readability
 - Higher comprehension accuracy
 - Shorter fixations (session 2 only)**
 - Fewer short-range (<100) regressions**</p>
- Space insertion seems to have some positive effects on reading
- but the effects are relatively weak

Discussion

- Spaces provide visual cues for word boundaries
- Japanese has other cues
 - Three sets of characters
 - Katakana → loan words
 - Hiragana → grammatical info (e.g., verb-endings, case markers)
 - Kanji → content words (e.g., nouns, verbs)
- Segmentation cues are already available in normal texts, and readers may be using them
- Then, space insertion may not have that large effects

Discussion (cont.)

- Lack of statistical power
- Comprehension questions slowed down overall reading speed
 - This may obscure the subtle but significant effects of space insertion

Conclusions

- Examined the effects of space insertion on the reading of Japanese texts
- The results suggest some positive effects of space insertion
- If space insertion does facilitate reading, potential applicability to natural documents on the Internet