
1

Protecting Software by Instruction
Camouflage

Yuichiro Kanzaki

Software Engineering Laboratory,

Graduate School of Information Science,

Nara Institute of Science and Technology

4th COE Postdoctoral and Doctoral Researchers

Technical Presentation

July 22nd , 2004

July 22, 2004 2/18

Table of Contents

� Background

� Key idea of our software protection method

� Procedure for protecting a program

� Case study

� Conclusion and future plan

July 22, 2004 3/18

Background

Software cracking has posed a serious problem for copyright
protection of the software.

We need a method for protecting software to create a safe
ubiquitous computing environment.

Example

� An attacker analyzes a digital contents distribution system and
obtains a secret key[1].

� An attacker analyzes a program embedded in a set-top box
and steals a device key[2].

[1] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot: A white-box DES implementation for DRM
applications, Proc. 2nd ACM Workshop on Digital Rights Management, pp.1-15, Nov. 2002.
[2] The United Kingdom Parliament, ``The mobile telephones (re-programming) bill,'' House of Commons
Library Research Paper no.02/47, July 2002.

Attacker : an individual who illegally analyzes software, and uses
the outcome for other purposes.

July 22, 2004 4/18

How is software attacked ?
A scenario of obtaining the secret key in a program

An effective solution to protect software against illegal code
analysis is to increase costs for understanding the program.

Binary Program

cmpl $12, %ebp
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax
movl $1, %esp
jmp L11

．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．

Assembly Program Fragment
(containing the secret key)

Assembly Program

Narrow the Range of Analysis

Disassemble

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

Understand Obtaining
the secret key

July 22, 2004 5/18

Self-modification mechanism

We add a self-modification mechanism to a program,
to increase the cost for understanding a program.

self-modification: An instruction in the program replaces another
instruction in the same program at run-time

:
add
mov
mov
sub
mov
add
mov
jmp

:

Self-modifying Program

xor

Replacing
an another
instruction

:
add
mov
sub
mov
add
mov
jmp

:

Original Program

July 22, 2004 6/18

Camouflaging an instruction

:
subl %edx, %eax
movl %eax, %ebx
L1:
addl -12(%ebp), %ebx
movl %eax, %ebx
movl %eax, (%esp)

:

movb $0x33, L1

:

Replacing the
dummy with the
original

Replacing the
original with the
dummy

Target Instruction xorl -12(%ebp), %ebx

Hiding Routine

:
movb $0x03, L1

A program to be protected

Restoring Routine

Overwrite an original instruction with a dummy, which makes
attackers misread the program.

1. We overwrite a target instruction with a dummy instruction.
2. We add self-modification routines that replace the dummy instruction
with the original one within a certain period of execution.

(RR)

(HR)

(target)

2

July 22, 2004 7/18

Extending a range of analysis

A program to be protected

:
cmpl $123,-4(%ebp)
movb 0x03, LC1
subl %edx, %eax
movl %eax, %ebx
jmp L11

:
pushl %ebp
movl %esp, %ebp
subl $12, %esp
movl 8(%ebp), %eax
LC1:
xorl (%ebp), %eax
shrl $8, %eax
andl $255, %eax

:
andl $1, %eax
movb 0x33, LC1
testl %eax, %eax
je L10

:

Camouflaged instructions force attackers into extending the
range of analysis.

Target Instruction
(camouflaged)

Hiding Routine

Restoring Routine

To read the long program
costs an attacker a lot of
time.

A part that an attacker
tries to understand

July 22, 2004 8/18

Multiple camouflaging

:
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax
shrl $8, %eax
andl $255, %eax
andl $1, %eax
addl (%esp), %eax
jmp L11
pushl %ebp
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax

:

A program to be protected

:
cmpl $123,-4(%ebp)
addl %edx, %eax
movb 0x03, L15
ret
pushl %ebp
addl (%esp), %eax
xorl $12, %esp
movb 0x06, L6
shrl $8, %eax
subl $255, %eax
andl $1, %eax
addl (%esp), %eax
inc %eax
pushl %ebp
cmpl $123,-4(%ebp)
addl %edx, %eax
movl %eax, %ebx
movb 0x03, L15
pushl %ebp
addl (%esp), %eax
addl $12, %esp
movb 0x06, L6

:

We camouflage many of the original instructions by dummy
instructions and add routines.

Many instructions are
camouflaged by dummy
instructions.

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

camouflaged

No matter where an attacker
tries to analyze, he will
encounter some camouflaged
instruction.

July 22, 2004 9/18

Outline of our system

Source Program
(in high-level lang.)

Assembly Program

Camouflaged
Binary Program

Camouflaging
System

:
i = i + 1
if(i > 10) {
x = x + 1 ;
} else {
x = x – 1 ;
}
:

Compile Input Output

:
addl $16,%esp
cmpl $123,%eax
jne L6
jmp L4
push %eax

:

．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．

Camouflaged
Assembly Program

:
movb 125,%eax

:
addl $16,%esp
or $123,%eax
jne L6
jmp L4
push %eax

:

Assemble
1. Determine a target instruction and the positions

of self-modification routines
2. Determine a dummy instruction
3. Generate self-modification routines
4. Embed the dummy and the routines in the

program

July 22, 2004 10/18

(Step 1) Determine a target instruction and the
positions of self-modification routines

targettargettargettarget
inst.inst.inst.inst.

P(HR)P(HR)P(HR)P(HR)

start

end P(RR)P(RR)P(RR)P(RR)

RR : a restoring routine
HR : a hiding routine
P(RR) : position of inserting RR
P(HR) : position of inserting HR

Example of a control flow graph

Sufficient Conditions for correct execution:
1. P(RR) must exist on every control flow path

from the program entry to the target.

2. P(HR) must not exist on every control flow path

from P(RR) to target.

3. P(RR) must exist on every control flow path

from P(HR) to target.

4. P(HR) must exist on every control flow path

from target to the program exit.

These are sufficient conditions for a program not to
cause malfunction .

July 22, 2004 11/18

(Step 2) Determine a dummy instruction

Example:

target instruction (original)

Assembly Repr. : addl -$12(%ebp), %ebx
Hex. Repr. : 03030303 5D F4

dummy instruction

A dummy instruction is obtained by changing the
content of the target instruction.

Assembly Repr. : xorl -$12(%ebp), %ebx
Hex. Repr. : 33333333 5D F4

July 22, 2004 12/18

(Step 3) Generate self-modification routines

RR

target instruction (original)

Assembly Repr. : addl -$12(%ebp), %ebx
Hex Repr. : 03030303 5D F4

dummy instruction

Assembly Repr. : xorl -$12(%ebp), %ebx
Hex Repr. : 33333333 5D F4

movb $0x03, L1

changing 1st byte
from 33 to 03.

HR movb $0x33, L1

changing 1st byte
from 03 to 33.

3

July 22, 2004 13/18

(Step 4) Embed the dummy and the routines in
the program

movl -8(%ebp), %eax
movb $0, (%eax)
movb $0x03, L1
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx

L1: xorl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
movb $0x33, L1
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

RRRRRRRR

HRHRHRHR

...
...

movl -8(%ebp), %eax
movb $0, (%eax)
movl 8(%ebp), %eax
movl %eax, (%esp)
movl 16(%ebp), %eax
movl %eax, 4(%esp)
call _strcat
movl 8(%ebp), %edx
movl -8(%ebp), %eax
subl %edx, %eax
movl %eax, %ebx
addl -12(%ebp), %ebx
movl 12(%ebp), %eax
movl %eax, (%esp)
call _strlen
movl 8(%ebp), %eax
movl %eax, (%esp)
movl %edx, 4(%esp)

...

dummydummydummydummy

P(HR)P(HR)P(HR)P(HR)

P(RR)P(RR)P(RR)P(RR)

...

Original Assembly Program Camouflaged Assembly Program

target
addl -12(%ebp),%ebx

originaloriginaloriginaloriginal

targettargettargettarget

dummydummydummydummy

July 22, 2004 14/18

Repeating steps

:
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax
shrl $8, %eax
andl $255, %eax
andl $1, %eax
addl (%esp), %eax
jmp L11
pushl %ebp
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax

:

:
cmpl $123,-4(%ebp)
addl %edx, %eax
movb 0x03, L15
ret
pushl %ebp
addl (%esp), %eax
xorl $12, %esp
movb 0x06, L6
shrl $8, %eax
subl $255, %eax
andl $1, %eax
addl (%esp), %eax
inc %eax
pushl %ebp
cmpl $123,-4(%ebp)
addl %edx, %eax
movl %eax, %ebx
movb 0x03, L15
pushl %ebp
addl (%esp), %eax
addl $12, %esp
movb 0x06, L6

:

:
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax
shrl $8, %eax
andl $255, %eax
andl $1, %eax
addl (%esp), %eax
jmp L11
pushl %ebp
cmpl $123,-4(%ebp)
subl %edx, %eax
movl %eax, %ebx
jmp L11
pushl %ebp
addl (%esp), %eax
subl $12, %esp
movl 8(%ebp), %eax

:

:
cmpl $123,-4(%ebp)
addl %edx, %eax
call L1
pushl %ebp
addl (%esp), %eax
xorl $12, %esp
shrl $8, %eax
subl $255, %eax
andl $1, %eax
addl (%esp), %eax
inc %eax
pushl %ebp
cmpl $123,-4(%ebp)
addl %edx, %eax
movl %eax, %ebx
pushl %ebp
addl (%esp), %eax
addl $12, %esp
call L2
pushl %ebp
subl $255, %eax

:

Repeating (Step 1) - (Step 4) and constructing the

camouflaged program.

Original Assembly Program Camouflaged Program

A user can decide the number of repetition, according to the required
protection level.

July 22, 2004 15/18

Case Study (1/3) -- Overview

We evaluated a camouflaged program.

Evaluation Items

Target Program

� Performance overhead

� Distribution of camouflaged instructions and self-
modification routines

ccrypt (well-known GNU utility for encrypting files)

July 22, 2004 16/18

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500

Number of camouflaged instructions

P
ro

gr
a
m

 e
xe

cu
ti
on

 t
im

e
[s

e
co

nd
s]

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

P
ro

po
rt

io
n
 o

f
ca

m
ou

fl
ag

e
d

in
st

ru
c
ti
on

s

Proportion of camouflaged instructions Average of execution time

Case Study (2/3) – Performance Overhead

0.06[s]

2.9[s]

When 500 instructions are camouflaged, the average execution
time is about 2.9 seconds, which is about 47 times as long as the
original (0.06 seconds).

* We used a 1 Mbyte text
file, and measured the
time taken for each ccrypt
to encrypt the text file.

July 22, 2004 17/18

Case Study (3/3) – Distribution of camouflaged
instructions and self-modification routines

Target Assembly Program

� # of instructions : 1000
� # of camouflaged inst. : 130

Distance between camouflaged insts.
and restoring routines.

� Average : 151[inst.]
� Maximum : 611[inst.]

Costs for understanding this
program are drastically increased.

0

200

400

600

800

1000

1200

1400

0 6 12 18 24 30

Line # (modular 30)

L
in
e
 #

Camouflaged Instruction
Inserting Position of Restoring Routine
Inserting Position of Hiding Routine

July 22, 2004 18/18

Conclusion and future plan

Conclusion

� We presented a systematic method for protecting software
against the code analysis, by camouflaging instructions.

� We conducted a case study.

� Costs for understanding the program seems to be
drastically increased.

� The more we camouflage the instructions, the more
expensive program overhead becomes.

Future Plan

� Improving our system in consideration of architectural aspects
to reduce performance overhead.

